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Seagrass-macroalgal interactions
in a changing ocean

Maddi Richard and Pedro A. Quijón*

Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada

The number of reports highlighting the services provided by seagrass beds
continues to be matched by those reporting on local seagrass declines across
the world coastlines. Among the many factors driving the fate of seagrass beds,
this Mini Review focuses on the interactions between seagrasses and algae, more
specifically, macroalgae. Seagrasses are known to respond to sudden increases
in co-occurring macroalgae, and the ongoing warming of ocean waters suggests
that these interactions aremost likely to grow in frequency and possibly in intensity
in the decades ahead. What remains unclear is the nature (positive, neutral,
negative) and the local outcome of those interactions. We examined the published
evidence on explicit seagrass-algal interactions and found that inmost cases these
interactions have been negative, with seagrass species most often found at a
competitive disadvantage with regards to macroalgae. Rising ocean temperatures
are likely to add to this imbalance as at least some studies already suggest that the
negative e�ects of macroalgae and warming are either additive or synergistic. The
further examination of these e�ects will help predict likely future scenarios and aid
in the prioritization of conservations e�orts.
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1 Introduction

Seagrass beds are among the most efficient carbon sinks (Duarte et al., 2010; Gattuso

et al., 2018), are highly productive (Koopmans et al., 2020) and, as foundation species,

influence the structure, and function of coastal communities and ecosystems. Seagrass

beds also provide a variety of services including stabilization of the seabed, nutrient

transfer, buffering of the negative effects of eutrophication, water oxygenation through

photosynthetic activity, and habitat for the settlement and nursery of multiple invertebrates

and fish (Costanza et al., 1997; Spalding et al., 2007; Heck et al., 2008; Chung et al.,

2011; Smale et al., 2013; Thomson et al., 2015; Teagle et al., 2017; Surugiu et al., 2021).

Unfortunately, most of these critical ecosystem services are threatened by the worldwide

decline in seagrass meadows resulting from the warming of the oceans, among a series of

other climate events (e.g., Orth et al., 2006; Waycott et al., 2009; Valdez et al., 2020). Ocean

warming is known to cause species’ ranges and distribution patterns to shift (Breeman,

1988; Parmesan and Yohe, 2003), with plant and seaweed local communities becoming

reorganized due to the addition and loss of species (Wootton et al., 2008; Harley, 2011).

When not in excess, macroalgae coexist with seagrass meadows and provide support to

community and ecosystem secondary productivity. For instance, drift algae in the Northern

Gulf of Mexico have been found to positively influence seagrass-related nekton recruitment

and biomass (Correia and Smee, 2022; Correia et al., 2022b). However, the recent IPCC

Special Report on the Ocean and Cryosphere in Changing Climate (Bindoff et al., 2019)

reported a widespread increase in coastal stress levels, noting that since 1980, shifts in

seaweeds and harmful algal blooms, that often interact negatively with seagrass meadows,
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have also increased in range and frequency. Rather than subside

and normalize, this temporal pattern is more likely to intensify in

the future.

Competitive success among primary producers is heavily

dependent on stress sources and availability of resources (Harley

et al., 2012), including among others light availability and

attenuation (see Minguito-Frutos et al., 2023). The behavior and

physiology of seagrasses is often dictated by their ability to

photosynthesize and grow in the presence of algal shading (Brun

et al., 2003), their efficiency during nutrient uptake (Alexandre

et al., 2021), their ability to avoid harmful effects mediated by

changes in the sediment (e.g., pH; Mvungi et al., 2012), and their

response to indirect interactions with epiphytes (e.g., Irlandi et al.,

2004). It follows that drastic changes in local algae and algal beds

are likely to alter the fitness of seagrasses, in the same way that

has been repeatedly demonstrated for algal-coral interactions (e.g.,

Carpenter et al., 2008; Anton et al., 2020). In a warming ocean,

the outcome of seagrass-algal interactions is equally important,

yet the mechanisms mediating their dynamics have not gathered

the same attention. This article aimed to explore mechanisms and

local outcomes from the examination of the literature available

on seagrass-macroalgal interactions. Assuming such interactions

continue to increase in frequency and possibly in severity, as most

forecasts suggest, their examination may help predict likely future

scenarios and aid on the prioritization of conservations efforts

(Nordlund et al., 2018; He and Silliman, 2019).

This Mini review examined 46 peer-reviewed articles,

deemed representative from geographic regions where seagrass

and macroalgal beds coexist and their interactions have been

documented. Some coastal areas are known to support extensive

seagrass meadows and macroalgae (e.g., sites in Kenya and other

coastal areas in Africa; e.g., Coppejans et al., 1992), but as this

overview suggests, they are still affected by a geographic gap in

the literature (see Figure 1). The articles summarized in Table 1,

with their key features and outcomes, were found using relevant

keywords such as “seagrass,” “macroalgae,” “seaweed,” “seagrass

interactions’,” and “algal-seagrass interactions,” among others,

from databases, networks, and search engines available to us

(e.g., OneSearch, Google Scholar, ResearchGate), and through

examination of cross-references within multiple articles. Although

we loosely use the term alga or algae in Table 1, we are in all cases

referring to any type of marine macroscopic algae (macroalgae) or

seaweed, excluding any forms of microalgae that may be associated

with, for instance, blooms. The same applies to the paragraphs

below detailing and discussing the results of the brief overview.

2 The overwhelming frequency of
negative interactions

Nearly 80% of the studies examining interactions between

seagrasses and macroalgae have found evidence of negative

interactions, with a clear imbalance against seagrasses: most of

these studies found that macroalgae had direct or indirect negative

effects on seagrasses (e.g., Ceccherelli and Cinelli, 1997; Ceccherelli

and Campo, 2002; Alexandre et al., 2017, 2021; Bittick et al.,

2018; among several others). Nonetheless, a few studies have also

found negative impacts of seagrasses on macroalgae (Davis and

Fourqurean, 2001; Alexandre et al., 2017; Menicagli et al., 2021).

Harmful effects on seagrasses were often associated with losses on

a competition for light (De Villele and Verlaque, 1995; Dumay

et al., 2002; Irlandi et al., 2004; Hessing-Lewis et al., 2011; Zribi

et al., 2023) or through light reduction via shading (Hauxwell et al.,

2001, 2003; Liu et al., 2005; Eklöf et al., 2006; Lamote and Dunton,

2006; Huntington and Boyer, 2008; Van Katwijk et al., 2010; Homer

et al., 2011; Mvungi et al., 2012; Hessing-Lewis et al., 2015; Han

et al., 2016; Correia et al., 2022a). Shading by macroalgae has also

been associated with the creation of unfavorable biogeochemical

conditions (Hauxwell et al., 2001; Van Katwijk et al., 2010; Mvungi

et al., 2012; Hessing-Lewis et al., 2015). As a result, seagrass under

chronically reduced light conditions have experienced a decline in

biomass (Eklöf et al., 2006; Huntington and Boyer, 2008; Hessing-

Lewis et al., 2011, 2015; Han et al., 2016), shoot density (Hauxwell

et al., 2003; Huntington and Boyer, 2008; Hessing-Lewis et al.,

2011, 2015), canopy height (Correia et al., 2022a), leaf elongation

rates (Zribi et al., 2023), metabolic efficiency (Irlandi et al., 2004),

photosynthetic efficiency (De Villele and Verlaque, 1995; Liu et al.,

2005; Lamote and Dunton, 2006; Mvungi et al., 2012; Zribi et al.,

2023), and growth rates (Hauxwell et al., 2001; Huntington and

Boyer, 2008; Homer et al., 2011). In addition, due to algal growth,

some seagrasses have seen their vegetative development modified

(De Villele and Verlaque, 1995; Dumay et al., 2002; Van Katwijk

et al., 2010; Hessing-Lewis et al., 2011) or have been harmed with a

decline in shoot density (Ceccherelli and Cinelli, 1997; Taplin et al.,

2005), shoot biomass (Taplin et al., 2005), metabolic efficiency and,

ultimately, survival rates (De Villele and Verlaque, 1995; Hauxwell

et al., 2001; Martínez-Lüscher and Holmer, 2010; Homer et al.,

2011).

Seagrass-macroalgal negative interactions have also resulted

from the competition for nutrients (Ceccherelli and Cinelli, 1997;

Davis and Fourqurean, 2001; Homer et al., 2011; Alexandre et al.,

2017, 2021).While a few studies found that seagrass nutrient uptake

rates were negatively affected by the presence of algae (Alexandre

et al., 2017, 2021), at least one study has found that seagrass

could also harm the nutrient uptake of macroalgae (Alexandre

et al., 2017). Other studies have found that has a result of nutrient

competition, seagrasses have been affected by a reduction in growth

rates (Homer et al., 2011), shoot density (Ceccherelli and Cinelli,

1997), and short-shoot size (Davis and Fourqurean, 2001). The

alternative outcome (i.e., a reduction in macroalgal growth and

thalli size) has been documented in one study only (Davis and

Fourqurean, 2001). Partially related phenomena, such as algal

decomposition, have been found to account for several indirect

impacts on seagrasses (Homer and Nielsen, 2007; Han et al.,

2016). Algal decomposition increased nitrogen and reduced carbon

content of seagrasses, rapidly impacting their C:N ratio (Han et al.,

2016). The same factor has been shown to increase sulfide pools

in the sediment, invading seagrass roots and indirectly causing a

decline in their growth rates (Homer and Nielsen, 2007).

A frequent focus of studies documenting negative interactions

is the role of sudden macroalgal blooms on seagrasses (Nelson

and Lee, 2001; Brun et al., 2003; Cummins et al., 2004; Stafford

and Bell, 2006; Sugimoto et al., 2007; Hessing-Lewis et al., 2011,

2015; Olyarnik and Stachowicz, 2012; Bittick et al., 2018; Santos
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FIGURE 1

Map outlining the geographic distribution of the 46 studies used in the Mini review and summarized in Table 1. The numbers correspond to those
cited at the bottom of Table 1.

et al., 2020). These studies have found that as a result of a bloom,

seagrasses have experienced declines in shoot density (Nelson and

Lee, 2001; Sugimoto et al., 2007; Hessing-Lewis et al., 2011, 2015;

Olyarnik and Stachowicz, 2012; Bittick et al., 2018), shoot height

(Sugimoto et al., 2007; Hessing-Lewis et al., 2011), shoot production

(Olyarnik and Stachowicz, 2012), seedling density (Sugimoto

et al., 2007), foliage cover (Santos et al., 2020), elongation

rates (Brun et al., 2003), biomass (Hessing-Lewis et al., 2011,

2015; Olyarnik and Stachowicz, 2012), growth rates (Sugimoto

et al., 2007), and survival rates (Olyarnik and Stachowicz, 2012).

Additionally, more persistent macroalgal blooms have increased

seagrass fragmentation (Santos et al., 2020) and in some instances

have allowed macroalgae to replace seagrass (Stafford and Bell,

2006). Decomposition following algal blooms has also been linked

to a decrease in seagrass biomass (Cummins et al., 2004). A few

additional studies have reported negative seagrass-algal interactions

but have not conclusively identified the causing or mediating

mechanisms (Ceccherelli and Campo, 2002; Taplin et al., 2005;

Martínez-Lüscher and Holmer, 2010; Thomson et al., 2013;

Kalokora et al., 2021; Menicagli et al., 2021; Firth et al., 2023).

3 Evidence of seaweed-seagrass
positive and neutral interactions

Although negative interactions dominate the relationships

between seagrasses and macroalgae, there are instances in which

positive interactions have been also documented (Ceccherelli and

Cinelli, 1999; Ceccherelli and Campo, 2002; Irlandi et al., 2004;

Hessing-Lewis et al., 2011; Alexandre et al., 2017; Pereda-Briones

et al., 2019; Kalokora et al., 2021; Correia et al., 2022a; Emmclan

et al., 2022). While most of these studies have shown that seagrasses

could benefit from the presence of macroalgae (Ceccherelli and

Campo, 2002; Irlandi et al., 2004; Hessing-Lewis et al., 2011;

Pereda-Briones et al., 2019; Kalokora et al., 2021; Emmclan et al.,

2022), a couple of studies found the opposite, i.e., a benefit

primarily toward the macroalgae (Ceccherelli and Cinelli, 1999;

Alexandre et al., 2017; Correia et al., 2022a). The presence of

macroalgae has been causally associated with increased seagrass

shoot density (Ceccherelli and Campo, 2002), enhanced growth

(Kalokora et al., 2021) positive changes in seagrass morphology

(Ceccherelli and Campo, 2002; Emmclan et al., 2022), and added

protection from low-tide associated stressors, excessive epiphyte

cover, hydrodynamic disturbance, and ocean warming (Irlandi

et al., 2004; Hessing-Lewis et al., 2011; Pereda-Briones et al.,

2019). Meanwhile, the presence of seagrasses has been shown to

enhance nutrient uptake in macroalgae (Alexandre et al., 2017),

increase macroalgal density (Correia et al., 2022a), and provide

protection against currents, tides, and hydrodynamic disturbance

(Ceccherelli and Cinelli, 1999). Most of these positive interactions

have been reported from off-shore, more marine-influenced zones

(Ceccherelli and Cinelli, 1999; Hessing-Lewis et al., 2011), and have

taken place between species of the families Zosteraceae (Ceccherelli

and Campo, 2002; Hessing-Lewis et al., 2011; Alexandre et al., 2017)

and Ulvaceae (Hessing-Lewis et al., 2011; Alexandre et al., 2017;

Emmclan et al., 2022).
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TABLE 1 A compilation of studies assessing the interactions between seagrasses and macroalgae, identifying studies with numbers (#), and providing details on location, approach [observational (O) or

experimental (E)], time span, species, main design features, main responses measured, and main results reported.

# Location Approach/time
span

Seagrass Alga Design Response Main results

1 Portugal E

0.5 hr.

Z. noltei, Z.

marina and C.

nodosa

U. rotundata,

D. dichotama, C.

decorticatum

Incubation of species

individually and combined at

increasing nutrient levels

Percent 15N enrichment of

tissues

In most combinations, seagrass had higher N surge

uptake than seaweed. This suggested that uptake

interaction effects can be positive or negative

2 FL/USA E

13 mo.

T. testudinum Anadyomene sp. Incubation of species

individually and combined at

various nutrient levels

Nutrient uptake rate Individual seagrass and algae had similar NH3

surge uptake, but seagrass had a higher PO4

uptake, and its PO4 uptake decreased in the

presence of algae

3 CA/USA E

10 wk.

Z. marina Ulva sp. Algal additions (6 different

densities)

Shoot density, blade growth

rate and epiphyte load

With higher algal abundance, shoot density and

epiphyte loads declined linearly or non-linearly.

4 Spain E

1 yr.

Z. noltii U. rigida Algal shading measured in lab

and field experiments

Seagrass growth and internal

C, N and P, DOC

alga-seagrass transfer

Shading reduced (not consistently) elongation

rates and gross production. However, some algal

DOC was transferred to seagrass

5 Italy E

14 mo.

C. nodosa and

Z. noltei

C. racemosa Algal presence and absence Shoot density and flower

reproductive shoot density

With algae: C. nodosa shoot density declined while

Z. noltei density rose. Flower/reproductive shoot

density was significantly higher

6 Italy E

13 mo.

C. nodosa C. taxifolia Nutrient addition and

neighbor presence/removal

Blade/shoot density and

blade/leaf size

With alga: No effect on seagrass or algal density.

Co-occurring species had larger leaf size than

individual species

7 Italy E

13 mo. /

10 wk.

P. oceanica C. taxifolia Exposure of algae to 10-100%

seagrass densities and control

and mimic canopies

Algal blade length With seagrass: Positive effects were greatest at site

where seagrass density was lower. Shading entailed

a cost

8 Italy E

13 mo.

C. nodosa C. taxifolia Nutrient control/addition and

neighbor presence/removal

Shoot/blade density and

length

Algae and seagrass were not affected by either

treatment. Where co-occurring, both species were

larger in size

9 USA O

5 mo.

T. testudinum, S.

filiform, others

Drift algae (various

spp)

Five estuaries: sites with more

than 50% seagrass cover were

assessed

Abiotic conditions, algal

biomass, and seagrass cover,

abundance and

morphometrics

Drift algae was found to be most dense when

associated with high percent cover of seagrasses

with intermediate canopy heights

10 Australia E

12 wk.

R. megacarpa and

two others

E. intestinalis Algal addition vs natural,

exclusion and fenced controls

Seagrass biomass and benthic

invertebrate structure

Macroalgae began to decompose after 3 mo.

causing dramatic declines in seagrass biomass and

infauna

11 FL/USA E

4 mo.

T. testudinum H. incrassata Algal removal, addition (2×)

and seagrass removal

Changes in growth rate and

biomass

With seagrass: algae thalli size and growth rate

decreased. With algae: no impact on seagrass

12 France O

1 yr.

P. oceanica C. taxifolia Two sites: with and without

algae

# of adult and intermediate

leaves per shoot, width of

adult and intermediate leaves,

other leaf measures

Algae invaded sparse seagrass on early spring,

causing a decline in #, width, and longevity of

leaves. In the longer-term, dense seagrass beds

were the most resistant

(Continued)
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TABLE 1 (Continued)

# Location Approach/time
span

Seagrass Alga Design Response Main results

13 France/ Italy O

1 yr.

P. oceanica C. taxifolia and

C. racemoseosa

Three levels of interactions

assessed as well as two sites

without seagrass

# of adult and intermediate

leaves, leaf biometry, A

coefficient and leaf index

Interaction modified seagrass vegetative

development but not the # of leaves per shoot or

belowground tissue production

14 Zanzibar,

Tanzania

E

11 wk.

E acoroides. T.

hemprichii

E. denticulatum Off-bottom farm pots over

seagrass beds

Seagrass soot density, length,

and leaf growth

Seaweed farming reduced above-ground seagrass

biomass by 40%.

15 Malaysia O

Unspecified

Hydrochari-taceae U. reticulata Two sites: with and without

algae

Morphometry of shoots With algae: seagrass had higher leaf dimensions

and metabolite contents

16 England E

4 yr.

Z. marina S. muticum Seagrass with and without

macroalgae

Seagrass shoot density, dry

weight, phenolic compounds

With algae, seagrass density and phenolic contents

decreased but experienced no effect on nutrient

E

3-4 wk.

Nutrient partitioning,

photosynthetic ability/growth

Partitioning

17 Australia O/E

3 mo.

P. australis and Z.

capricorni

C. taxifolia Algal transplants in sparse

and dense seagrass beds

Seagrasses grow rate Alga did not affect the growth of P. australis but

may have contributed to decline of Z. capricorni

18 China E

6 wk.

Z. marina U. pertusa Algal addition and removal,

nutrient addition and control

Seagrass N and C contents,

morphology and structure

Algal addition reduced below-ground biomass.

Nutrients lowered above/below ground biomass

ratio

19 MA/USA E

∼3 mo.

Z. marina Various algae

(canopies)

Two sites: high and low land

derived N rates. Algal removal

and addition.

Shoot density

and growth rate

With higher algal canopy height: seagrass grew less

and its loss increased. Without algae: seagrass

density and aboveground net production rose

20 MA/USA O

1 yr.

Z. marina C. vagabunda

and G. tikvahiae

Four sites: Two with low

land-derived N loads and two

with higher N loads

Shoot density, aboveground

biomass, leaf, rhizome and

root features and production

Algal biomass was highest in estuaries with high N

load, where seagrass nearly disappeared. At

estuaries with low N-load, loss was minor

21 OR/USA O

5 yr.

Z. marina Ulvoid algae Monitoring of four estuaries Algal biomass and seagrass

patterns

Southern estuaries had 30× algal biomass, but

seagrass decline lacked clear temporal patterns.

Main drivers: sea upwelling and local conditions

22 OR/USA E

4 mo.

Z. marina U. linza and

U. lactuca

Algal control, removal,

addition and mimics. Also,

nutrient control and addition

Seagrass shoot density,

shoot and sheath length

Lab: seagrass had strong negative response to

nutrient and algal addition. Field: only weak

evidence of negative responses in seagrass

23 OR/USA E

22 mo.

Z. marina U. linza

and U. lobata

Pulse addition and removal of

algae

Seagrass density and biomass Algal blooms did not trigger seagrass biomass

declines in marine area. Experimental algal

addition affected seagrass in riverine areas only

24 Denmark E

4 wk.

Z. marina G. vermiculo-phylla Temperature manipulation,

macroalgae additions (1× and

2.25×) and control

Seagrass growth and mortality Independently, algal cover had no effect on

seagrass, but a negative (non-significant) effect

was detected at the highest temperature
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TABLE 1 (Continued)

# Location Approach/time
span

Seagrass Alga Design Response Main results

25 Denmark E

3 wk.

Z. marina C. rubrum

and C. linum

Algal additions (1× and 2×)

and control

Seagrass growth rates, water

oxygen concentrations and

sediment H2S concentrations

After 3 wk. combined effects of water column

anoxia and high H2S invasion caused significant

reductions in seagrass growth rates

26 Australia E

5 wk.

H. ovalis G. comosa Seagrass exposed to 3 algal

densities at 3 temperatures

Seagrass biomass and other

measurements

Strong negative effect on seagrass. Temperature

effect was additive and synergic. Building up of

pore water DS mediates negative effect.

27 CA/USA O/E

3 mo.

Z. marina Gracilariopsis sp. Algal addition (2 densities),

removal and control

Seagrass number and density,

sediment properties, shoot

density and growth rate

Significant negative relationship between seagrass

shoot density and algal biomass

28 FL/USA O

1 yr.

T. testudinum Drift algae Algae removal and control Seagrass cover

and residence time

High drift algae cover reduced seagrass

above-ground biomass by 3 mo. But not

afterwards.

E

1 wk-6 mo.

T. testudinum Laurencia sp.,

Ceramium sp. and

Polysiphonia sp.

Algal addition/removal and

control. Epiphyte removal

Seagrass above and

below-ground biomass and

shoot density and growth

rates

Drift algae did not affect seagrass growth, but

epiphytes did and because they were reduced by

drift algae, there was evidence of a positive effect

29 Zanzibar,

Tanzania

O

2 mo.

T. hemprichii Halimeda spp. Comparison of sites with

distinct cover of seagrass and

algae

Seagrass and algal growth and

production rates

Low and mid algal cover enhanced seagrass

growth, while presence of seagrass reduced the

productivity of algae but raised CaCO3 content

30 TX/USA E

5 wk.

T. testudinum Drift algae 3 light treatments and control Fluorescence parameters,

chlorophyll indices and

Seagrass fluorescence quantum yield declined

when exposed to chronic reduction in irradiance

by drift

E

4 wk.

T. testudinum Drift algae Algal addition and removal sediment H2S algae and increase in sediment porewater H2S:

Physiological stress due to light deprivation

31 Brazil E

2 yr.

R. maritima Rhizoclonium spp

and drift algae

Addition of drift algae on

seagrass meadows

Seagrass above and below

ground biomass, and

demographic parameters

Impacts on seagrass biomass, shoot height and

density, and rhizome length

32 Taiwan E

n.d.

T. hemprichii Enteromorpha

and Ulva spp.

Comparison of seagrass

with/without Ulvoid algae

Seagrass Photosynthetic

performance

Shading reduced photosynthetic performance and

reduced inorganic C uptake

33 FL/USA E

3 yr.

T. testudinum Laurencia sp.

and Dictyota sp.

Algal presence and absence,

sea urchin addition

Biomass and shoot density Algae did not affect seagrass biomass, but there

was synergy between urchin grazing and algae on

seagrass shoot density

34 Denmark E

3 wk.

Z. marina G. vermiculo-phylla Algal additions (high, low,

and control) at various

temperatures

Seagrass net photosynthesis

and dark respiration.

Algae reduced seagrass survival but not dark

respiration rates. At high temperature, algae also

reduced seagrass net photosynthesis

35 Italy E

2 yr.

C. nodosa C. cylindracea Neighbor control/addition,

sedimentation and various

types of plastics

Seagrass performance Algae made seagrass allocate more biomass to fine

roots. Seagrass reduced algal performance. HD

polyethene plastics and sedimentation shifted

interaction from competitive to neutral

(Continued)
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TABLE 1 (Continued)

# Location Approach/time
span

Seagrass Alga Design Response Main results

36 Sweden E

1 wk.

Z. marina U. intestinalis Seagrass photosynthesis

under Ulva and pH changes

Photosynthetic capacity Ulva lowered light and enhanced pH reducing

seagrass photosynthesis ability

37 WA/USA E

13 mo.

Z. marina U. obscura Algal removal and control Seagrass shoot density

and algal biomass.

Natural algal blooms caused a loss in seagrass.

While controls lost 54% shoots, areas with algal

removal lost only 12%

38 CA/USA E

38 mo.

Z. marina Ulva sp. Algal removal, addition and

control

Seagrass biomass Algal addition reduced seagrass shoot biomass by

up to 90% and for up to 9 mo

39 Spain E

3 mo.

P. oceanica C.cylindracea L.

lallemandii

3 temperature treatments and

presence/absence of algae

Seagrass seedling survival,

development and biomass

Presence of both algae ameliorated impact of high

temperature and seagrass

40 FL/USA O

6 yr.

Anadyomene Algal blooms Percent cover Seagrass foliage cover and

fragmentation level

Algal blooms reduced seagrass foliage cover and

increased levels of seascape fragmentation

41 FL/USA E

15 mo.

H. wrightii C. prolifera Seagrass presence and absence Seagrass above and

below-ground biomass

Algae may replace seagrasses by overgrowth or

competition. Disturbance-related bare areas may

allow algae to replace seagrass by space

preemption

42 Japan E

n.d.

Z. marina Ulva sp. Seagrass transplantation,

seagrass seeding and control

Seagrass shoot density and

length. Volume of Ulva sp.

Ulvoid accumulation caused a decline in seagrass

shoot and seedling density and was correlated

with.

E

13 mo.

Algal addition of 2 canopy

heights and control

Seagrass survival rate and leaf

elongation rate of seagrass

the decline in other various seagrass

measurements

43 FL/USA E

6 mo.

H. wrightii C. prolifera Plots set at 2 depths with

seagrass, algae or both

Shoot/frond density and

above- and belowground

biomass

Without algae: seagrass shoot density and biomass

were higher during growing season. Instead, algae

were unaffected by seagrass

44 Denmark E

1 mo.

Z. marina G. vermicu-lophylla Addition of invasive alga on

seagrass exp. Plots

Seagrass above- and

below-ground biomass

The invasive alga reduced native seagrass

above-ground biomass

45 Wadden Sea O

6 mo.

Z. marina and Z.

nolteii

Gracilaria, Ulva,

others

Monitoring of sparsely and

densely vegetated plots at two

locations

Seagrass seed density

and biomass

In both locations, seagrass biomass declined over

winter. Seed density was higher in reference area

and in densely vegetated plots

E

5 mo.

Z. marina and Z.

nolteii

Gracilaria, Ulva,

and others

Seagrass transplants to sites

with and without algae

Survival, cover, reproductive

shoots and seed density

Macroalgae negatively impacted seagrass seed

producing shoot survival

46 Tunisia E

3 mo.

C. nodosa C. linum Addition of low, moderate

and high algal cover

Structural, morphological,

and physiological variables

With rising algal cover, leaf elongation rates and

biomass declined while leaf chlorophyll and

carotenoid concentrations increased

Study numbers are linked to authorship in the footnote. References: 1Alexandre et al. (2017); 2Alexandre et al. (2021); 3Bittick et al. (2018); 4Brun et al. (2003); 5Ceccherelli and Campo (2002); 6Ceccherelli and Cinelli (1997); 7Ceccherelli and Cinelli (1999); 8Ceccherelli

and Sechi (2002); 9Correia et al. (2022a); 10Cummins et al. (2004); 11Davis and Fourqurean (2001); 12De Villele and Verlaque (1995); 13Dumay et al. (2002); 14Eklöf et al. (2006); 15Emmclan et al. (2022); 16Firth et al. (2023); 17Glasby (2013); 18Han et al. (2016);
19Hauxwell et al. (2001); 20Hauxwell et al. (2003); 21Hessing-Lewis and Hacker (2013); 22Hessing-Lewis et al. (2015); 23Hessing-Lewis et al. (2011); 24Höffle et al. (2011); 25Homer and Nielsen (2007); 26Homer et al. (2011); 27Huntington and Boyer (2008); 28Irlandi

et al. (2004); 29Kalokora et al. (2021); 30Lamote and Dunton (2006); 31Lanari et al. (2018); 32Liu et al. (2005); 33Maciá (2000); 34Martínez-Lüscher and Holmer (2010); 35Menicagli et al. (2021); 36Mvungi et al. (2012); 37Nelson and Lee (2001); 38Olyarnik and Stachowicz

(2012); 39Pereda-Briones et al. (2019); 40Santos et al. (2020); 41Stafford and Bell (2006); 42Sugimoto et al. (2007); 43Taplin et al. (2005); 44Thomson et al. (2013); 45Van Katwijk et al. (2010); 46Zribi et al. (2023).
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A few additional studies have also documented neutral

seagrass-macroalgal interactions (Maciá, 2000; Ceccherelli and

Sechi, 2002; Irlandi et al., 2004; Hessing-Lewis et al., 2011;

Höffle et al., 2011; Glasby, 2013; Hessing-Lewis and Hacker,

2013; Alexandre et al., 2017; Menicagli et al., 2021; Firth et al.,

2023). The results of these studies showed no significant effects of

macroalgal presence on seagrass nutrient uptake rates (Alexandre

et al., 2017), nutrient partitioning (Firth et al., 2023), shoot density

(Ceccherelli and Sechi, 2002), growth (Irlandi et al., 2004; Höffle

et al., 2011; Glasby, 2013), and biomass (Maciá, 2000; Hessing-

Lewis et al., 2011). Likewise, seagrasses have been demonstrated

to have only a minor influence (whether positive or negative)

on macroalgae nutrient uptake rates (Alexandre et al., 2017)

and blade density (Ceccherelli and Sechi, 2002). An interesting

observational study found that the lack of seagrass responses to

high fluctuations of macroalgal production at a given site was

due to the mediation of tides and local currents (Hessing-Lewis

and Hacker, 2013). In addition, an experimental study found

that the interaction between seagrass and macroalgae could be

shifted from competitive to neutral in the presence of high-density

polyethylene plastics and sedimentation (Menicagli et al., 2021).

These neutral interactions were most often found between species

of the genus Zostera (Hessing-Lewis et al., 2011; Höffle et al.,

2011; Hessing-Lewis and Hacker, 2013; Alexandre et al., 2017)

and the families Ulvaceae (Hessing-Lewis et al., 2011; Hessing-

Lewis and Hacker, 2013; Alexandre et al., 2017) and Caulerpaceae

(Ceccherelli and Sechi, 2002; Glasby, 2013; Menicagli et al.,

2021).

4 Drift algae

Although macroalgae are often anchored to the seafloor,

evidence of interactions between seagrasses and macroalgae was

also examined for a smaller (representative) complement of drift

algae. We found no clear indication that drift algae were more often

responsible for negative interactions (as in the study by Lanari et al.,

2018) than anchored algae. Similarly, cases of positive interactions

were found to occur with both anchored (Ceccherelli and Cinelli,

1999; Ceccherelli and Campo, 2002; Alexandre et al., 2017) and

drifting macroalgae (Irlandi et al., 2004; Hessing-Lewis et al., 2011;

Alexandre et al., 2017; Correia et al., 2022a; Emmclan et al., 2022).

Interestingly, neutral interactions were more frequently found with

drifting macroalgae (Maciá, 2000; Irlandi et al., 2004; Hessing-

Lewis et al., 2011; Höffle et al., 2011; Hessing-Lewis and Hacker,

2013) than anchored forms (Ceccherelli and Sechi, 2002; Glasby,

2013). The latter results may be due to the shorter residence

of drift algae on or around seagrasses, or possibly due to the

seagrass’ clonal nature, that potentially minimized the effects by

these “transient” macroalgae (Irlandi et al., 2004). When found,

positive interactions were often context-dependent and species-

dependent. For example, Caulerpa taxifolia was found to have

negative effects on Posidonia oceanica (De Villele and Verlaque,

1995) and Cymodocea nodosa (Ceccherelli and Campo, 2002)

while having a positive impact on traits like the shoot density

of Zostera nolteii (Ceccherelli and Campo, 2002). More research

addressing context (habitat) and species dependency is clearly

necessary, as local complements of species change as a result of

climate events.

5 Some implications in the face of
climate change

The evidence examined shows that interactions between

seagrasses and macroalgae are predominantly negative and that

seagrass species are most often at a competitive disadvantage.

Extreme weather events resulting from climate change may

increase the frequency and severity of floods and surface runoff

(e.g., Chegwidden et al., 2020), which could change even further

the balance of interactions between these primary producers.

Increasing rates of eutrophication (Nazari-Sharabian et al., 2018)

may account for some of these changes, as many of the articles

reviewed, explicitly or not, point toward interactions between

algae and seagrass that have been mediated by changing nutrient

levels (Hauxwell et al., 2001, 2003; Ceccherelli and Campo, 2002;

Ceccherelli and Sechi, 2002; Hessing-Lewis et al., 2015; Han et al.,

2016; Alexandre et al., 2017, 2021). Macroalgae have been shown

to be at a competitive advantage for nutrient acquisition, with only

one study finding a neutral interaction when facing a nutrient load

increase (Ceccherelli and Sechi, 2002). Rising ocean temperatures

likely add to this imbalance: evidence of interactions taking place at

different temperatures (e.g., Martínez-Lüscher and Holmer, 2010;

Höffle et al., 2011; Homer et al., 2011) suggests that the negative

effects of seaweeds and rising temperatures on seagrasses are either

additive or synergistic.

Macroalgae seem generally more resistant to rising

temperatures and, in some cases, can also take advantage of

increased nutrient availability (Höffle et al., 2011; Duarte et al.,

2018). Meanwhile, seagrass species become quickly stressed

(and harmed), as they are generally more vulnerable to rising

temperatures and the rapid growth of macroalgae (Martínez-

Lüscher and Holmer, 2010; Höffle et al., 2011; Homer et al., 2011).

This is concerning given that most climate change forecasts (see

Bindoff et al., 2019) predict an increase in water temperatures

and therefore more frequent increases in macroalgal biomass

(Cressey, 2017; Gobler et al., 2017). Beyond changes associated

with macroalgae and warming, various other co-occurring

anthropogenic factors have already been found to be directly or

indirectly responsible for seagrass decline or loss (Orth and Moore,

1983; Walker and McComb, 1992; Short and Wyllie-Echeverria,

1996; Orth et al., 2006; Waycott et al., 2009), making negative

cumulative effects plausible, and the outcome of seagrass-algal

interactions even more complex (see review by Pirotta et al., 2022).

Even though the negative prospects for seagrass are unmistakable,

Bennett et al. (2022) has highlighted the considerable resilience of

these primary producers and the research by Kendrick et al. (1999,

2002) suggests that seagrass losses are not irreversible. In addition,

and unlike other (more controversial) environmental issues, there

seems to be a unified view in the public discourse addressing the

role played by current conservation efforts (Nordlund et al., 2018;

Unsworth et al., 2019): in the face of a changing ocean, these efforts

are critical for protecting existing seagrass meadows and, where

possible, for reversing some alarming seagrass losses.
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