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Climate change will have significant impacts on all aspects of human society,

including population movements. In some cases, populations will be displaced

by natural disasters and sudden-onset climate events, such as tropical storms.

In other cases, climate change will gradually influence the economic, social,

and political realities of a place, which will in turn influence how and where

people migrate. Planning for the wide spectrum of future climate-related mobility

is a key challenge facing development planners and policy makers. This article

reviews the state of climate-related migration forecasting models, based on an

analysis of thirty recent models. We present the key characteristics, strengths,

and weaknesses of di�erent modeling approaches, including gravity, radiation,

agent-based, systems dynamics and statistical extrapolationmodels, and consider

five illustrative models in depth. We show why, at this stage of development,

forecasting models are not yet able to provide reliable numerical estimates of

future climate-relatedmigration. Rather, models are best used as tools to consider

a range of possible futures, to explore systems dynamics, to test theories or

potential policy e�ects. We consider the policy and research implications of our

findings, including the need for improved migration data collection, enhanced

interdisciplinary collaboration, and scenarios-based planning.
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1 Introduction

For more than 30 years, research published by scientists and reports in the news

media have warned that climate change will cause mass migration and displacement on

a global scale. The steady drumbeat of coverage and research, often based on simplistic

assumptions about why and how peoplemigrate, has fueled policies that focus on the security

concerns associated withmass migration (McLeman, 2014; Boas et al., 2019). A predominant

early assumption was that climate change and migration have a linear, cause-and-effect

relationship, in which climate induced drought, rising sea levels, and natural disasters result

in the movement of affected populations. Approaches to forecasting migration initially

focused on hazard mapping, identifying areas threatened by climate change and assuming

the vast majority of residents of affected areas would be forced to leave. This generated

catastrophic projections of climate migration and “environmental refugees” (see Brown,

2008), leading one review article from 2011 to conclude that “estimates and projections

regarding environmental displacement [...] appear to have been put forward in order

to generate media attention rather than to provide empirically grounded estimates and

predictions” (Gemenne, 2011, S48).
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Early projections failed to capture the complex drivers of

migration and immobility, undermining their accuracy and

relevance to real-world dynamics. They did not adequately account

for how climate-related factors interact with non-climate related

drivers of migration (see De Haas et al., 2020a), the potential

for in-situ adaptation, place attachment (see Farbotko et al.,

2020), and instances in which climate change impacts may

suppress mobility, particularly among economically disadvantaged

populations (see Zickgraf, 2021). These shortcomings spurredmore

nuanced investigations into how climate change impacts intersect

with existing mobility systems and development conditions to

affect the nature, volume, direction, and composition of migration

flows. Attempts to forecast climate-related migration have grown

in number and sophistication in recent years, particularly since the

early 2010s.

This article reviews the current state of climate-related

migration forecasting models. We consider some of the most

prevailing and promising approaches for predicting the volume,

composition, and direction of future climate-related migration.

Our findings are based on a systematic literature review of

thirty forecasting models. Importantly, we do not review models

of historical climate-migration interactions, instead focusing on

models that address potential future climate-related migration.

Our analysis finds that the field of climate-related migration

forecasting remains in its infancy, and numerical estimates of

future climate-related migration are best taken as speculative.

Although significant advancements in modeling have been made,

we find several key limitations, both empirical and conceptual, that

constrain the real-world applicability of their projections. These

limitations include the lack of reliable data on migration flows in

many countries most vulnerable to climate change; a theoretical

and empirical overemphasis of climate-related drivers of migration

that neglects other political, economic, demographic, cultural,

and technological determinants of migration and immobility; and

a related dearth of reliable data on these non-climate related

variables. Recognizing these limitations, we suggest that at this

stage, climate-related migration forecasting models are best used

as tools to explore potential migration scenarios under various

climate, development, and policy futures, and to explore how

climate impacts may affect broader social systems within which

migration is embedded.

The article proceeds as follows. Section 1 considers ways

of conceptualizing climate-related migration, and the challenges

entailed in defining and quantifying “climate migration.” Section

2 presents the most common types of forecasting models. Section

3 describes our review process, and Section 4 describes the state

of the field based on our review of thirty models. Section 5

presents five forecasting models in-depth, to illustrate the strengths

and weaknesses of prominent modeling approaches. Sections 6

and 7 discuss key challenges to forecasting and directions for

future research.

2 Conceptualizing climate-related
migration

The International Organization for Migration, a United

Nations agency, defines climate migration as “the movement of a

person or groups of persons who, predominantly for reasons of

sudden or progressive change in the environment due to climate

change, are obliged to leave their habitual place of residence, or

choose to do so, either temporarily or permanently, within a State

or across an international border” (International Organization for

Migration, 2019). This definition is broad. It encompasses many

different kinds of climate-relatedmigration, spanning the spectrum

of forced to voluntary, internal and international, temporary and

permanent. This breadth poses a challenge to research, forecasting,

and policy-making related to migration and climate change,

because the kinds of migration being studied can vary considerably

and require significantly different policy responses.

Brown and McLeman (2013) suggest climate-related migration

may be categorized according to the nature of the climatic stimulus

(sudden-onset climate events vs. gradual changes in prevailing

conditions) and the nature of the migration response (distress

migration vs. adaptive or amenity-seeking migration). Sudden-

onset climatic events, such as floods and storms, are associated

with distress migration or displacement, in which large numbers of

households abandon their place of residence—often with relatively

short notice. Alternatively, households can become trapped in

place by sudden-onset events (e.g., floods that shut down roads).

Climate-induced displacement often takes place over relatively

short distances, most often within countries, and return migration

tends to be common (McLeman, 2018; De Haas et al., 2020b). The

link between a sudden-onset climate event and distress migration is

more direct, yet where, how, and whether people move in response

to that event is shaped by pre-existing migration systems, the

resources and networks of affected households, government or

humanitarian interventions, and the broader development context.

This helps explain why in the United States, for example, Hurricane

Katrina led to long-distance inter-state displacement for those with

stronger networks and resources, in-state displacements for others,

while the populations without access to transportation became

trapped in New Orleans and disproportionately perished (Fussell

et al., 2014).

Slow-onset changes include increasing temperature, irregular

rainfall patterns, sea-level rise, ocean acidification, soil salinization,

loss of biodiversity, and desertification (De Sherbinin, 2020). These

slow-onset changes interact with migration outcomes indirectly

and often in a non-linear fashion (McLeman, 2018). Other political,

economic, cultural, or conflict-related drivers of migration or

immobility may be stressed by climate change, and these social

phenomena mediate climate impacts and the responses of both

individuals and households. For this reason, slow-onset climate

changes contribute to migration but are often not the proximate

cause of migration. Moreover, the same climate stress can lead to

countervailing migration outcomes. For example, in rural Ethiopia,

men’s labor migration has been found to increase during periods

of drought, while women’s marriage migration decreases (Gray and

Mueller, 2012).

Motivations for migration in climate-stressed contexts are

rarely for climate or environmental reasons alone. People continue

to move for better education, economic opportunities, family, or

security-related reasons. The Amakrane et al. (2023) finds that in

the face of slow-onset events, livelihood opportunities elsewhere

and loss of income due to changes in personal circumstances were

more salient drivers than climate-related impacts. Some describe
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slow-onset climate impacts as threat multipliers—for example,

drought can reduce crop yields and thus household incomes, or

it can exacerbate conflict in water-scarce regions (Goodman, 2007;

McLeman, 2014; Sofuoglu and Ay, 2020). In the context of slow-

onset climate change, the idea of “thresholds” or “tipping points”

becomes important. Many affected households will attempt to

adapt in place despite significant livelihood stress, until in-situ

adaptation fails and/or a tipping point is reached, after which

a significantly higher share of households choose migration as

their primary adaptation strategy (see Gray and Mueller, 2012;

McLeman, 2018).

Figure 1 presents a conceptual framework illustrating

the macro-, meso- and micro-level factors1 that mediate the

relationship between environmental change (including climate

change) and migration and immobility outcomes. It adapts the

conceptual framework developed for the influential Foresight:

Migration and Global Environmental Change study conducted

by the government of the United Kingdom (Black et al., 2011).

Additionally, it integrates the aspiration/ability model (Carling,

2002; Carling and Schewel, 2018) to highlight different immobility

outcomes alongside migration. In this model, a migration

“aspiration” is defined simply as a conviction that migration is

preferable to non-migration; it can vary in degree and in the

balance between choice and coercion. When people develop a wish

to leave, the outcome depends on their capacity to convert this wish

into reality, given context-specific obstacles and opportunities,

captured by the term “ability” (Carling and Schewel, 2018, p.

955).2 This framework can help explain why fewer people tend to

migrate than migration theories would predict (Schewel, 2020)—a

reality that also appears to be the case in many environmentally

stressed regions (see Farbotko and McMichael, 2019; Wiegel et al.,

2021). Some may still feel a clear commitment and desire to stay in

place and may be called “voluntarily immobile.” Others may never

meaningfully consider migrating, some of whom may be called

“acquiescently immobile” (see Schewel, 2020). Still others may

desire to leave but lack the ability to do so, becoming “trapped”

or “involuntarily immobile” (Carling, 2002; Black et al., 2011;

Zickgraf, 2021).

Because climate change often acts indirectly on pre-existing

migration systems, it is difficult to disentangle the relative impact

of climate-related variables from other migration drivers. The

question of causality is especially challenging for forecasting

models (see Cottier et al., 2022). To date, forecasting has tended

to operate under the assumption that populations are relatively

fixed unless uprooted by a climate event. In reality, populations

are constantly moving both internally and internationally. They

move in seasonal, temporary, or permanent ways for work,

education, security, family, or even adventure across stages

of life (Bredeloup, 2013; Olwig, 2018; Cundill et al., 2021;

Van Praag, 2021). Population movements within and from

1 The macro level refers to societal and structural level factors; the meso

level refers to social and community-level factors; the micro refers to

individual and household level factors.

2 de Haas (2021) integrated Amartya Sen’s concept of ‘capability’ into the

model, giving rise to the complementary aspiration-capability framework,

which focuses more explicitly on the relationship between migration and

development (see also Carling and Schewel, 2018; Schewel, 2020).

a country even have a patterned relationship with levels of

socioeconomic development. For example, more people move

to towns and cities as economies industrialize, and in many

countries, a growing percentage of the population migrates

internationally as countries move from low- to middle-income

status–a phenomenon referred to as a country’s “mobility

transition” (Zelinsky, 1971; De Haas, 2010; Clemens, 2020; Schewel

and Asmamaw, 2021). This suggests that modeling should not

focus exclusively on estimating future “climate migrants,” pushed

out of their homes by environmental stress, but rather on

clarifying how climate change will reshape or constrain existing

mobility systems.

3 Climate-related migration
forecasting model types

Current approaches to forecasting climate-related migration

have their roots in a history of forecasting population growth

and distribution. Population forecasting is meant to predict

future population distributions across rural and urban places

based on factors like fertility, mortality, and migration.

Population forecasting has been utilized by statistical agencies

and development planners for decades (Shryock et al., 1975).

Over time, population forecasting tools advanced, allowing

researchers to incorporate a greater array of assumptions and to

project more specific forecasts (e.g., by age) (Wiśniowski et al.,

2015).

Migration modelers build on the sub-component of migration

within population forecasting through a variety of methods.

Often modelers utilize past migration data to predict future

migration trends, incorporating additional variables, such as

economic or demographic factors, into their models (Disney et al.,

2015). Uncertainty is inherent within all forecasting models, as

no model can predict future shocks or unforeseen events like

wars, pandemics, or major technological breakthroughs. Yet, this

uncertainty can be compounded by the lack of high quality

longitudinal historic migration data in most places that makes it

difficult to know precisely how people have moved in the past, and

thus how they might move in the future. Further, migration models

tend to focus on economic or demographic variables, but social,

political, and cultural factors also play a role in determining who

migrates, where they go, and the degree of choice in the migration

process. Migration modelers still struggle to capture the nuanced

relationship between these interacting drivers of migration in

different socioeconomic contexts due to difficulties with gathering

or accessing the relevant data as well as challenges isolating the

relevant variables from one another theoretically and empirically

(Lutz and Goldstein, 2004).

Climate-related migration modeling emerges in this context, as

researchers incorporate climate-related indicators into population

andmigration models of all kinds. Climate-related variables are not

yet commonly included in more general migration modeling, but

a sub-field of climate-related migration modeling has developed

to address this gap. Researchers utilize a variety of models from

different disciplines to forecast climate-related migration.

Climate-related forecasting model types include: exposure

models that overlay climate-related hazards on a population

distributionmap to identify at-risk populations; agent-basedmodels
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FIGURE 1

Contextual factors that mediate the e�ects of environmental change on migration and immobility outcomes. Figure inspired by Black et al. (2011, p.

33), the aspiration/ability model (Carling and Schewel, 2018), and the social transformation framework (De Haas et al., 2020b).
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that simulate the actions and interactions of individual agents;

gravity models that use population size, distance, and other

variables to project future population distributions; radiation

models that use population size and distance to model the flows

of people between places; statistical extrapolation models or discrete

history event models that clarify historical climate-migration

interactions to project future trends; systems dynamics models

that simulate the non-linear behavior of complex systems using

complex econometric models and utility functions; computable

general equilibrium models that use large, economic models to

assess potential policy effects on real-world economic problems;

integrated assessment models that integrate human systems and

natural systems into one modeling framework to support informed

policy making; andmachine learning models that have the ability to

process large amounts of data and draw inferences from patterns

within the data, potentially identifying thresholds or tipping points

in migration systems.

Model types differ significantly in assumptions made, data

inputs required, and the nature of results. Each model type has

advantages, disadvantages, and a preferred scope of application. For

example, agent-based models (ABMs) are data-intensive models

that are well suited to explore nuanced questions and mechanisms

in circumscribed geographic settings such as villages, cities, and

other sub-national settings (Rigaud et al., 2018). ABMs model

the behavior of autonomous agents to explore how individual

actors interact with their environment, influencing their migration

decisions, and leading to changes at the population level (Thober

et al., 2018).

ABMs tend to require rich data inputs to calibrate the

model. When this data exists, they are able to explore causal

and feedback mechanisms, migration motivations, and complex

decision-making. By exploring variations in migration or staying

behavior based on individual and household characteristics, they

also have the potential to explore differences in aspiration/ability

that might lead to different migration and immobility outcomes

(Figure 1). Typically, ABMs use data obtained through household

survey (ideally longitudinal) research. ABMs tend to estimate

volumes, or relative increases or decreases in migration flows from

a particular area, rather than estimating how many people will

move to destination A vs. destination B. Like other models, ABMs

are more accurate at predicting short-term changes in the volume

and composition of migration flows.

Gravity models are another popular but fundamentally

different alternative. Gravity models tend to forecast spatial

patterns over large geographic areas, such as entire nations

or regions. The name comes from Newton’s law of gravity,

which states that any two bodies attract one another with a

force proportional to the product of their masses and inversely

proportional to the square of the distance between them. In gravity

models, population size is indicative of relative “attractiveness,”

but the force of attraction decays with distance. From this basic

interplay of population size and distance, additional inputs can be

added to explore their effects on future population distributions,

including climate variables.

Gravity models do not directly model migration. Instead,

climate-related migration is assumed to be the primary driver

of deviations between population distributions in model runs

that include climate impacts and the development-only (the “no

climate”) models that include non-climate related drivers (Rigaud

et al., 2018). This relatively straightforward approach makes them

an attractive choice for migration modelers. However, using

population as a proxy for migration can also be problematic,

because population is also a function of changing administrative

boundaries, fertility, and mortality. Fertility and mortality rates

change over time and are also affected by climate change (Casey

et al., 2019; Vollset et al., 2020; Gerlagh et al., 2023), yet in many

gravity models, fertility and mortality rates are held constant.

Strengths of the gravity model include the ability to reproduce

past shifts in population distribution, providing some assurance

that if population trends continue to behave as in the past,

these models can be trusted to forecast future trends. Gravity

models are also relatively flexible in terms of data inputs and

can generate results over broad geographic scales. However, these

models have limitations. First, global or regional models often rely

on census data collected over 10-year increments, which means the

models may not accurately represent mobility patterns over short

periods of time and from places where census data is rarely or

poorly collected. Census data typically focuses on interprovincial

moves, though research suggests that in many places climate-

related migration occurs mostly over short distances (Hoffmann

et al., 2020). Thus, gravity models can over represent long-distance

rather than short-distance movers, which may reflect different

segments of society. Further, these models cannot tell us anything

about migration motivations or the degree to which migration is

voluntary or forced. Finally, they do not forecast migration well

at a micro level.3 For this reason, they are not typically utilized

for forecasting migration from small island states or other small

geographic regions.

Another approach to forecasting climate-related migration

draws on discrete history event modeling via various kinds of

econometric models. These approaches use historical data to

evaluate how sudden- and/or slow-onset climate impacts affected

internal or international migration patterns in the past. Those

historical relationships are then used to project the probability of

future migration under different climate scenarios. Discrete history

event modeling has the advantage of basing model assumptions

in real-world experiences, rather than extrapolating migration

trends from population projections as gravity models do. However,

these studies need to carefully control for other determinants of

migration to avoid overestimating the influence of environmental

factors on migration outcomes. Discrete history event modeling

has been fundamental to enhancing our theoretical understanding

of the climate-migration-development nexus (see, for example,

Henry et al., 2004; Feng et al., 2010; Gray and Mueller, 2012;

Nawrotzki et al., 2015; Gray andWise, 2016). Not all studies that use

this approach attempt to forecast future migration; nevertheless,

discrete history event modeling contributes to the evidence base

and theoretical assumptions that inform the development of

forecasting models. In this article, we refer to discrete history event

models that use their findings to forecast migration as “statistical

extrapolation models.”

3 The micro level refers to the individual and household level; the meso

level refers to social and community-level; and macro level refers to the

societal level.
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Although ABMs, gravity models, and statistical extrapolation

approaches are some of the better-known model types, modelers

continue to experiment with many others. Radiation models, for

example, have been used to forecast migration flows between places

with very few data inputs. They rely on basic inputs related to

population size, distance, and climate, much like gravity models.

The same limitations associated with using population as a proxy

for migration discussed above for gravity models also apply to

radiation models. Systems dynamics models offer the opportunity

to explore complex systems dynamics and the potential impact of

different policy scenarios, but they tend to lack spatial specificity.

Computable general equilibrium and integrated assessment models

share a similar focus on exploring the effects of policies on societal

outcomes but have only recently been applied to forecast climate-

related migration. There is significant interest in machine learning

models, because in theory they could process large amounts of

data to identify thresholds in climate-migration relationships, but

the large data-inputs required to use machine-learning significantly

limits their application in most contexts.

4 Methodology

To understand the state of the field in climate migration

forecasting, we conducted a systematic literature review. Our initial

search in SCOPUS, Web of Science, and Proquest identified 269

unique papers that included the terms “climate,” “migration,” and

“model” in the title or abstract. An additional search for relevant

gray literature in PAIS, IMF eLibrary, OECD iLibrary, CIAO, and

Google yielded 64 unique results.4 We also conducted a search

for migration models that included climate change as a variable

which added one additional paper. We did not limit the search

based on date of publication. Once duplicates and papers focused

on animal migration were removed, 115 articles remained.We then

removed papers that only analyzed past migration (not addressing

future migration), as well as all theoretical and review papers.

Finally, we incorporated several articles that were found through

country-specific searches (e.g., small island states) or recommended

in expert interviews (e.g., discrete history event models that had

a small or secondary section focused on forecasting). In total, we

identified 30 articles that specifically address the topic of climate-

related migration forecasting.

The 30 articles were then coded using the program SysRev

along a variety of dimensions, including model type, geographic

scope, migration type, model inputs and outputs, and climate

factors. Each model was coded twice by two researchers, and

discrepancies were double-checked and rectified by the research

team. An overview of the thirty models is provided in the

Supplementary material, and a summary of our literature review

process in Appendix A.1.

4 Search terms in databases included: climate OR migration OR model OR

drought OR water OR storm OR flood OR displacement OR mobility OR

population movement AND country name. Search terms in Google included:

migration model [country name].

5 State of the field

Table 1 presents an overview of the key characteristics of

climate migration forecastingmodels reviewed. Forecastingmodels

covered multiple scales of migration (e.g., sub-national, national,

regional, and global). Some forecast migration at one scale, while

others combine scales and are counted twice in the summary

statistics. For example, 70% (21) of the models forecasted trends

at the national level, 20% (6) at the global level, 20% (6) at the

regional level, and 27% (8) at the subnational level. Of those

models that focused on specific countries, seven focused on the

United States, six on Bangladesh, two on Brazil, two onMexico, and

two on Thailand (Figure 2). One model focused on Burkina Faso,

Central America, Kiribati, Maldives, Mali, the United Kingdom,

New Zealand, and Nigeria, respectively. The Groundswell Reports

include country-level analyses for Ethiopia, Bangladesh, Mexico,

Vietnam, Morocco, and the Kyrgyz Republic (see Sec. 5.1).

Of the models reviewed, 33% (10) employed the agent-

based model, 27% (8) used an econometric model (e.g., 2SLS,

probit, Bayesian, ANOVA, statistical extrapolation), and 17 and

7% (5 and 2) employed the gravity model and the radiation

model, respectively. Integrated multi-regional, applied general

equilibrium, spatial equilibrium, residential sorting, and system

dynamics models were each utilized once. The temporal range

of predictions spanned from 2030 to 2100. Notably, models do

not typically provide sequential predictions but rather a discrete

prediction for migration in 2030 or in 2100, for instance. One

paper estimated future migration based on degree of future

climate-related stress (e.g., one standard deviation increase in soil

salinization), as opposed to a specific timescale. Overall, most

papers provided projections for 2100 (41%) or 2050 (31%).

5.1 Model inputs

The most common climate-related data inputs included

precipitation (e.g., average rainfall, monthly and yearly) (53%),

temperature (e.g., average temperature) (47%), sea level rise (43%),

droughts (13%), and storms (7%). The pairing of precipitation and

temperature was most common across all models, with 37% of

the papers analyzing these together. Some models also included

climate impacts like crop yields and water availability, or sunshine

hours, elevation, days of extreme heat, erosion, and flooding.

Climate inputs originated from a variety of sources ranging from

national weather station data to independent survey data. However,

the most common source was the representative concentration

pathways (RCPs). Forecasts that take a scenarios-based approach

most often use RCPs to project future climate scenarios. RCPs

describe the possible trajectories for greenhouse gas emissions and

can be used for climate modeling and research.

As Figure 1 highlights, many political, economic, demographic,

socio-cultural, technological and other environmental factors

mediate the effects of climate change on migration or immobility

outcomes. However, no model can incorporate all relevant

mediating factors. The most common development-related data

inputs in the forecasting models we assessed are the shared

socioeconomic pathways (SSPs). SSPs are scenarios for how the
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TABLE 1 Overview of key characteristics of climate migration forecasting models reviewed.

Geographic
coverage

Count Model type Count Climate
hazard

Count Type of
migration

Count

Sub-national 1 Agent-based model 10 Precipitation 16 Internal 24

National 11 Gravity model 5 Temperature 14 International 13

Sub-national,

national

7 Radiation model 2 Sea level rise 13 Involuntary◦ 3

Regional 3 Econometric model 8 Storms 2 Voluntary◦ 2

National, regional 2 Other models∗ 5 Drought 4 Permanent◦ 6

National, regional,

global

1 Flood 5 Temporary/

Circular/ Seasonal◦
3

Global 5

∗Including Integrated Multi-Regional Applied General Equilibrium, Spatial Equilibrium, Residential Sorting, and Systems Dynamics models. ◦18 models did not state whether future migration

would be voluntary/involuntary and 16 models did not explicitly consider permanent vs. temporary migration. The models assessed include: Barbieri et al. (2010), Burzyński et al. (2021),

Cattaneo and Massetti (2019), Clement et al. (2021), De Lellis et al. (2021), Entwisle et al. (2016), Entwisle et al. (2020), Feng et al. (2010), Davis et al. (2018), Hassani-Mahmooei and Parris

(2012), Kniveton et al. (2012), Lustgarten (2020), Naugle et al. (2022), Oakes et al. (2016), Oliveira and Pereda (2020), Petracou et al. (2017), Smirnov et al. (2023), Speelman et al. (2021), Abel

et al. (2013), Adams and Kay (2019), Beckwith (2019), Bell et al. (2021), Cai and Oppenheimer (2013), Cameron (2018), Fan et al. (2012), Fan et al. (2018), Feng et al. (2012), Robinson et al.

(2020), and Chen and Mueller (2019).

FIGURE 2

Map of countries explored by forecasting models that focused on specific countries.

world might evolve in the absence of the implementation of

additional climate policies. They include indicators of population,

economic growth, education, urbanization, and the rate of

technological development. SSPs and RCPs are the most common

aggregate indicators used to forecast potential future scenarios of

development and climate change trajectories.

The majority of models include additional or independent

inputs related to population distribution and the economic,

political, or social context (see Supplementary material). Additional

demographic inputs include education level, age, gender or

sex, rural or urban location, marital status, and number of

children. Many of these variables are more easily incorporated into

models that focus on micro-level household dynamics, such as

ABMs. Two models also include population, fertility, or mortality

projections. Economic inputs—including GDP, household income,

and occupation—are included in 17 of the models analyzed. Fewer

models consider other economic factors, such as local wage rates

of wage differences between regions, percent of the population
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working in agriculture, employment data, household assets, and

local amenities.

Models include political and social factors less frequently than

economic inputs. Only 17% of the identified models included

political inputs and 30% included social inputs. Political inputs

can include government stability, and the freedoms, rights, and

liberties enjoyed by citizens. In some cases, political inputs measure

the political feasibility of climate adaptation through, for example,

policies or global cooperation. Notably, only one model considered

conflict. It does so by assuming that conflicts will occur in countries

where agricultural goods” prices increase by more than 10%, as

compared to a non-climate change scenario (Burzyński et al., 2021).

Social inputs tend to capture social networks, or the connections

an individual or household has to others at origin or at a potential

destination. Models utilized survey data related to social networks,

remittances, and diaspora size or pre-existing datasets from the

World Bank or United Nations.

5.2. Model outputs

Models vary in the type of migration projected. Of the models

we reviewed, the majority (24 or 80%) forecast internal migration

trends, and just over 40% assess international migration (13

or 43%). Eight models explore both internal and international

migration. Most models do not state explicitly whether they

are forecasting temporary or permanent migration. Short-term

or temporary migration generally refers to migration lasting

between 3 and 12 months, and long-term or permanent migration

generally refers to a change of residence for 1 year or more

(though definitions vary by country). Only 20% of the models

explicitly focus on permanent migration, while 10% investigate

temporary, seasonal, or circular migration. Only one model

considers cascading migration, which in this case refers to the

impacts that in-migration may have on out-migration from

the same location (De Lellis et al., 2021). One model directly

forecasts immobility (Smirnov et al., 2023). Gravity models have

indirectly estimated trapped populations, suggesting many people

will become trapped in a closed border scenario, but the models are

not designed to directly forecast involuntary immobility (Rigaud

et al., 2018; Jones, 2020; Clement et al., 2021).

Depending on the model type, future climate-related migration

is forecast directly or indirectly. Gravity models forecast climate-

related migration indirectly. In gravity models, climate-related

migration is assumed to constitute the difference in projected

population distributions between scenarios with and without

varying degrees of climate change. Other models, such as the

agent-based models reviewed here, estimate relative changes in

total out-migration, in-migration, or return migration. However,

their results tend to be aspatial, meaning they do not indicate

the trajectories migrants follow. Some models present numerical

estimates for future climate-related migrants, while others present

their findings in terms of percentage increases or decreases

in migration.

Scenarios-based outputs are increasingly common. Scenarios

forecasting presents a range of possible migration outcomes

based on different climate futures—for example, status quo,

low emissions, or high emissions futures. Various development

scenarios can also be paired with climate scenarios. Finally, some

models may pair estimated increases in migration to urban areas

with data on food, housing, and employment to anticipate the

material demands future in-migration would generate (Davis et al.,

2018).

6 Five illustrative models

Section 4 presents a general picture of the field of climate-

related migration forecasting. To illustrate more clearly the variety

of approaches, and the strengths and weaknesses of different

climate-related migration forecasting models, this section presents

an in-depth analysis of five models purposely selected for variation

across model type, world regions, and geographic scope. These five

models are summarized in Table 2, and the Supplementary material

provide further details about data inputs and outputs. The main

approaches, contributions, key findings, and limitations of each

model are reviewed below. The first Groundswell report involved

six European and American institutions and took nearly 2 years to

complete. Findings were oriented toward a broader audience and

published as a World Bank report (Model 1). Models 2 to 5 are

published in peer-reviewed journals and produced by smaller teams

of academic experts.

6.1. Gravity model

The Groundswell reports provide the first global picture of

the potential scale of internal climate-related migration across

six world regions: Sub-Saharan Africa, South Asia, and Latin

America (Part I) and East Asia and the Pacific, North Africa, and

Eastern Europe and Central Asia (Part II). Within each region, a

country-level case study is included: Ethiopia, Bangladesh, Mexico,

Vietnam, Morocco, and the Kyrgyz Republic. The Groundswell

reports apply a scenarios-based gravity model to forecast future

population distributions and areas that are likely to see greater

in- and out-migration under different climate and development

scenarios. The model applies demographic, socioeconomic, and

climate impact data at a 14-square kilometer grid cell level using

the Gridded World Population dataset to model likely shifts

in population within countries. To address the uncertainties of

analyzing migration over the next 30 years, the report considers

three potential climate and development scenarios (using RCP

and SSP scenarios as inputs): a pessimistic reference scenario, a

more inclusive development scenario, and a more climate-friendly

scenario. Climate impacts considered by the model include water

scarcity, declining crop yields, and sea level rise. The Groundswell

model does not directly model migration. Instead, climate-related

migration is assumed to be the primary driver of deviations

between population distributions in model runs that include

climate impacts and the development-only (the “no climate”)

models that include non-climate related drivers (Rigaud et al.,

2018).

The Groundswell reports provide a global estimate of up

to 216 million internal climate migrants by 2050 across all six

regions, but projections vary significantly depending on the climate
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TABLE 2 Description of five climate-related migration forecasting models.

Model
#

Model Brief
title

Coverage Country Precip Temp SLR∗ Storms Drought∗∗ Other Type of
migration∗∗∗

Time
horizon
of
prediction

Mediating
factors∗∗∗∗∗

Examples

1 Gravity Groundswell

I & II

Global,

Regional

Bangladesh,

Mexico,

Ethiopia,

Morocco,

Vietnam,

Kyrgz

Republic

✓ ✓ water and

crop

production

Internal 2050, 2100 Dem, Dev population

projections,

SSPs

2 Radiation Universal

Model

National Bangladesh ✓ Internal,

International

2050, 2100

3 System

Dynamics

Systems

Model

National Mali ✓ ✓ extreme

events

Internal,

International

2060 Econ, Pol,

Dem, Dev, Soc

labor

supply,

rural/urban,

violence,

governance,

level of

tech, food

availability

4 ABM Dynamic

Model

National,

Sub-national

Thailand ✓ crop

production,

floods

Internal, Return 25 years∗∗∗∗ Econ, Soc social

networks

household

assets,

remittances

5 SEM Statistical

Extrapolation

Model

National Bangladesh ✓ ✓ flooding,

soil

salinization,

bright

sun

International Undefined Dem, Econ,

Cul

gender, age,

assets,

religion

∗Sea level rise ∗∗We also coded for soil quality and desertification as hazards, but none of the models incorporated them. ∗∗∗We also coded for cascading migration, but none of the models incorporated it. ∗∗∗∗The authors do not look at specific years. Rather, they

give data on how migration might expand over any 25 years under the climate scenarios tested. The data used was gathered in 2000 and 1990-2008, so a time horizon might be 2025 or 2033. ∗∗∗∗∗ Econ, Economic; Pol, Political; Dem, Demographic; Soc, Social; Tech,

Technological; Env, Environmental Resilience; Dev, Aggregate Development Indicators/Scenarios; Cul, Culture; Computable General EquilibriumModel.
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and development scenario. Projections tend to be higher for

pessimistic scenarios vs. more optimistic climate and development

scenarios. However, there are important regional differences. In

East Africa, for example, there is a larger share of climate-

related migrants relative to the general population under more

inclusive development scenarios as compared to the pessimistic

scenario. This may be explained by development-driven migration;

more people tend to migrate as they gain access to higher

education, incomes, and infrastructure (see also De Haas, 2010).

Estimates of climate migrants as a percentage of a region’s total

population generally fluctuates between 0 and 3% of a region’s

total population, with North Africa being an exception where

climate-related internal migration could reach as much as 6%

(13 million, or half of all internal migrants) in 2050 under the

pessimistic scenario.

The Groundswell reports reveal important insights into

how slow-onset climate change impacts, population dynamics,

and development contexts could shape future mobility trends.

The model is notable for its flexible data inputs, scalability, and

application across world regions. Importantly, Groundswell

projections include relatively granular maps depicting

which locations are likely to see more or less in- or out-

migration, while many other modeling approaches lack this

spatial information.

There are also limitations to the Groundswell model. Because

it uses population as a proxy for migration, the model is subject

to the same limitations described in Section 2.2 for gravity

models generally. Population is also a function of changing

administrative boundaries, fertility, and mortality. Fertility and

mortality rates can also change in response to development

or climate changes (Casey et al., 2019; Vollset et al., 2020;

Gerlagh et al., 2023), but these are held constant in the

Groundswell models. Further, there is also no way to distinguish

between “distress” or “opportunity” migration under these different

scenarios, or at a more fundamental level, whether “climate

migration” is an accurate characterization of the many different

kinds of movements that may occur under different climate

and development scenarios (including economic, educational,

marriage, or conflict-related movements).

Further, the Groundswell model does not attempt to forecast

international migration, planned relocation, involuntary

immobility, or cascading effects. It omits many political

and economic factors (like access to land, resources, jobs,

conflict, or shocks) that will certainly affect future migration

trends. It cannot capture migration over distances of < 14

kilometers, and thus cannot be applied to smaller geographic

areas such as small island states. The model does not include

short-term climate variations or sudden-onset events. Like

other forecasting models, it does not incorporate the impact

of future adaptation efforts (e.g., improved crop varieties,

irrigation, water conservation agriculture, or coastal defenses) into

its projections.

These limitations recognized, the Groundswell models

represent an important step in climate-related migration modeling,

that inspired future gravity modeling used in the Great Climate

Migration project in Latin America (Lustgarten, 2020) and

the Amakrane et al. (2023).

6.2. Radiation model

Model 2 by Davis et al. (2018) applies a diffusion-based model

of human mobility in combination with population, geographic,

and climatic data to estimate the sources, destinations, and flux

of potential migrants as driven by sea level rise in Bangladesh

in the years 2050 and 2100. By linking the sources of migrants

displaced by sea level rise with their likely destinations, the model

purports to offer an effective approach for predicting climate-

driven migration flows, especially in data-limited settings. The

authors describe the model as universal because it uses few data

inputs and is parameter-free.

According to the paper’s authors, the baseline model

results showed good agreement with available division-level

internal migration from the 2011 Bangladesh census, meaning

the model predictions accurately aligned with actual internal

migration patterns in Bangladesh using information on population

distribution and distance. However, this constitutes only a one-

year projection (using 2010 data to forecast 2011 trends). By

mid-century, the model estimates that nearly 900,000 people

are likely to migrate as a result of direct inundation from mean

sea level rise alone, and Dhaka will be the top destination for

migration. In large part because of the generally high population

density across Bangladesh, however, the authors find most

migrants will choose destinations close to their homes. The

authors also analyze the additional jobs, housing, and food

that would be required to support these migrants at their

expected destinations.

This model is distinct for how few data inputs are required.

It builds on a radiation model published by Simini et al. (2012),

which estimated internal and commuting mobility trends in the

United States based only on population distribution and distance

estimates. By adding data inputs on elevation and projected sea

level rise, Davis et al. (2018) present a streamlined and simple

approach to forecasting displacement from sea level rise. The

model was expanded by De Lellis et al. (2021), who added a

single parameter to the model on baseline migration rates, as

well as a “resilience index.” These additions led to different

predictions, however, namely a wider spatial distribution of

migrants and a predicted outflow from Dhaka. Other models

focused on sea level rise and migration in Bangladesh come to

still different conclusions. Chen and Mueller (2018), for example,

use a statistical extrapolation approach and find that inundation

has negligible effects on internal migration in Bangladesh; gradual

increases in soil salinity have more direct and significant effects

on internal and international migration trends. These discrepant

findings raise concerns about the real-world applicability of the

model to forecast climate-related migration over the longer term.

Model projections remain heavily dependent on the baseline

assumptions, inputs, and parameters modelers choose to include

or exclude.

6.3 Systems dynamics model

Model 3, the Systems Dynamics Model (Naugle et al.,

2022), couples migration decision making and behavior with the
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interacting dynamics of economy, labor, population, violence,

governance, water, food, and disease. The model is applied to

a test case of migration within and beyond Mali. This model

is notable for the wide range of factors incorporated beyond

climate and population variables, particularly political, economic,

health, and conflict-related factors, and its experimentation

with how several different policy interventions might affect

migration outcomes. The systems dynamics model is designed

to allow for interactive effects, causal loops, and flows. Each

component within the model can impact other factors, not

just migration. This allows the model to move beyond linear,

input/output modeling approaches to incorporate non-linear,

“systems” dynamics.

Model outputs are given in terms of the fraction of the

Malian population choosing to live in each simulated region.

Potential locations include rural Mali, urban Mali, neighboring

countries (Burkina Faso, Côte d’Ivoire, Gabon, Gambia, Ghana,

Guinea, Mauritania, Niger, Senegal), the United States, and

“the rest of the world” (as one category). The model generally

finds that as temperatures increase, economic factors make

migration from Mali to other locations more attractive, and the

population tends to move out of both urban and rural areas of

Mali toward neighboring countries, the United States, and the

rest of the world. The model forecasts the impact of various

policy options on migration outcomes and finds that providing

contraception (reducing birth rates) reduces migration by limiting

pressures on the economy, resources, food availability, and water

availability. Increasing the effectiveness of governance in the model

improves the economic situation by increasing the internal gross

regional product, and ultimately reduces migration. Increasing

infrastructure and services provided by theMalian government was

relatively ineffective at reducing migration.

The focus of this model is on exploring feedback effects and

policy interventions. To do so, some baseline assumptions are

unrealistic. For example, in the base case simulation, temperatures

remain stable throughout the time horizon and gross regional

product tracks (World Bank, 2017) projections. The authors do

not take a position on the validity of the base case projection.

Rather, they emphasize the opportunity to explore the differences

between this and climate change scenarios to understand the

causes of variations in the results. This highlights that such a

model is best used to explore systems dynamics and potential

policy effects, rather than generate numerical projections of future

climate-related migration.

6.4 Agent-based model

Model 4 by Entwisle et al. (2020) uses an ABM focused on

land use, social networks, and household dynamics to examine how

extreme floods and droughts might affect migration from 41 rural

villages in Northeast Thailand, where rice cultivation is common.

The ABM models the dynamic and interactive pathways through

which climate-migration relationships operate, including out and

return migration, for each village. This model pays attention to

variables that existingmigration research confirms are fundamental

to migration systems but are often left out of forecasting

models: namely social networks, life-course dynamics, and return

migration. Importantly, it starts from the assumption that climate

change does not “uproot” otherwise immobile populations but will

have impacts on already established migration systems.

The ABM is grounded in longitudinal survey, qualitative,

spatial, social, and environmental data. Like Model 1, this approach

focuses on how changes in precipitation affect crop yields and

thus livelihoods and household assets and thus does not assume

a direct “climate effect” on migration. It incorporates additional

feedback into the model through, for example, social networks and

remittances. Interestingly, the results find minimal to no climate-

related effects on rural out-migration. One potential reason for this

is that out-migration is already a normal part of social systems in

this area, and these continue for other non-climate related reasons.

However, the model finds that increased floods and droughts lead

to a notable decline in return migration.

Like systems dynamics models, the ABM approach is able

to run repeated and nuanced experimental scenarios. Running

the model with and without social networks yields important

differences in outcomes. In every scenario, without the facilitating

effects of social networks, climate impacts decrease out-migration.

This may be because social networks significantly lower the costs

of moving, by sending money and helping prospective migrants

(usually relatives) find housing and work. Without social networks,

migration is a more individual decision and becomes costlier. The

model also finds return migration stays constant without social

networks. A likely explanation is that social networks are the main

mechanism through which prospective returnmigrants learn about

the hardships of floods or drought. Without social ties, decisions to

return home are less affected by these climate impacts.

This ABM model has several strengths. First, it is grounded

in decades of panel survey data. Further, it looks at the full

spectrum of migration, both out- and return-migration, and

incorporates different propensities for migration across the life-

course. Although the authors do not explore this much in their

paper, the model is better suited than others to assess heterogeneity

(due to its micro-level, localized inputs) within and between villages

and provide micro-level evaluations of how potential climate-

related stresses might disproportionately impact marginalized or

vulnerable populations.

There are several limitations to this approach for forecasting

future climate-related migration. First, the model predicts increases

and decreases in rates of out- or return-migration but yields no

information on the spatial trajectories of potential migration flows.

Further, the data demands of this model make it challenging

to scale or apply to other areas that lack reliable, longitudinal

data. Experts also note that this ABM model, like many

other ABMs and computational models, relies on assumptions

about what the underlying utility function looks like—that

is, what people prioritize when they consider the costs and

benefits of migration and make migration decisions. In reality,

utility functions differ significantly across populations, based on

education, socioeconomic status, gender, culture, or personal

disposition. For these and other reasons, the authors expressly

state that their interest is at the level of model development

and theoretical development. “Our intent. . . is to use the model

to explore the implications of the theories embedded within it”
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(Entwisle et al., 2020, p. 1472). The model does not seek to

provide real-world projections of future climate-related migration

for planning purposes. Nevertheless, it makes an important

contribution to how modelers understand and can incorporate

important but often overlooked factors (like social networks,

life course or return dynamics) into climate-related migration

forecasting models.

6.5. Statistical extrapolation model

Model 5 by Chen and Mueller (2019) approaches climate-

migration interactions using historical data; the relationships

uncovered are then used to forecast future trends. This econometric

model forecasts climate-related international migration from

Bangladesh. It is notable for modeling several climate-related

factors, including remote-sensing measures of flooding and rainfall

and in-situ measures of monsoon onset, temperature, radiation,

and soil salinity. It uses nationally representative migration data to

evaluate which locations and population groups are more likely to

migrate across the border to other South-East Asian countries, with

a particular focus on international migration to India.

Chen and Mueller (2019) find that different climate variables

vary in their relationship to cross-border migration. Short-term,

adverse weather events are associated with decreased international

migration, while increases in soil salinity are associated with

increased cross-border migration. Soil salinity has a stronger effect

on migration from poorer households. The model outputs do not

provide an estimate of climate-related migrants by a particular

date; rather, projections are based on the degree of future climate

change. For example, the model predicts a total of 17,874 more

migrants moving to India in response to a one standard deviation

increase in soil salinity, with out-migration concentrating in the

southwestern coastal regions of the country.5 The model predicts

a total of 5,754 fewer migrants moving to India in response to

an increase in flooding of one standard deviation. The authors

do not attempt to forecast when those changes in soil salinity or

inundation will occur.

Chen and Mueller (2019) examine household vulnerability to

flooding and soil salinization to explore whether households with

greater human, social, or physical capital are more inclined to

migrate. They also consider the impact of age, gender, and religion

on migration outcomes. They find that wealthier households are

less likely to migrate in response to gradual changes in soil salinity,

perhaps because they are better equipped to diversify livelihoods

locally, while poorer households aremore likely to use international

migration as an adaptation strategy as soil salinity increases.

These and other related findings provide important evidence for

how climate-migration interactions might vary for different social

groups and more vulnerable households. Chen and Mueller (2019)

do not use these more nuanced analyses, however, to forecast future

trends based on household characteristics.

The authors are transparent about the limitations of their

model. They lack information on the duration of each event and are

unable to validate whether moves are temporary or permanent. The

5 To give a sense of relative scale, there were 2.5 million Bangladeshi

migrants in India in 2020 (Singh, 2022).

measure for soil salinity is relatively coarse and focuses on changes

over 5 years. This misses the potential mobility implications of

seasonal or annual variations. They also note that soil salinity can

result from changes in landscape and deforestation along the coast,

sea level rise and storm surges and ground management. It is not

clear what factors are contributing most to increase soil salinization

and thus where policymakers should prioritize funding for adaptive

investments. Finally, they note one drawback of using a large

administrative dataset is the absence of detailed survey questions

that would be required to more carefully explore the reasons for

migration and obstacles potential migrants face.

7 Key challenges to climate-related
migration forecasting

As Section 5 shows, modeling approaches vary considerably,

each bringing distinct strengths and weaknesses. Yet, there are

several limitations that characterize the field of climate-related

migration forecasting more generally. First, non-climate related

drivers of migration, including political, economic, cultural, and

social factors, remain underrepresented in the models reviewed.

For example, only one model incorporates conflict as a potential

driver (Burzyński et al., 2022), and just five of the thirty

models reviewed incorporate covariates for social networks. Social

networks are a fundamental migration facilitator, impacting who

is most likely to move and where they will migrate (Haug, 2008).

Also known as the “friends and family effect,” social networks

significantly reduce the informational, capital, and social costs of

moving (Hatton and Williamson, 1994; Nawrotzki et al., 2015).

Often, social, cultural or political factors are not included as inputs

because there is not sufficient or reliable data.

A second limitation is the predominant focus on slow-onset

climate changes, excluding sudden-onset events or other forms

of environmental change not directly caused by climate change.

Many models forecast migration in relation to one or two climate

hazards only (e.g., sea level rise, or temperature and precipitation),

when in reality, several interrelated slow- and sudden-onset climate

changes (alongside other forms of environmental change) may

affect future population mobility or immobility (McLeman, 2018;

De Sherbinin, 2020; Hauer et al., 2020). In the broader climate-

migration literature, discrete history event modeling has been used

to model historical migration responses to both sudden-onset

events and multi-hazard environments (Gray and Mueller, 2012;

Nawrotzki and Bakhtsiyarava, 2017). These findings can “ground

truth” future projections, even if the exact timing or severity of

future natural disasters remains unknown.6

A third limitation is the neglect of potential climate-related

immobility. Only one of the thirty models (Smirnov et al., 2023)

directly forecasts immobility, and none are able to distinguish

between voluntary or involuntary forms. Alongside the push and

pull factors that may motivate migration, migration trends are also

shaped by retain and repel factors,7 as well as political, economic,

or other constraints that deprive individuals and households of

6 The authors thank Valerie Mueller for this point.

7 Retain factors are the attractive conditions at home that encourage

individuals to stay in their current location, while repel factors describe
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the capability to move (see Schewel, 2020 for a review). These

place-based ties and migration constraints are not yet incorporated

into the theoretical frameworks that underlie forecasting models,

which means models risk overpredicting future migration.8

Climate-related immobility is as important a development and

humanitarian concern as climate-related mobility. As climate

change advances, the most vulnerable populations are those already

disadvantaged groups who risk becoming “trapped” in ever-more

precarious living conditions (Black et al., 2011). Not all populations

living in environmentally stressed areas, however, see themselves as

“trapped” or “involuntarily immobile.” A growing body of research

finds a surprisingly significant portion of vulnerable populations

do not want to migrate,9 raising important questions about the

underlying utility functions we use in migration modeling (see

Czaika and Reinprecht, 2022) and highlighting the need to invest

in in-situ climate adaptation.

Finally, and perhapsmost obviously, there are future unknowns

that forecasting models cannot readily integrate. Scenarios based

modeling, although it captures a wide range of possible futures,

does not incorporate potential climate tipping points or irreversible

environmental changes, such as the loss of the Amazon rainforest

or the West Antarctic ice sheet, that could have devastating

consequences for populations and ecosystems across the globe

(Lenton et al., 2019). When climate-related events intensify

and become increasingly widespread, this can have cascading

effects on economic and social systems (e.g., global trade

and supply networks) (Organisation for Economic Co-operation

Development., 2008). Migration responses to climate change under

these conditions could reach thresholds where the volumes, nature,

direction, and composition of migration flows begin to diverge

fundamentally from historical patterns (McLeman, 2018). And

other major unknowns like pandemics, wars, or technological

revolutions will exert their own effects onmigration trends (de Valk

et al., 2022). Though inherently challenging to model, the exclusion

of these future uncertainties undermines the accuracy of long-term

projections, especially to time horizons like 2100.

8 Directions for future research

The forecasting models reviewed above provide insight into

the wide range of approaches to estimating future climate-related

migration. Uncertainty is inherent to any future-oriented exercise.

As the statistician George Box famously said, “all models are

wrong, but some are useful.” Forecasting models will always

fall short of the complexities of reality, but models can still

reduce uncertainty, even if they do not eliminate it completely.

The models reviewed above are some of the best attempts

conditions in alternative locations that discourage migration (see Schewel,

2020).

8 The recent forecasting model developed by Benveniste et al. (2022) is a

notable exception. It explores how climate change may a�ect what they call

‘resource constrained international immobility.’

9 For example, a recent survey by the Africa Climate Mobility Initiative

(Amakrane et al., 2023) finds that majority of people (55%) who su�er from

climate disruptions do not consider migrating. A smaller share (23%) have

considered moving but lack the resources.

to forecast climate-related migration, and modelers are making

consistent efforts to push the field forward. Here, we outline several

strategies for supporting these advancements, including new and

refined approaches to modeling, greater collaboration between

stakeholders and scholars from different disciplines, and improved

data inputs.

There are several promising approaches to modeling that

could improve climate-related migration forecasting. The first is

advancing multi-level modeling, which combines model types to

capitalize on their independent strengths. For example, gravity

models could be used to identify areas that might see significantly

greater rates of out- or in-migration, and agent-based models could

be used in those targeted areas to model migration or immobility

outcomes for different socioeconomic groups.

Further model refinement will also require inputs from

a broad community of experts. Greater trans-disciplinary

collaboration between natural and social scientists could help

modelers capture climate-related and environmental conditions

that are unaccounted for in current models. Hydrologists,

for example, can provide relatively granular insight into

household exposure to flooding and sea level rise, but their

expertise is seldom incorporated into existing migration models.

Prevailing models tend to assume the same level of exposure

and vulnerability to climate events like flooding or sea level

rise across a village or region, when in reality, the intensity of

exposure can vary significantly (Davis et al., 2018; Rigaud et al.,

2018).

Finally, and perhaps most importantly, improvements in data

collection are fundamental to enhance climate-related migration

forecasting. Data on past and present migration is extremely

limited and unreliable in many world regions, particularly coveted

migration flow data. Improved data collection requires investments

in the statistical bureaus of climate-vulnerable countries to

improve the quality and frequency of census data collection.

More high-quality individual and household survey data are also

needed to better capture existing migration systems, migration

aspirations and capabilities, and perceptions of climate change.

There have been some innovative advancements in collecting

novel forms of data for climate-related migration forecasting

(Isaacman et al., 2017; Ash and Obradovich, 2020; Luca et al.,

2022; e.g., cell-phone data or experiments with remote sensing

data), however these efforts are incipient and not yet widespread.

There is growing enthusiasm to incorporate machine learning

into forecasting to identify thresholds or tipping points in

climate-migration interactions (Jones, 2017). However, machine

learning requires very large data inputs, and is difficult to

apply to many regions of the world where reliable data

remains scarce.

In summary, the field of climate-related migration forecasting

is still in its infancy, and at this nascent stage, forecasting models

are not yet able to provide concrete numerical estimates of

future climate-related migration. Modeling human migration is

an exercise fraught with uncertainty and adding the dimension of

climate change only compounds that uncertainty. Debates about

causality in research on environmental change and migration

remain unsettled (see Cottier et al., 2022), and given the

political sensitivities that surround discussions of migration, it

is important not to give the air of statistical precision to a
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social phenomenon that resists easy quantification (Lustgarten,

2020). For these reasons, scenarios-based forecasting approaches,

which consider the full range of possible futures, are arguably

more useful for real-world planning than singular narratives of

future climate-migration. Scenarios-based forecasting can assist

policymakers to consider a range of possible “what if ” scenarios

(Jones, 2020).

Given the high levels of uncertainty inherent within

climate-related migration forecasting, policy makers and

development planners should consider triangulating the

predictions of forecasting models with insights from

qualitative foresight exercises. Foresight exercises bring

migration, climate, and regional experts together with local

stakeholders to anticipate potential climate-related migration

trends for particular countries and regions (cf. Vezzoli et al.,

2017). Local stakeholders and scholars who specialize in

a region may be able to identify gaps and inaccuracies in

the inputs or assumptions of a given forecasting model,

offer cultural and historical insights that might improve the

interpretation of their findings, and offer caveats about the

applicability of the models” findings for particular populations

or sub-regions.
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FIGURE A1

Literature review process.
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