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Peatlands are the most carbon-dense ecosystems on earth. In tropical

mountains, peatlands are numerous and susceptible to rapid degradation and

carbon loss after human disturbances. Quantifying where peatlands are located

and how they are a�ected by land use is key in creating a baseline of carbon

stocks and greenhouse gas fluxes from tropical mountain peatlands. However,

mapping peatlands in the páramo of the Northern Andes is di�cult because

they are in a topographically complex environment with nearly continuous cloud

cover and frequent conversion to pastures or cropland. The goal of this e�ort

was to identify the di�erent types of páramo peatlands and their degradation

patterns in the Colombian Central Cordillera. Moderate resolution cloud-free

composites of optical imagery, temporal variance in ALOS- PALSAR L-band SAR,

Sentinel-1 C-band SAR, and topography data were used as inputs in a machine

learning classifier to identify was used to map 12 land cover classes including

peatlands with natural vegetation and peatlands converted to pasture. Field data

from 507 control points collected across the study area, including information

on the vegetation and carbon content on the top 20 cm of the soil, were used to

train and validate the classifier. Results show that the use of multiple platforms

and image dates, including variance of the radar returns, is necessary for a clear

separation of disturbed and undisturbed peatland classes. Peatland area varied

across the study region, covering 7% and 20% of the landscape in the northern

and southern portions of the study area, respectively. Disturbed peatlands with

exotic grasses cover nearly 2% of the area. The overall accuracy of the peatland

classes was 82.6%. Disturbed peatlands with exotic grasses had less carbon in

the top 20 cm than undisturbed peatlands with natural vegetation. These results

highlight the prevalence of peatlands in the tropical Andes and a promising

approach to detecting peatlands converted to agriculture. Understanding the

distribution and extent of these carbon dense ecosystems can facilitate the

restoration and protection of peatlands in the northern Andes, with implications

for the future trajectories of the national greenhouse gas inventory.
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1 Introduction

Natural peatlands are wetlands dominated by peat forming
plants, with deep organic soils and stable elevated water tables
(Clymo, 1984). Organic matter is stored in the soil for thousands
of years because of the reduced decomposition rates in the anoxic
zone below the water surface (Chimner and Karberg, 2008; Hribljan
et al., 2016). Carbon rich ecosystems such as peatlands play an
important part in global strategies for climate change mitigation
(Griscom et al., 2017; Bossio et al., 2020; UNEP, 2022). Peatlands
are the most carbon dense ecosystem in the world, with huge
belowground carbon stores outweighing their relatively small
spatial extent (Yu et al., 2011; Loisel et al., 2021). While they
only cover 3% of the global land surface area, they store nearly
one third of total soil carbon globally (Yu et al., 2011; Gumbricht
et al., 2017). This makes these ecosystems highly important for C
cycling at a global scale, but amore complete understanding of their
location and distribution is needed to fully understand peatlands’
role in the global C cycle and to implement strategies for peatland
conservation and restoration.

Despite the relevance of peatlands to global climate change,
accurate maps of peatland extent are lacking, and their vulnerability
to human disturbances is still poorly understood (Minasny et al.,
2019; Goldstein et al., 2020; Hugelius et al., 2020; UNEP, 2022).
In mountain settings, peat can form on the sides of mountains
or can fill poorly drained valleys, which allows for a correlation
between geomorphological depressions and peatland development
(Chimner et al., 2010; Gumbricht et al., 2017). Identifying the
extent and location of wetlands and peatlands in mountain
environments is challenging given the complex topography and the
availability of remote sensing data, which is limited due to near-
permanent cloud cover (Bourgeau-Chavez et al., 2018; Chimner
et al., 2019).

Anthropogenic activities have altered the global carbon (C)
cycle over the past decades. This has raised concerns over the
quantification of C stocks. Mountain peatlands are often excluded
from C stock inventories because of their relatively small individual
size compared to boreal or lowland tropical peatlands (Gorham,
1991; Yu et al., 2011; Gumbricht et al., 2017). However, tropical
mountain peatlands are key elements of high elevation ecosystems,
and their area has been grossly underestimated (Hribljan et al.,
2017; Chimner et al., 2019). In Colombia, these peatlands are found
in the zone above the treeline and below the lower limit of glaciers,
known as páramo.

An additional challenge is to estimate the extent of land use
change and degradation of peatlands that have been transformed to
cropland or pastures. Peatlands have stored carbon over millennia
but human disturbances can release large amounts of that carbon
back to the atmosphere in short periods of time (Hugelius et al.,
2020), so it is critical to identify not just the extent, but also the
condition of these peatlands.

The Colombian Andes are a highly dynamic system affected
by local socio-economic trends, global trade of commodities
such as potatoes and milk, the 2016 peace agreement, and new
legislation (Clerici et al., 2019). Recently, land use in the peat-
rich Colombian páramo has been restricted to uses that do not
have negative impact on ecosystem services (Congress of Colombia,

2018). This law prohibits a variety of high impact land uses in
regions classified as páramo, such as mining, construction of roads,
urban expansion, and forestry, but allows agriculture as long as
heavy machinery is not employed. Regional agricultural practices
can instigate change from pastures to crops and to pastures again
within a single year (Rodríguez Eraso et al., 2013; Clerici et al.,
2019). These rapid changes put delicate peatland ecosystems at
high risk for degradation. Despite the risks these land uses pose,
to our knowledge there are no accurate maps describing mountain
peatlands and associated land use for Colombia.

In addition to storing large amounts of carbon in their organic
soils, they also provide critical habitats for wildlife, are home to a
variety of rare plants, and act as important water storage systems
(Hribljan et al., 2017; Chimner et al., 2019), providing essential
ecosystem services to local communities and populations at lower
elevations (Chimner et al., 2020). They are a critical component
of regional food and water systems, serving as a source of water
for agricultural activities and human consumption to nearly 100
million people (Buytaert et al., 2006). The valleys where peatlands
commonly occur offer a steady water supply and relatively flat
landscapes that are attractive for agricultural and pastoral activities
(Joosten et al., 2016). Although they are important economic
activities, grazing and agriculture are especially impactful on
peatlands. In the northern portion of the Andes, peatlands are
often converted into pastures or agricultural fields by creating
drainage ditches and planting crops or exotic grasses for grazing
(Joosten et al., 2016; Machaca et al., 2018). Changes in the land
use of peatlands have a direct effect on ecosystem services, with
significant reduction on the carbon stocks (Chimner and Karberg,
2008; Hergoualc’h and Verchot, 2011; Moore et al., 2013; Urbina
and Benavides, 2015; Hribljan et al., 2016), increases in greenhouse
gas emissions (Allen et al., 2014; Wilson et al., 2016; Sánchez
et al., 2017; Planas-Clarke et al., 2020), and decreased ability of
watersheds to regulate water discharge (Buytaert et al., 2006).

However, there is little information on the spatial extent of these
land use conversions. Without this information, it is impossible
for land management agencies and decision makers to develop
estimates of the contribution of these lands to greenhouse gas
storage and emissions, and their potential contributions to national
efforts to reduce greenhouse gas emissions to meet targets for
international agreements, e.g., nationally determined contributions
(NDCs) to the Paris Accord (UNEP, 2022).

Given this data gap, creating maps of land use in peat-
rich regions such as the Colombian Andes is an essential next
step. Utilization of satellite-borne remote sensing data has been
shown to be a cost-effective and accurate means of quantifying
peatland extent (Minasny et al., 2019). However, identifying
discrete peatland ecosystems in montane settings using remote
sensing presents unique challenges. Optically, a peatland can have
a similar spectral signature to the adjacent upland areas because
of canopy similarities or gradual changes in the dominant plant
species (Gumbricht et al., 2017; Bourgeau-Chavez et al., 2018).
Additionally, mountain peatlands develop in small topographic
depressions and the rough landscape creates shadows leading to
weak sensor returns (Hribljan et al., 2017; Bourgeau-Chavez et al.,
2018; Chimner et al., 2019). Calibration with field data is difficult
given that tropical mountain peatlands have been traditionally
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assigned to either upland ecosystems or temporary flooded areas,
excluding them from wetland delineation efforts (Cleef, 1981; Eva
et al., 2004; Jaramillo Villa et al., 2016; Ricaurte et al., 2019). In
spite of these challenges, efforts that leverage a combination of
active [e.g., Synthetic Aperture Radar (SAR)] and passive optical
sensors have been used to successfully map peatland ecosystems
in tropical mountain regions (Hribljan et al., 2017; Chimner et al.,
2019). However, the conversion of peatlands to agriculture presents
an additional challenge to peatland mapping techniques because
the plant communities found in croplands or pastures in disturbed
peatlands are spectrally similar to agricultural areas found on
mineral soils.

The goal of this study was to build on established mountain
peatland mapping techniques to accurately assess the extent of
mountain peatlands, including peatlands disturbed by agricultural
activities, in the Central Cordillera of Colombia. Previous studies
which have used remote sensing to identify disturbed peatlands
have relied heavily on optical imagery (Torabi Haghighi et al.,
2018; Šimanauskiene et al., 2019; Brown et al., 2023). Persistent
cloud cover in the Colombian Andes makes such an approach
impossible. Rough topography, similar vegetation structure across
different ecosystem types and the frequent land use changes
present additional difficulties in this region (Rodríguez Eraso
et al., 2013). To overcome these challenges, we used a multi-
sensor approach utilizing C- and L- band SAR from Sentinel-
1 and ALOS and ALOS-2 PALSAR, multispectral Sentinel-2
data, and digital elevation model derivatives in combination with
field surveys to determine mountain peatland spatial extent and
associated land cover types. We combined the mapping with soil
coring to estimate belowground soil C storage in the peatlands
across the studied area, confirming a depth of at least 20 cm
of peat.

2 Materials and methods

2.1 Study area

This effort focused on three páramo complexes with elevation
above 2,800 meters above sea level at the southern end of
Colombia’s Central Cordillera. For the purposes of mapping, the
study area was divided into northern and southern zones following
the main geological and climatic gradients of the region (Figure 1).
The northern zone covers the Las Hermosas and Chili-Barragán
páramo complexes. In the National Park Las Hermosas and nearby
areas including the Chili-Barragan páramo, the geology is of
intrusive igneous origin and landscape is steep with deep glacial
valleys. In the southern zone, covering part of the Purace National
Park and delimited by the Guanacas-Purace-Coconucos paramo
complex, the area is dominated by active and extinct volcanoes
with large relatively flat lava flows. The climatic conditions of
this section of Colombia’s Central Cordillera are characterized by
mean annual temperature below 10◦C, strong day/night variations,
cloudy skies, foggy days, high UV radiation and strong winds.
Precipitation is bimodal with two wet seasons (March to May
and September to November), and two dry seasons (December to
February and June to August) (Ruiz et al., 2008; Espinoza et al.,
2020).

2.2 Preliminary classification

A preliminary classification that divided the study area into
potential wetland and upland categories was conducted to help
guide field surveys. Aerial and satellite imagery available in Google
Earth was visually assessed by interpreters familiar with the
study region to identify likely peatland and upland points. Points
identified as wetlands and uplands were buffered by 20m to create
a set of training polygons that were used as input into the Random
Forests machine learning classifier along with remote sensing data
(Breiman, 2001) Google Earth Engine was used to acquire image
data used as input for this preliminary classification. Imagery
included median composites of near-infrared and green bands of
all available Landsat 8 images and mean composites of VV and
VH polarizations for all available Sentinel-1 C-band SAR imagery
collected in Interferometric Wide mode.

2.3 Field data

Once the preliminary map was created, potential field sites
were identified using a random sampling approach constrained by
proximity to roads. Road locations were acquired fromOpen Street
Maps. Open Street Maps was used because it is freely available
and it was determined to be more accurate than other sources.
Excess random points were generated to account for accessibility
issues. In addition to difficult terrain, the political circumstances
make otherwise accessible regions unsafe to visit, constraining
the distribution of sampling points. A disproportional stratified
random approach was used to ensure a sufficient number of
sampled points within potential wetland areas that should include
large amounts of peat. Out of the 4,500 total points generated, 1,500
(33.3%) were within areas identified as potential wetlands, even
though the potential wetlands represented only 5% of the area in
the preliminary classified map.

A total of 628 sites were visited in the field. GPS coordinates,
photographs, soil samples, pH and water electrical conductivity
(when possible), and dominant vegetation type, were recorded at
507 of the 628 field sites. The remaining 121 sites were visited to aid
in map validation. For these sites, only GPS coordinates, dominant
vegetation type and photographs were collected. We identified
peatlands in the field by a combination of a visual assessment of
peat forming species on the surface, evidence of flooding or soil
saturation and by examining the soil structure of soil cores. Initially,
soil samples were collected at 20 cm depth in order to assess surface
disturbances expected from the presence of livestock and altered
hydrology. However, 40 cm depth samples were collected for 100
field sites after determining the deeper depth was more appropriate
for estimating carbon content. We examined the soil core in the
field and determined the presence of mineral or organic layers. The
soil samples were subdivided into 10 cm samples and sealed into
plastic bags, then transported to Pontificia Universidad Javeriana
Ecosystems and Climate Change Laboratory in Bogotá, Colombia.
All samples were oven dried and organic matter content (OM)
was determined by loss on ignition (LOI) at 550◦C for 12 h (Soil
Survey Staff, 2009). Percent carbon content (%C) was determined
from LOI derived OM with the following equation: %C = %OM
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FIGURE 1

The three páramo complexes mapped in this study within Colombia’s Central Cordillera, outlined in red. The inset shows the situation of the study

area in north-western South America.

∗ 0.48 (Benavides, 2014). Other C% estimates have been derived
from LOI for different regions of the Andes (Hribljan et al., 2015,
2024), but the equation used in Benavides (2014) was chosen to
remain consistent with previous work conducted in Colombia. Bulk
density was determined by dividing the weight of each sample
by its volume, which in turn was multiplied by %C to determine
carbon content.

Once carbon content was determined for each sample, a cover
type reclassification was conducted, with peatlands defined as
saturated organic soils that contain more than 12% carbon within
the first 40 cm of depth, and the 30–40 cm section strictly cannot go
under 12% carbon, except for Andisols which have 25% of carbon
(Soil Survey Staff, 2009). The dominance of organic matter at 40 cm
deep in a saturated soil matrix indicates the development of an

active anoxic catotelm and a functionally active peatland (Clymo,
1978). The 12% threshold was used for the 20 cm samples, even
though the 30–40 cm depth could not be assessed. Of the 507 field
sites visited, 166 were identified in the field as peatlands, 123 were
non-peat forming wetlands, and the remainder were various upland
categories, which included shrubby areas, forested areas, graminoid
dominated uplands, and agricultural areas.

Field sites identified as peatlands were also classified according
to the intensity of disturbance. Disturbance intensity was
categorized by looking for evidence of livestock grazing, exotic
vegetation, and artificial drainage via ditching. Sites with little or no
visible evidence of disturbance were categorized as “Low Intensity
Disturbance,” sites with evidence of grazing, such as hoofprints
and cow pies, but no artificial drainage or exotic vegetation
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were categorized as “Medium Intensity Disturbance.” Sites with
exotic vegetation or ditching were classified as “High Intensity
Disturbance.” Carbon content was analyzed using twowayANOVA
with land cover and disturbance levels as the main effects, the
interaction between the two factors was not analyzed since not
all the land cover types had all the disturbance levels. Statistically
different groups from the ANOVA were identified using Tukey’s
honest significant difference test (Crawley, 2012). All the statistical
analysis were run in R v2.3 statistical software (R Core Team, 2023).

2.4 Remote sensing data

Previous studies have shown a combination of optical, SAR,
and elevation data to be effective for mapping tropical Andean
wetlands and peatlands (Hribljan et al., 2017; Bourgeau-Chavez
et al., 2018; Chimner et al., 2019). Optical data is useful
for discriminating differences in vegetation, as various species
compositions representative of specific cover types typically have
unique spectral characteristics. In some cases, optical data can
be helpful for identifying wetlands, but similarities between
upland and wetland vegetation signatures in optical data can
make classification difficult when using optical imagery alone.
Topographic data is also useful, as water flows into depressions and
valleys, making relative landscape position an important variable
in determining cover types such as peatlands. The addition of
SAR data is especially advantageous for assessing peatlands, as
it can provide additional information that can help to infer soil
moisture content, inundation status, and vegetation structure. As
an active sensor emitting radiation in the microwave portion of the
electromagnetic spectrum, SAR is capable of penetrating vegetation
canopies, and in some cases, upper soil layers. This characteristic
creates similar backscatter signatures in low-biomass peatlands,
where the relative brightness of each pixel is related to its moisture
status. Peatlands are expected to remain more consistently wet in
different seasons than upland areas or mineral wetlands. When
used in combination with optical data, this allows for the separation
of undisturbed peatlands, upland pastures, and peatlands used
for grazing.

2.4.1 Optical imagery
Optical imagery is commonly used in land cover mapping

efforts (Guo et al., 2017). Studies leveraging multi-date imagery
often cite the importance of capturing changes in plant phenology
throughout the year, which can be exploited to differentiate
otherwise similar species or ecotypes (Hribljan et al., 2017;
Chimner et al., 2019). In the case of Colombia’s Central Cordillera,
publicly available optical imagery of adequate resolution for
mapping peatlands (30m or better) was extremely limited due to
cloud cover. Landsat 8, which has a 16-day revisit cycle, collected
zero images with under 20 percent cloud cover between its launch
in 2013 and the end of 2022. Likewise, the Sentinel-2 mission,
which is comprised of twin satellites (Sentinel-2A and Sentinel-
2B) with an effective revisit time of 5 days, has collected no images
with under 20 percent cloud cover of the study area. While some
studies have shown limited success using only data from non-
optical sensors (Adeli et al., 2020), the management implications

of discriminating degraded and undisturbed peatlands, whose SAR
signatures and relative topographic positions were expected to be
similar, necessitated the use of optical data.

To mitigate the limitations imposed by persistent cloud cover,
cloud-free composites of Sentinel-2 imagery were created using
Google Earth Engine. Sentinel-2 was chosen over Landsat 8 for
several reasons. First, Sentinel-2 has higher spatial resolution (10m
– 20m) than Landsat 8 (30m). Secondly, Sentinel-2 includes 3
red-edge bands which are useful in vegetation characterization
(Merchant et al., 2019). Additionally, Sentinel-2’s higher temporal
resolution results in higher likelihood of having a cloud-free
image for each pixel. Composites were created by first filtering
out all available images with >50% cloud cover using the
QA60 band for each image. Next, images from January were
selected. January images have several advantages for the Central
Cordillera. January tends to have the clearest days, being in the
middle of the dry season, and it is also near the time when
crops (mostly potato and onion) are harvested. This allows for
easy differentiation of crops as they will either be near peak
greenness or will be bare soil. Then, NDVI was computed
for each remaining image. For each pixel, the image with the
maximum NDVI value was selected and inserted into the final
image composite.

2.4.2 SAR imagery
Unlike optical imagery, SAR data can be acquired day or

night regardless of cloud conditions. Both C-band imagery from
Sentinel-1 and L-band data from ALOS PALSAR and ALOS-2
PALSAR were used. Like Sentinel-2, the Sentinel-1 mission is a
combination of two identical C-band sensors designed to collect
imagery over every location on the planet at least once every 12
days. As such, there are over 1000 Sentinel-1 images collected
in Interferometric Wide mode available over the study region.
Like optical imagery, multi-date SAR images are often used for
wetland classification, however using each image on its own would
have been computationally difficult and inefficient. Therefore,
Google Earth Engine was again used to create wet season and
dry season composites. The Sentinel-1 pre-processing routine in
Google Earth Engine includes thermal noise removal, calibration
to sigma nought, and terrain correction. Images are provided
on decibel scale. Images are not speckle filtered, but because
image compositing acts, effectively, as temporal multi-looking, no
additional spatial filtering was needed. Because the study region
is in such mountainous terrain, both ascending and descending
orbit paths were used to ensure that high slope regions were not
in areas not imaged due to the effects of radar shadow. Each image
was converted from decibel to linear scaling to allow for standard
statistical averaging to be used. Mean and standard deviation were
calculated for each pixel for both available polarizations (VV and
VH) and for each wet and dry season resulting in 8 total Sentinel-
1 bands.

L-band data was also used in this study. The longer wavelength
of L-band SAR is better suited for penetrating higher biomass
vegetation, allowing for improved discrimination of woody cover
types such as shrubs and forests, and is also sensitive to surface
soil moisture. ALOS-2 PALSAR data is not freely available but 8
images were acquired via a data grant (JAXA RA6_3120), allowing
for dual-date coverage for the entire study area. ALOS-2 data
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was radiometrically terrain corrected and speckle filtered using
the SNAP Toolbox (ESA, 2021). Archival ALOS PALSAR data
was available for the study region for 2007–2010 image dates.
Radiometrically Terrain Corrected products were acquired from
the NASA Alaska Satellite Facility. Similar to the Sentinel-1 images,
mean and standard deviation was calculated for each pixel over all
available images, however, because fewer images were available, a
5 x 5 median filter was applied to each before temporal averaging
to mitigate speckle effects. Only images from the dry season
were available.

2.4.3 Elevation data
Global 1 arc second Shuttle Radar Topography Mission

(SRTMGL1) digital elevation model data were downloaded for the
study region from the NASA LPDAAC (Farr et al., 2007). The
terrain of the study region is varied, with elevation changing rapidly
from one region to another. Because of these rapid changes, valleys,
ridges, and areas in between may have similar elevations. Likewise,
one valley’s elevation may be significantly different from another
valley in a different part of the study region. Therefore, using
relative elevation metrics was deemed to be preferable to using
absolute elevation. In this case, topographic position index (Weiss,
2001) was used. Topographic position index is a simple metric
which measures each pixel’s relative height compared to the mean
of a user-defined neighborhood surrounding each pixel. Negative
values tend to correspond to low lying areas such as valleys or
depressions, while positive values tend to correspond to ridges or
hilltops. For this effort, a 30-cell radius,∼900m, neighborhood was
used to calculate TPI. In addition to TPI, slope, in degrees, was also
derived from the SRTMGL1 data. Pixels with higher values tend to
be found on hillslopes, while areas with lower slope values tend to
be flatter.

2.5 Mapping approach

Twelve different land cover classes were mapped for the two
studied regions of the Central Cordillera (Table 1). Although field
data were collected to differentiate between graminoid and cushion
plant dominated peatlands, these vegetation types were combined
in the final maps because the sampled peatlands were often
represented by a mixture of graminoids and cushions making the
distinction of separate classes difficult. Shrub-dominated peatlands
and disturbed peatlands used for grazing were also mapped.
Peatland classes were distinguished from mineral wetlands which,
although wet, are primarily formed on mineral soils and do
not accumulate peat. Polygons representing all types of land
cover classes present in the study region were aggregated from
a combination of field visited sites and polygons generated
by analysts using image interpretation techniques with best
available satellite imagery or aerial photography. In addition
to undisturbed and disturbed peatlands and wetlands, mapped
classes include graminoid dominated uplands, forests, shrubland,
cropland, pastures, bare soil/rock, water, and developed land.
Polygons representing ∼80% of the total area for each class were
used for training the classifier, and the remaining polygons were

TABLE 1 Cover types mapped for this study.

Cover type Description

Graminoid/Cushion Peatland Areas with peat depth >20 cm and vegetation
cover dominated by graminoids or cushion
plants

Shrub Peatland Areas with peat depth >20 cm and vegetation
cover dominated by short woody plants and
graminoids

Pasture Peatland Areas with peat depth >20 cm and vegetation
cover dominated by exotic grasses, used for
livestock grazing

Graminoid Upland Areas with primarily mineral soil and
vegetation cover dominated by graminoid
plants

Forest Areas with primarily mineral soil and
vegetation cover dominated by trees or tall
shrubs

Shrub Areas with primarily mineral soil and
vegetation cover dominated by shrubs or
small trees

Mineral Wetland Areas with primarily mineral soil and
vegetation cover dominated by wetland
vegetation such as sedges or rushes

Pasture Areas with primarily mineral soil and
vegetation cover dominated by grasses, used
for livestock grazing

Developed Areas with significant anthropogenic activity
characterized by the presence of buildings

Bare Soil/Rock Areas of bare rock or bare soil such as
unvegetated mountain slopes or exposed
bedrock

Cropland Areas utilized for crop production, typically
onion or potato fields

Water Areas of open water such as ponds or small
lakes

reserved for validation. Field visited polygons were prioritized
for validation.

The Random Forests algorithm, implemented in R software,
was used to create the classified maps (Breiman, 2001). The
Sentinel-1, Sentinel-2, PALSAR, PALSAR-2, and SRTMGL1
derivatives were combined into a single data stack and used
as input variables in the model. All input variables were used
since previous work in peatland mapping has shown that
variable importance rankings for the whole model are not always
representative of all classes, so excluding some variables with low
overall importance may eliminate an important predictor variable
for individual classes of interest (Bourgeau-Chavez et al., 2021)
Training samples were randomly extracted from the variables
within the training polygons. The model was initiated with 500
trees and the number of variables used to determine each node split
was set to the default value, the square root of the total number of
input variables. These parameters are commonly used in land cover
classification routines which utilize the Random Forests algorithm
(Belgiu and Drǎguţ, 2016) and have produced good results in many
previous land cover classification efforts utilizing multi-source
remote sensing data (Forkuor et al., 2014; Mahdianpari et al.,
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2020; Spagnuolo et al., 2020). Producer and user’s accuracies were
calculated for each class using the reserved validation polygons
(Congalton and Green, 2019).

3 Results

3.1 Mapping results

Classified maps for the northern and southern regions of
the Central Cordillera are shown in Figure 2. The dominant
cover types in the mapped area are shrubland and forest which
cover approximately two-thirds of the study region. Graminoid-
dominated uplands covered ∼16% of the region. Agricultural land
uses (i.e., cropland and pasture) accounted for just over 3% of
total area. Notably, the Central Cordillera includes 40,337 hectares
of peatlands, including 1,179 hectares of peatland converted to
intensive pasture, representing 9.4% of the total mapped area. The
amount of area mapped for each class in the northern and southern
sections of the Central Cordillera is presented in Table 2.

The overall accuracy of the classified maps, calculated by
dividing the total number of correctly classified pixels within
validation polygons by the total number of pixels within those
polygons, was 86.6%. For the combined cushion and graminoid
peatland class, user’s accuracy was 75.33% while producer’s
accuracy was 81.14%. For the shrub peatland class, user’s accuracy
was 70.59% and producer’s accuracy was 84.51%. Of particular
interest for the present study, pasture peatlands had a 77.69% user’s
accuracy vs. 86.24% producer’s accuracy, roughly equivalent to
the peatlands with native vegetation. There was some confusion
amongst the peatland classes (i.e., shrub peatland being mapped
as graminoid- and cushion peatland and vice versa). As a result,
when all peatlands were combined into a single class, accuracy was
slightly higher than for the separate classes, with user’s accuracy of
77.25% and producer’s accuracy of 85.21% User’s accuracies for the
remaining classes ranged from 72.5% for the shrub class to 100%
for water. Producer’s accuracies ranged from a low of 75.3% for the
mineral wetland class to 100% for water (Table 3).

3.2 Soil carbon

Soil carbon content to 20 cm depth from 456 soil cores was
analyzed over seven relevant land cover categories. Peatlands had
the largest carbon content in the collected soil samples with a
concentration of carbon up to 40% for both regions (Figure 3). Bulk
density and carbon concentration (%) had a negative correlation
with larger carbon concentration values associated with sites of
low bulk density (t = −32, r = −0.58). Carbon concentration and
content in peatlands were related to land use, with a larger carbon
content on undisturbed peatlands even though they usually have
a lower bulk density (Figure 4). Graminoid and cushion peatlands
had larger carbon content on the first 20 cm than other land cover
types, whereas forests and pastures had the lowest carbon content
[F(6,1804) = 18.6, p < 0.001]. Intensity of human disturbances had
an overall negative impact on all land cover types [F(2,1804) = 18.6, p
< 0.001]. Importantly, this analysis does not represent total carbon
stocks, which can extend meters deep on average (Chimner et al.,

2023); it is simply designed to reveal any apparent sensitivity of the
surface pool of carbon to intensity of disturbance.

4 Discussion

Identifying peatlands using a remote sensing approach is
challenging, because peatlands are defined by the characteristics
of the soil that respond to stability of the water table and
specific vegetation types. Figure 5 shows box plots for Sentinel-
2 derived NDVI and the variance of co-polarized L-band and
C-band backscatter for disturbed pasture peatlands, undisturbed
graminoid and cushion plant dominated peatlands, and non-peat
pastures. The plot shows that these remote sensing variables have
different responses for the different cover types. Pasture, whether
it is on peat or mineral soils, has high NDVI (typically between
0.6 and 0.75) compared to graminoid or cushion plant dominated
peatlands. Although we did not separate graminoid and cushion
peatlands in the classified maps, visual inspection of the data
suggests that the high-NDVI outliers in the peatland category
are primarily cushion plants. Conversely, the variances of the
co-polarized backscatter from both L- and C-band are slightly
lower for the disturbed and undisturbed peatlands than for non-
peatland pastures, although pastures display wide variability at
L-band. This variability could be due to the fact that field data,
collected in 2019, may have been incongruous with the ALOS
PALSAR data, which was operational from 2007 to 2011. This
could indicate that some of the areas identified as pastures for
this study may have been previously disturbed, drained peatlands,
that no longer exhibit the hydrologic characteristics associated with
peatland areas. At C-band, the lower variance of the co-polarized
backscatter is consistent with our expectation of hydroperiod for
the peat and non-peat cover types. Where variance is low, the
SAR signal is consistent, indicating stable soil moisture conditions.
Where it is higher, the lack of consistency indicates variability in the
moisture conditions.

Peatlands in the Colombian Central Cordillera are most
common between 3100 and 3500 meters above sea level. Peatlands
are relatively small, averaging an area of 1.1 ha, and are found
mostly at the bottom of glacial valleys. Occasionally, local
depressions or hillside seeps can lead to peatland development
on ridges and slopes. Peatland distribution differs between the
north and south complex, reflecting differences in geomorphology.
The northern complex is part of an older volcanic and intrusive
system, while the southern complex was formed within a relatively
younger chain of volcanoes near the Purace crater (Arcila, 1996).
The distribution of pasture peatlands is also different and is
related to larger patterns of land use and population. Overall,
high intensity disturbance is rare. Specifically, peatlands where the
dominant vegetation has been changed from native graminoids
or mosses to exotic grasses is uncommon, representing just
over 2% of the wetland area. Certain regions, especially those
near the lower end of the elevation range studied here, exhibit
more signs of disturbance. For example, in the north, extensive
pasture peatlands were identified near La Judea (Figure 6). This
area has significant grazing and crop activity just downslope
from peatlands exhibiting low or no signs of disturbance. In the
south, the valley around the town of Totoro, near the volcano
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FIGURE 2

Study area and land cover-wetland classification map showing the distribution of wetlands, peatlands, crop and grazing areas, grassland páramo in

the north (A) and south (B) regions of páramo areas in Colombia’s Central Cordillera.

TABLE 2 Area occupied by the di�erent land cover types including 5 di�erent types of wetlands and 3 di�erent types of peatlands from the central part

of the Colombian Andes.

Cover type North complex South complex Total area

Area (ha) % Area (ha) % Area (ha) %

Forest 112844 38.78% 46727 33.73% 159571 37.15%

Shrub 75834 26.06% 48630 35.11% 124465 28.98%

Gram. Upland 53051 18.23% 15961 11.52% 69012 16.07%

Mineral Wetland 10293 3.54% 1846 1.33% 12139 2.83%

Gram./Cush. Peatland 20670 7.10% 9840 7.10% 30510 7.10%

Shrub Peatland 0 0.00% 8648 6.24% 8648 2.01%

Pasture 7478 2.57% 4260 3.08% 11738 2.73%

Developed 31 0.01% 29 0.02% 60 0.01%

Bare Soil/Rock 5946 2.04% 1825 1.32% 7770 1.81%

Cropland 1359 0.47% 236 0.17% 1595 0.37%

Water 2630 0.90% 213 0.15% 2843 0.66%

Pasture Peatland 869 0.30% 309 0.22% 1179 0.27%

Total 291003.8 138525.5 429530.3

Puracé, has significant area of pasture peatlands. East of Totoro,
there are also areas that show signs of disturbance, but these
areas have not been transformed to the type of exotic grass

dominated pasture peatlands identifiable using our methods. An
example can be seen in the Supplementary material associated with
this article.
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TABLE 3 Confusion matrix showing user and producer’s accuracies and rates of omission and commission error for the di�erent land cover classes mapped for Colombia’s Central Cordillera.

Field verified pixels

Mapped
classes

Forest Shrub Gram.
upland

Mineral
wetland

Gram./
Cush.
Peat.

Shrub
peatland

Pasture Developed Bare Soil/
rock

Cropland Water Pasture
peatland

User’s
acc.

Comm-
ission
error

Forest 424 25 0 0 0 0 0 0 0 0 0 0 94.4% 5.6%

Shrub 47 350 22 17 6 3 24 0 10 1 0 3 72.5% 27.5%

Gram. Upland 0 4 798 10 9 0 9 0 6 0 0 0 95.5% 4.5%

Mineral
wetland

4 0 29 295 36 0 1 0 0 7 0 0 79.3% 20.7%

Gram./Cush.
Peat

0 1 36 48 284 8 0 0 0 0 0 0 75.3% 24.7%

Shrub peatland 1 9 5 2 8 60 0 0 0 0 0 0 70.6% 29.4%

Pasture 0 5 21 9 2 0 678 6 37 23 0 2 86.6% 13.4%

Developed 0 0 0 0 0 0 0 121 1 0 0 0 99.2% 0.8%

Bare soil/rock 0 0 0 0 0 0 0 1 227 0 0 0 99.6% 0.4%

Cropland 0 2 0 0 5 0 27 0 0 220 0 10 83.3% 16.7%

Water 0 0 0 0 0 0 0 0 0 0 145 0 100.0% 0.0%

Pasture
peatland

0 0 0 11 0 0 16 0 0 0 0 94 77.7% 22.3%

Prod. Acc. 89.1% 88.4% 87.6% 75.3% 81.1% 84.5% 89.8% 94.5% 80.8% 87.6% 100.0% 86.2% Overall Acc.

Omission

error

10.9% 11.6% 12.4% 24.7% 18.9% 15.5% 10.2% 5.5% 19.2% 12.4% 0.0% 13.8% 86.7%

Numbers represent number of pixels classified.
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FIGURE 3

Relationship between soil bulk density (g cm−3) and soil percent carbon content (%) in the top 20cm of soil for 7 di�erent land cover classes.

FIGURE 4

Soil carbon content in the top 20cm of soil for relevant wetland, peatland and forest classes in the study area under di�erent human disturbance

levels. This is only a fraction of total soil carbon, especially in peatlands, and should be thought of as an indicator of disturbance impact rather than a

total stock change. Error bars represent 95% confidence intervals. Letters in parentheses beside each cover type represent Tukey HSD homogenous

groups.

Recently the Colombia Institute for Hydrologic, Meteorological
and Environmental Studies (IDEAM) published the national
land use and land cover map on a scale 1:100,000, using

mostly Landsat 8 2018 and later images [Instituto de Hidrología
Meteorología y Estudios Ambientales (IDEAM), 2021]. Although
the classification includes wetland types such as peatlands, swamps,
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FIGURE 5

Di�erences in reflectance and polarization signature values for undisturbed peatlands with natural vegetation, disturbed peatlands with pasture

vegetation and pastures on mineral soils in the Colombian central Andes cordillera. NDVI derived from Sentinel 2, and variation (SD) of VV from

Sentinel-1 and variation of HH polarization from ALOS/PALSAR data.

and mangroves, none of the areas that we identified as peatlands
were included, suggesting that high mountain wetlands have been
greatly underestimated and misclassified with upland land cover
types such as grasslands or pastures. In addition, the Biological
Resources Research Institute Alexander Von Humboldt published
in 2016 the national wetland map of Colombia. Even though it is
the first effort to map wetlands at a national scale, it categorizes all
wetlands into three classes (none of which are peatlands), and it
overestimates wetland areas (Jaramillo Villa et al., 2016; Quiñones
et al., 2016).

Similar methodologies for mapping high mountain wetlands
have been used in Peru and Ecuador. Multi-date, multi-sensor
radar and optical imagery (Landsat TM /PALSAR / RADARSAT -
1/STRM DEM - TPI image stack) combined with robust field data
in a Random Forest classification has proven its effectiveness in
differentiating types of wetlands from other land covers (Hribljan
et al., 2017; Chimner et al., 2019). Confusion matrices for the
studies in Perú and Ecuador using ground truthing points predicted
that the model was accurate for 92% and 90%, respectively.
However, these studies did not attempt to map pasture peatlands
as a separate class. The ability to map peatlands degraded due
to grazing is likely possible in other regions assuming adequate
SAR data is available. The upcoming launch of the NASA/ISRO
NISAR sensor, which will provide freely available global L-band

SAR coverage with a twelve day repeat cycle, will improve
this capability.

This study highlighted the importance of developing
methodologies to accurately identify and map mountain
peatlands, even when land use had been changed to pasture.
Using a multi-sensor approach utilizing C- and L- band SAR
from Sentinel-1 and ALOS and ALOS-2 PALSAR, multispectral
Sentinel-2 data, and digital elevation model derivatives in
combination with field surveys provided information needed to
accurately identify mountain peatlands including those impacted
by human activities in the Central Cordillera of Colombia. The
ability to accurately identify mountain peatlands is of paramount
importance due to the role that these ecosystems have in C
cycling and in climate change mitigation. In particular, this
will allow the scientific community to predict C storage and
likely greenhouse gas emissions from this sector when combined
with emission factor estimates, and the net climate benefit of
altered land use practices. It will also enable managers and
policy-makers to identify opportunities for more sustainable
management of peatlands presently under intensive pasture.
When disturbed peatland hydrology is restored or preserved,
the ecosystems will return to acting as C sinks, a nature based
solution to climate change (Griscom et al., 2017; UNEP,
2022).

Frontiers inClimate 11 frontiersin.org

https://doi.org/10.3389/fclim.2024.1334159
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Battaglia et al. 10.3389/fclim.2024.1334159

FIGURE 6

Aerial image (A) and corresponding classified map (B) showing the La Judea region, which has significant area identified as highly disturbed pasture

peatlands.
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