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Brazil is one of the most vulnerable regions to extreme climate events,

especially in recent decades, where these events posed a substantial

threat to the socio-ecological system. This work underpins the provision

of actionable information for society’s response to climate variability and

change. It provides a comprehensive assessment of the skill of the state-

of-art Coupled Model Intercomparison Project, Phase 6 (CMIP6) models

in simulating regional climate variability over Brazil during the present-day

period. Di�erent statistical analyses were employed to identify systematic

biases and to choose the best subset of models to reduce uncertainties.

The results show that models perform better for winter than summer

precipitation, consistent with previous results in the literature. In both seasons,

theworst performanceswere found for Northeast Brazil. Results also show that

the models present deficiencies in simulating temperature over Amazonian

regions. A good overall performance for precipitation and temperature

in the La Plata Basin was found, in agreement with previous studies.

Finally, the models with the highest ability in simulating monthly rainfall,

aggregating all five Brazilian regions, were HadGEM3-GC31-MM, ACCESS-

ESM1-5, IPSL-CM6A-LR, IPSL-CM6A-LR-INCA, and INM-CM4-8, while for

monthly temperatures, they were CMCC-ESM2, CMCC-CM2-SR5, MRI-ESM2-

0, BCC-ESM1, andHadGEM3-GC31-MM. The application of these results spans

both past and possible future climates, supporting climate impact studies and

providing information to climate policy and adaptation activities.
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Introduction

According to the Sixth Assessment Report (AR6) of the

Intergovernmental Panel on Climate Change (IPCC), climate

system warming is already evident, and the global surface

temperature change has been ∼1.1◦C from 1850 to 1900, very

likely due to human influence (IPCC, 2021). Global warming

changes the water cycle (Held and Soden, 2006; Alfieri et al.,

2017) and modifies the frequency and intensity of extreme

events. It is already affecting every region on Earth, leading

to significant risks to ecosystems and diverse sectors of society

(Sillmann et al., 2013; Chadwick et al., 2014; Wang et al.,

2014; Fischer and Knutti, 2016; Oppenheimer et al., 2019; Cook

et al., 2020; Ashfaq et al., 2021; Masson-Delmotte et al., 2021).

In addition, climate projections suggest that the probability

of extreme climatic events will continue to increase over

the 21st century (IPCC, 2021). Therefore, it is essential to

investigate how these changes will affect society’s resilience and

to provide helpful information for enhancing climate change

risk management and enabling informed decision-making. Such

changes in human society and ecosystems vary among different

regions and seasons (IPCC, 2021).

General circulation models (GCMs) are the main tools to

approach these issues. This is done by analyzing the simulations

of different GCMs for future scenarios and investigating the

climate system response to the changes in radiative forcing

(Taylor et al., 2012; Flato et al., 2013). Climate models are

widely applied to project future climate change at global and

regional scales (Su et al., 2013; Bannister et al., 2017; Gusain

et al., 2020), thus their performance in simulating the present-

day and past climates need to be evaluated. Overall, the models

present different levels of skill in simulating specific variables

over an area of interest, so a model-by-model analysis is

necessary (Srivastava et al., 2020). In addition, it is necessary

to assess model uncertainty through a comparison of historical

simulations against observations, using a broad range of

measurements to determine whether these models properly

simulate the main climatological patterns of a region. Therefore,

understanding the present-day and past climate at local scales

is essential for more effective risk management under future

climate change.

Most recent, simulations from state-of-the-art versions of

GCMs have become available through the Coupled Model

Intercomparison Project Phase 6 (CMIP6), with a substantial

increase in the number and scope of experiments (Eyring

et al., 2016; O’Neill et al., 2016). These simulations provide

a new opportunity to evaluate the Earth system response to

change in radiative forcings during the 21st century. CMIP6

models have typically updated versions of the models that

participated in previous phases of CMIP. This new set of models

has improved spatial resolution, physical parameterizations

(i.e., cloud microphysics), and better representations of various

earth system processes (such as biogeochemical cycles) and

components (such as ice sheets) (Eyring et al., 2016; Stouffer

et al., 2017).

The evaluation of CMIP6 simulations over several regions

suggests that model output exhibits differences from earlier

CMIP phases (Almazroui et al., 2020a,b, 2021a,b; Ortega et al.,

2021). Some studies evaluated CMIP6 GCMs historical runs

over several parts of the globe, including South America (SA)

and Brazil. In a preliminary analysis, Rivera and Arnould

(2020) evaluated the performance of CMIP6 over Southwestern

SA using its long-term historical runs. They listed the subset

of models that best represent the precipitation variability in

this region. Fan et al. (2020) noted that most CMIP6 models

reproduced the spatial pattern of climatological annual mean

temperature over the global land surface properly, but with large

variability across models and regions. Furthermore, CMIP6

could capture the sign of trends of mean global surface

temperatures shown by the observational data during the

periods 1901–1940 (warming), 1941–1970 (cooling), and 1971–

2014 (rapid warming), despite showing less spatial variability

compared with the observations. Assessing large ensembles

of some CMIP6 models, Díaz et al. (2021) found that

most models have limitations in correctly reproducing the

precipitation characteristics of the South American Monsoon.

Ortega et al. (2021) evaluated the historical simulations

of precipitation and temperature from CMIP5 and CMIP6

models over some regions in Central and South America

(CSA). They identified a subset of CMIP6 models that

best represent the present-day climate in these regions.

Additionally, they found that the ensemble mean of the

CMIP6 models shows performance similar to the best CMIP5

models regarding precipitation, and also that it better simulated

the height-temperature variation over the Andes compared

to CMIP5.

Due to vast social and environmental vulnerabilities, besides

an agricultural-based economy, Brazil (and SA) frequently

suffers negative impacts caused by current climate variability

and extreme climate events and could be highly affected by

the projected future climate change (Baettig et al., 2007; Meehl

et al., 2007; Torres et al., 2012; Torres and Marengo, 2013;

Masson-Delmotte et al., 2021). In a recent study, Shimizu et al.

(2022) used a multi-model analysis with the Detection and

Attribution experiments from CMIP6 to better understand the

physical processes related to precipitation trends over North

and Northeast Brazil, but no assessment of historical runs was

presented. Pereima et al. (2022) compared different CMIP5

and CMIP6 ensemble performances in simulating precipitation

in Southern Brazil. Despite the detailed analyses, this study

does not provide a comparison among the models, besides

being limited to one region and for precipitation only. Thus,

there is still a lack of studies that points out the best CMIP6

models to simulate the main climatic features of Brazil. In

addition, the evaluation of sub-regional scale performance is

also lacking, which is of concern because most of these models
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are widely used for statistical and dynamical downscaling and

impact studies.

Therefore, this paper aims to assess the performance of

CMIP6 models in reproducing the historical climate over Brazil.

The objective was to answer the following questions: How well

do the CMIP6 models simulate the main spatial patterns of

precipitation, temperature, and circulation over Brazil? Does the

CMIP6 ensemble mean reproduce the frequency distributions

of temperature and precipitation similar to the observations?

Which models best simulate the annual cycles and seasonal

means of temperature and precipitation in some key regions

of Brazil?

Data and methods

Global climate model data

The Brazilian climate was examined using the Coupled

Model Intercomparison Project Phase 6 (CMIP6) models

(Eyring et al., 2016). We used historical simulations of monthly

mean surface air temperature, precipitation, and zonal and

meridional winds (200 and 850 hPa) from 35 GCMs obtained

from the CMIP6 archives (https://esgf-node.llnl.gov/search/

cmip6/). A list of CMIP6 models, their countries, and their

horizontal resolution are shown in Table 1. Only one ensemble

member from each model is considered in the analyses. For

all the models, we used the r1i1p1f1 member, except for the

HadGEM3 family, where the r1i1p1f3 member was chosen due

to a lack of f1 simulations.

Although the CMIP6 historical runs cover the period of

1850–2014, in this paper, we analyze historical simulations over

the period 1995–2014 (also called present-day), as established by

AR6 Working Group I (Masson-Delmotte et al., 2021) and used

by Almazroui et al. (2021a), Llopart et al. (2021), Lv et al. (2021)

and Ortega et al. (2021). To facilitate intercomparison, all the

GCM outputs were interpolated onto a common grid of 1◦ × 1◦

resolution by the bilinear interpolation method.

Observation-based dataset

The reference observation datasets used in this study were as

follows: (i) monthly precipitation and temperature compiled by

the Climatic Research Unit (CRU) Time Series of the University

of East Anglia version 4.03 (Harris et al., 2014, 2020). The

CRU dataset is derived from an analysis of over a thousand

individual meteorological station records and covers the period

of 1901–2018 at 0.5◦ × 0.5◦ spatial resolution These time

series have been subjected to extensive quality assessments

in previous studies that showed that CRU data reproduce

precipitation and temperature adequately over SA (Fan et al.,

2020; Rivera and Arnould, 2020; Almazroui et al., 2021a),

TABLE 1 List of CMIP6 historical global climate models used in this

study.

No. CMIP6 model

name

Country Atmospheric

resolution (lon ×

lat in deg)

1. ACCESS-CM2 Australia 1.9◦ × 1.3◦

2. ACCESS-ESM1-5 Australia 1.9◦ × 1.2◦

3. AWI-CM-1-1-MR Germany 0.9◦ × 0.9◦

4. AWI-ESM-1-1-LR Germany 1.9◦ × 1.9◦

5. BCC-CSM2-MR China 1.1◦ × 1.1◦

6. BCC-ESM1 China 2.8◦ × 2.8◦

7. CanESM5 Canada 2.8◦ × 2.8◦

8. CAS-ESM2-0 China 1.4◦ × 1.4◦

9. CMCC-CM2-SR5 Italy 1.3◦ × 0.9◦

10. CMCC-ESM2 Italy 1.3◦ × 0.9◦

11. EC-Earth3 Europe 0.7◦ × 0.7◦

12. EC-Earth3-AerChem Europe 0.7◦ ×0.7◦

13. EC-Earth3-CC Europe 3◦ × 2◦

14. EC-Earth3-Veg Europe 0.7◦ × 0.7◦

15. EC-Earth3-Veg-LR Europe 1.1◦ × 1.1◦

16. FGOALS-g3 China 2◦ × 2◦

17. FIO-ESM-2-0 China 1.3◦ × 0.9◦

18. GFDL-ESM4 USA 1◦ × 1◦

19. GISS-E2-1-G USA 2.5◦ × 2◦

20. GISS-E2-1-G-CC USA 2.5◦ × 2◦

21. GISS-E2-1-H USA 2.5◦ × 2◦

22. HadGEM3-GC31-LL UK 1.9◦ × 1.3◦

23. HadGEM3-GC31-MM UK 0.8◦ × 0.6◦

24. INM-CM4-8 Russia 2◦ × 1.5◦

25. INM-CM5-0 Russia 2◦ × 1.5◦

26. IPSL-CM6A-LR France 2.5◦ × 1.3◦

27. IPSL-CM6A-LR-INCA France 2.5◦ × 1.3◦

28. KACE-1-0-G South Korea 1.9◦ × 1.3◦

29. MIROC6 Japan 1.4◦ × 1.4◦

30. MPI-ESM-1-2-HAM Germany 1.9◦ × 1.9◦

31. MPI-ESM1-2-HR Germany 0.9◦ × 0.9◦

32. MPI-ESM1-2-LR Germany 1.9◦ × 1.9◦

33. MRI-ESM2-0 Japan 1.1◦ × 1.1◦

34. NESM3 China 1.9◦ × 1.9◦

35. SAM0-UNICON South Korea 1.3◦ × 0.9

and (ii) monthly averaged winds at 850hPa and 200hPa from

European Reanalysis 5 (ERA5) (Olauson, 2018; Hersbach et al.,

2020) on a 0.5-resolution global grid spanning the period from

1995 to 2014. ERA5 is the most recent reanalysis dataset from

ECMWF and is commonly used in model assessment studies

(Luo et al., 2020; Ortega et al., 2021). The observational dataset

was interpolated ontomodel grids as described in Section Global

climate model data.
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FIGURE 1

Topography of the study area (m; shaded) with the sub-regions delimited: Northern Amazon (NAZ; 5◦S−5◦N, 70◦-45◦W), Southern Amazon
(SAZ; 12,5◦-5◦S, 70◦-45◦W), Northeast Brazil (NEB; 15◦-12◦S, 45◦-34W), South America Monsoon (SAM; 20◦-10◦S, 55◦-45◦W) and La Plata Basin
(LPB; 35◦-20◦S, 65◦-45◦W).

Methods

To assess the ability of CMIP6 models to simulate the

main climatic characteristics over Brazil, first, we analyzed the

large-scale circulation patterns at two different vertical levels

(850 and 200 hPa) and biases of GCMs-simulated seasonal

(austral summer and winter) mean precipitation and surface

temperature relative to observations (model minus observation).

Second, we assessed the skill of themodels at simulating seasonal

variability in some key regions of Brazil using probability density
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functions (PDFs) and the annual cycle of monthly precipitation

and surfacemean temperatures. The five key regions of Brazil are

the Northern Amazon (NAZ), Southern Amazon (SAZ), South

America Monsoon region (SAM), Northeast Brazil (NEB), and

La Plata Basin (LPB) as suggested by Alves et al. (2021)

(shown in Figure 1). These regions were chosen because they

each exhibit a well-defined seasonal precipitation cycle and

represent sub-continental regions of broadly climatic coherency

in all the domains, being relevant to the studies of the

Brazilian biomes, climatic, hydrological, and social systems.

They also are important to several socioeconomic sectors, such

as water, energy, and agriculture. The NAZ and SAZ regions

are characterized by a high total amount of precipitation (2,500

to 3,000 mm/year) and high temperatures (annual averages

between 26 and 28◦C) compared to other Brazilian regions

(Marengo and Nobre, 2009). The rainy season in the southern

portion of the Amazon Region occurs during December–

January–February, associated with the Chaco Low and the

South Atlantic Convergence Zone (SACZ). In the northern

part, the rains are heavier from April to May, related to the

Inter-Tropical Convergence Zone (ITCZ) position (Marengo

and Nobre, 2009). The NEB region also presents high average

temperatures (an average of 26.5◦C in summer and 24.5◦C

in winter), but it rains less than the other regions. Despite

that, NEB has a well-defined rainy season that occurs during

March–April–May (due to the ITCZ position) with an average

seasonal precipitation of about 400mm. In these three regions,

the prevailing winds are the trade winds that have annual

and inter-annual variability (Marengo et al., 2004). The SAM

region has a well-defined rainy season, with an average rainfall

of 776mm in summer and 34mm in winter. In summer,

the South America Low-Level Jet (SALLJ) transports moisture

from the Amazon to this region (Vera et al., 2006). The NEB

region also presents seasonal temperature variability due to

the position of the high-level jet. It is possible to have the

arrival of cold fronts, reducing the temperature in the region

(Andrade and Cavalcanti, 2004). The LPB region has an even

more significant seasonal variability in temperature, with an

average temperature of 25◦C in summer and 16.5◦C in winter.

This region, however, has a well-defined rainy season in its

northern part and not very defined in its southern half, with

rainfall well distributed throughout the year. Hence, the average

rainfall varies from 496mm in the summer to 215mm in the

winter. The prevailing winds are due to the positioning of

the subtropical high (Reboita et al., 2019), in addition to the

variations due to transients, frequent in the region (cold fronts,

cyclones, CCMS, etc.) (Velasco and Fritsch, 1987; Andrade and

Cavalcanti, 2004).

Finally, we calculated statistical metrics comparing each grid

point of models and observations, to assess the models’ ability

to simulate the rainfall and temperature spatial variability. The

metrics used were as follows: Pearson’s correlation coefficients

(R), standard deviations (SD), and root-mean-square errors

(RMSE) presented seasonally through Taylor diagrams (Taylor,

2001).

Results

Recognizing the spatial patterns

This section analyzes the austral summer (December,

January, and February—DJF) and austral winter (June, July, and

August—JJA) atmospheric circulation patterns and temperature

and precipitation biases. All analyses were made for the

climatological period spanning from 1995 to 2014.

Circulation patterns
The analysis of atmospheric circulation patterns is widely

used to infer models’ ability to reproduce primary climate

patterns that are related to other variables such as temperature

and precipitation. Figure 2 shows the ERA5, the multi-model

ensemble mean, and each CMIP6 model’s (refer to Table 1)

climatological circulation at 850 hPa during December, January,

and February (DJF). Shading represents the magnitude of the

winds (above 5 ms−1).

ERA5 climatological circulation (top left panel) shows the

widely known low-level austral summer circulation pattern

(Zhou and Lau, 1998; Vera et al., 2006) with the trade

winds entering SA through the east coast of the Amazon

rainforest. This flow, known as the South American Low-

Level Jet (SALLJ), carries the moisture from the Atlantic

Ocean to the Amazon Basin and turns north-northwesterly

below 10◦S due to the presence of the Andes (Marengo

et al., 2004). This is an important feature for maintaining the

South American Monsoon System (Vera et al., 2006) since the

north-northwesterly circulation is responsible for transporting

moisture and heat from the tropical to the subtropical regions

of SA. Furthermore, the circulation pattern over the east coast

of Brazil is influenced by the western edge of the South Atlantic

Subtropical High (SASH).

In general, most CMIP6 models were able to simulate the

major features of the austral summer low-level circulation.

However, it is noted that models tend to weaken the trade

winds compared to ERA5 near the east of Northeast Brazil.

This deficiency is not present in FGOALS-g3, FIO-ESM-2-0,

HadGEM3-GC31-LL, HadGEM3-GC31-MM, IPSL-CM6A-LR-

INCA, IPSL-CM6A-LR, KACE-1-0-G, MIROC6, and SAM0-

UNICONmodels. In addition, AWI-ESM-1-1-LR, MPI-ESM-1-

2-LR, MPI-ESM-1-2-HAM, and NESM3 models display easterly

trade winds with a more intense meridional (southerly) flow

than ERA5 over the equator. Representing the intensity and

orientation of trade winds in this region is important for

the placement of the Intertropical Convergence Zone (ITCZ).

Concerning the north-northwesterly low-level circulation below

10◦S in the interior of SA, some models simulate a more
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FIGURE 2

Streamlines and magnitude of climatological winds (m/s) at 850 hPa simulated by the multi-model ensemble mean, individual CMIP6 models,
and ERA-5 reanalysis (top left) for austral summer (DJF) during the historical period. The shaded regions represent wind magnitude starting from
5 m/s while the vector shows the wind direction.
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intense westerly component (e.g., ACCESS-CM2, BCC-ESM1-5,

CanESM5, GFDL-ESM4, KACE-1-0-G, MPI-ESM1-2-LR, MPI-

ESM1-2-HAM, and NESM3), thus resulting in an increased low-

level convergence over the Southeast and Central Brazil regions,

given the interaction between this flow and the circulation

originating from the SASH. These differences simulated by the

GCMs suggest that the transport of moisture and heat from

the tropical to the subtropical regions is reduced compared to

observations, which is particularly important for maintaining

the South American Monsoon System (Vera et al., 2006). GISS

family models present a northeasterly flow over the interior of

SA, which is not seen in ERA5. The western edge of the SASH

over the east coast of Brazil is well represented by most of the

CMIP6 models, except for NESM3. The SASH location is shifted

westward in the NESM3 model.

During the austral winter (JJA) (Figure 3), trade winds

in the tropical region of Brazil have a southerly component.

Furthermore, winds are stronger over this region than during

the austral summer (DJF). The SASH is closer to the east coast of

SA when compared to the austral summer, inducing a northerly

wind component south of 15◦S over the continent. Overall,

CMIP6 models reproduce the general atmospheric circulation

better for JJA than for DJF at 850 hPa.

Patterns of upper-level wind circulation at 200 hPa during

austral summer (DJF) are shown in Figure 4. ERA5 (top left

panel) shows an undulating flow formed by an anti-cyclone

centered over Bolivia, which is known as the Bolivian High,

and a trough over northeast Brazil and the tropical South

Atlantic Ocean (Virji, 1981). The undulating flow responds

to mid-tropospheric heating by latent heat release that occurs

mainly in the Amazon basin (Lenters and Cook, 1997). The

Bolivian High has a near-symmetrical structure in meridional

and zonal directions. The trough has a northwest-southeast

orientation over the Atlantic Ocean and northeast Brazil.

The northern branch of the subtropical jet can be seen

between 30◦S and 35◦S. It is noted that BCC-CSM2-MR, FIO-

ESM-2-0, HadGEM3-GC31-LL, HadGEM3-GC31-MM, SAM0-

UNICON, and the multi-model ensemble-mean reproduce well

the main climatological features of the austral summer upper-

level circulation. However, some models, such as CAS-ESM2-0

and FGOALS-g3, show some important differences compared

to ERA5. They have limitations in reproducing key features

such as the Bolivian High, the trough over northeast Brazil

and, the subtropical jet circulation patterns that are critical in

determining the precipitation in parts of Brazil. AWI-ESM-

1-1-LR, BCC-ESM1, EC-Earth3 family, INM-CM4-8, INM-

CM5-0, KACE-1-0-G, MPI-ESM-1-2-HAM, and NESM3 do not

represent the near-symmetrical structure of the Bolivian High.

In addition, the Bolivian High is shifted equatorward in GISS-

E2-1-G-CC, GISS-E2-1-G, MPI-ESM1-2-HR, and MRI-ESM2-

0 models, while it is shifted westward in CanESM5, GISS-

E2-1-H, INM-CM4-8, and INM-CM5-0. Another limitation

presented by the GISS family and NESM3 models concerns the

absence of the trough over northeast Brazil and the tropical

South Atlantic Ocean. Moreover, AWI-ESM-1-1-LR, BCC-

ESM1, EC-Earth3family, and MPI family show the trough with

a west-east orientation, different from what is observed in

ERA5. The subtropical jet is equatorward (poleward) of its real

position in the ACCESS-CM2, ACCESS-CM1-5, AWI-CM-1-1-

MR, BCC-ESM1, CAS-ESM2-0, CanESM5, FGOALS-g3, GFDL-

ESM4, IPSL-CM6A-LR, IPSL-CM6A-LR-INCA, KACE-1-0-G,

MIROC6, and MRI-ESM2-0 (EC-Earth3-CC, EC-Earth3-Veg-

LR, EC-Earth3, INM-CM4-8, INM-CM5-0, MPI-ESM-1-2-

HAM, and NESM3) models.

During austral winter, the circulation at upper levels is

predominantly zonal over SA (Figure 5). Counterclockwise

circulation is noted crossing the equatorial region in response

to intense convective activity occurring in the north of SA,

in the Central American region, and in adjacent oceans. In

addition, the zonal circulation over the extratropical region

is more intense than during DJF, with the subtropical jets

placed between 20◦ and 40◦S. CMIP6 models and the

ensemble mean reproduce the zonal circulation fairly well over

extratropical and subtropical regions, although some models

overestimate (e.g., MRI-ESM2-0) and others underestimate

(e.g., GFDL-ESM4) the subtropical jet speed. Most models,

including the ensemble mean, do not reproduce adequately

the counterclockwise circulation over equatorial SA. However,

this feature is present in CAS-ESM2-0, EC-Earth3 family,

INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, IPSL-CM6A-LR-

INCA, and MRI-ESM2-0 models.

Precipitation patterns and model bias
Figure 6 shows the CRU seasonal precipitation climatology

(top panel) and CMIP6 model biases (other panels) for

austral summer (DJF). To quantify the similarity between each

model’s precipitation climatology and observed precipitation,

we calculated the spatial RMSE and correlation coefficient for

each GCM in relation to the observation. DJF corresponds to

the rainy season over most of SA, with precipitation above 150

mm/month in most of the continent due to the South American

monsoon system (Vera et al., 2006; Grimm, 2011). However,

while the rainy season in Southern Amazonia occurs during DJF,

as it also does in Central Brazil, associated with the Chaco Low

and the South Atlantic Convergence Zone (SACZ), in Northern

Amazonia, the rains are more intense in April–May, in part

associated with the position of the Inter-Tropical Convergence

Zone (ITCZ) (Marengo and Nobre, 2009). Northeast Brazil

shows less precipitation than the other regions but has a

well-defined rainy season from March to May (due to the

ITCZ position) with an average seasonal precipitation of about

400mm.

Most CMIP6 models including the ensemble mean show a

dipolar pattern in precipitation bias over tropical Brazil, with

an underestimation over the Amazon and an overestimation
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FIGURE 3

Streamlines and magnitude of climatological winds (m/s) at 850 hPa simulated by the multi-model ensemble mean, individual CMIP6 models,
and ERA-5 reanalysis (top left) for austral winter (JJA) during the historical period. The shaded regions represent wind magnitude starting from 5
m/s while the vector shows the wind direction.
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FIGURE 4

Streamlines and magnitude of climatological winds (m/s) at 200 hPa simulated by the multi-model ensemble mean, individual CMIP6 models,
and ERA-5 reanalysis (top left) for austral summer (DJF) during the historical period. The shaded regions represent wind magnitude starting from
5 m/s while the vector shows the wind direction.
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FIGURE 5

Streamlines and magnitude of climatological winds (m/s) at 200 hPa simulated by the multi-model ensemble mean, individual CMIP6 models,
and ERA-5 reanalysis (top left) for austral winter (JJA) during the historical period. The shaded regions represent wind magnitude starting from 5
m/s while the vector shows the wind direction.
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FIGURE 6

CMIP6 model biases and CRU-observation (top left panel) for precipitation: Austral summer (DJF). Unit: mm/month.
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FIGURE 7

CMIP6 model biases and CRU-observation (top left panel) for precipitation: Austral winter (JJA). Unit: mm/month.
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FIGURE 8

CMIP6 model biases and CRU-observation (top left panel) for surface air temperature: Austral summer (DJF). Unit: ◦C.
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FIGURE 9

CMIP6 model biases and CRU-observation (top left panel) for surface air temperature: Austral winter (JJA). Unit: ◦C.
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over Northeast Brazil. The dipolar bias is associated mainly

with the wrong position of the maximum precipitation center

simulated by the models over the Amazon. In general, tropical

precipitation over SA is not well reproduced by CMIP6 models

and is simulated too far east compared to the observed wet

months over the Amazon. Some reasons are well known and

include the misrepresentation of cloud physics (Khairoutdinov

et al., 2005). This characteristic was reported by the studies that

evaluated models from previous CMIP phases (e.g., Yin et al.,

2013; Sierra et al., 2015) and by Almazroui et al. (2021a) and

Ortega et al. (2021) that assessed CMIP6 models.

It is noted that the deficiency in the CMIP models exists

since CMIP3 (Gulizia and Camilloni, 2015) and CMIP5 (Llopart

et al., 2020), despite CMIP5 being an improvement compared

to CMIP3. Overall, the CMIP5 ensemble showed improvements

in the simulation of regional patterns of precipitation compared

to previous generations of climate models (Sperber et al., 2013).

However, although previous results suggest with confidence that

models reproduce regional climate variability on a wide range

of time scales well (Alves et al., 2021), some GCMs still do

not represent the rainfall variability well, particularly in the

tropics (Wang et al., 2014). For instance, over the Amazon Basin

and Northeastern Brazil, GCMs still show a poor simulation

of the current climate. This may be due to heterogeneities in

the precipitation behavior within the Amazon. Precipitation in

the southern portion of the Amazon is directly influenced by

the South American monsoon system, whereas the precipitation

in the northern sector of the basin is not influenced by the

monsoon regime. da Rocha et al. (2009) found such distinct

precipitation regimes after analyzing data from flux towers

situated in different sectors of the Amazon. The authors showed

that the onset and demise of the dry and rainy seasons as

detected by the flux towers depend on the location within the

Amazon. Another aspect that may explain such results is the

distinct types of land cover in the Amazon that also play a direct

role in influencing the onset of convection in the tropical region.

As for Northeastern Brazil, rain is generated by (comparatively)

shallower convection and the rainy season is influenced by

easterly wave disturbances.

Northeastern Brazil is also located in the tropics, but,

in contrast to the Amazon Basis, the development of deep

convection is not as widespread and is not observed throughout

the entire year. For the Northeastern region, these are the

aspects that may explain the model deficiencies in representing

the rainfall regime in that region. However, accuracy in the

representation of this process in climatemodels is still not trivial,

as indicated by Knutti and Sedlácek (2013), due to different

sources of uncertainties such as potential effects of different

stressors, such as land-use change and fires, ocean-atmosphere

feedbacks, and high-resolution simulations which could lead to a

better representation of both the spatial patterns andmagnitudes

of mean climate and climate extremes, especially in regions of

strong surface heterogeneity (Alves et al., 2021).

In addition, the region with positive bias extends to the

southeast and central regions of Brazil in some CMIP6 models

(ACCESS-CM2, CanESM5, HadGEM3-GC31-LL, KACE-1-0-

G, MIROC6, MPI-ESM-1-2-HAM, and NESM3). On the other

hand, all models overestimate precipitation over the Andes,

as reported by Almazroui et al. (2021a). In general, the

best representation of DJF precipitation spatial pattern and

amplitude is shown by the EC-Earth3 family (RMSE = 78, 86,

91 and 94mm, R = 0.62, 0.61, 0.58, and 0.55) and SAM0-

UNICON (RMSE= 81mm, R= 0.58). The comparison between

Figures 2, 6 suggests that the precipitation bias is also related

to the deficiencies in reproducing the low-level circulation at

850 hPa over SA, and the ITCZ is often displaced southward in

CMIP6 models in the austral summer (Ortega et al., 2021). One

possible cause is the weaker trade winds simulated by CMIP6

models compared to ERA5,mostly over the South American east

coast and the adjacent Atlantic Ocean. Due to the southward

(northward) shift in the ITCZ, precipitation overestimation

(underestimation) is noted over Northeast Brazil (e.g., NESM2

and MIROC6).

The positive precipitation bias over Southeast and Central

Brazil regions shown by some CMIP6 models could be

associated with a too intense westerly flow over the central

regions of South America (south of 10◦S in Figure 2) when

compared to ERA5. Besides the increased heat and moisture

transportation by this flow, low-level convergence is amplified

over these regions, due to interaction with the SASH circulation.

Conversely, some models (e.g., GISS models) underestimate the

precipitation over central and Southeast Brazil. Their failure

in reproducing the low-level flow convergence in these regions

may explain this deviation, as shown by an easterly flow over

the central regions of South America (south of 10◦S), which is

absent in ERA5. Therefore, the models that best reproduce the

mean circulation at low levels also show the lowest precipitation

bias (e.g., SAM0-UNICON). Consequently, these models tend to

better reproduce the circulation at high levels (BolivianHigh and

a trough over northeast Brazil and the tropical South Atlantic

Ocean), as they are linked to the spatial distribution of tropical

latent heat sources.

During the austral winter (JJA), higher totals of precipitation

occur over the extreme north of SA which is associated with

the seasonal variations of the Atlantic Intertropical Convergence

Zone (ITCZ) and the Walker cell (i.e., northerly displacement

of the ITCZ and a weakened Walker Cell) and also by synoptic

activity related to the easterly waves over the Atlantic Ocean as

described by several studies (Rao and Hada, 1990; Zhou and

Lau, 1998; Marengo, 2003). At the same time, other SA regions,

except Southern Brazil, experience a dry season (Figure 7).

Probably, due to that precipitation scarcity, it is noted that

CMIP6 models show lower spatial RMSE in JJA than in DJF.

The main bias concerns the underestimation of the precipitation

over the extreme north of the continent, recurrent in most of the

models. On the other hand, some models show a positive bias
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FIGURE 10

Probability density functions (PDF) of seasonal precipitation (top) and temperature (bottom) for Austral summer (DJF) and winter (JJA) in
comparison with observations (red line) over each sub-region in the reference period. The continuous gray lines represent PDF of all GCMs and
the black line is the average PDF for the GCMs (i.e., CMIP6 models).
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FIGURE 11

Portrait diagrams of the annual precipitation cycle simulated by 36 CMIP6 models and CRU TS (observational data) over the historical period in
NAZ (A), SAZ (B), NEB (C), SAM (D), LPB (E). CMIP6 models’ results comprised within the range of two standard deviations of the observation
were highlighted with an asterisk.
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over northwestern SA (e.g., FIO-ESM-2-0, MIROC6, and IPSL

models). The best results were presented by HadGEM3-GC31-

LL (RMSE = 49mm, R = 0.91) EC-Earth3 family (RMSE of

52, 54, and 55mm, R = 0.88, 0.87, and 0.87), INM-CM4-8, and

INM-CM5-0 (RMSE = 52mm, R = 0.88) models, which were

able to identify the precipitation amplitude and location over the

north of SA during austral winter.

Surface temperature patterns and model bias
The CRU observations and CMIP6 models’ biases of surface

air temperature for DJF are shown in Figure 8. Overall, the

mean temperature exceeds 22◦C over SA during the austral

summer, except over the Andes. Multi-model ensemble and

CMIP6 models were consistently warmer than CRU only in the

southern regions of SA. Over tropical regions, some models

(e.g., EC-Earth3 models) underestimate the temperature while

other models (e.g., the CanESM5 model) overestimate it. In this

region, temperature biases seem to be related to precipitation

biases in some models. For instance, GISS models, which

show the location of maximum precipitation shifted eastward,

were warmer (colder) than CRU over the Amazon region

(Northeast Brazil) since precipitation and cloudiness were

misrepresented. However, the relationship between temperature

and precipitation biases is not evident in all models because the

temperature bias is also related to errors in other processes, such

as heat advection, surface interactions, and parameterizations.

In general, the ensemble mean (RMSE = 2◦C, R = 0.89),

CMCC family (RMSE = 2.1◦C, R = 0.88 and 0.89), FIO-ESM-

2-0 (RMSE = 2◦C, R = 0.9), HadGEM3-GC31-MM (RMSE

= 2.1◦C, R = 0.89), IPSL family (RMSE =2.1◦C, R = 0.9),

and MRI-ESM2-0 (RMSE = 2◦C, R = 0.89) models display the

lowest surface temperature bias for austral summer.

Figure 9 shows seasonal averages of surface air temperature

and the difference between the models and observations for

austral winter (JJA). CRU observations show temperatures

below 20◦C over extratropical regions and the Andes and

up to 26◦C in tropical SA regions. Most models were colder

than CRU over tropical SA, especially over the eastern region.

Unlike the austral summer, some models also underestimate

the temperature over extratropical regions (e.g., INM models).

Overall, the surface temperature bias during austral winter

shows large differences in magnitude and signal among CMIP6

models. The temperature biases were the smallest for the IPSL

family and the ensemble mean (RMSE = 1.8◦C, R = 0.97 and

0.96) in this season.

Frequency distributions

Beyond the model’s skill to reproduce seasonal precipitation

and temperature patterns discussed in previous sections, it is

important to also examine their ability to reproduce climate

variability. In this section, we analyze the spatiotemporal

frequency distributions of monthly precipitation and surface

temperature for the reference period using their PDFs. The

multi-model ensemble mean is compared to the observations,

demonstrating seasonal differences for each sub-region of

the study.

Precipitation frequency distributions
CMIP6 GCMs’ skill in representing the CRU precipitation

frequency distribution is evaluated from the PDFs plotted on

the top row of Figure 10. The curves were generated separately

for the austral summer (DJF) and winter (JJA) over each

sub-region, assuming a Gaussian distribution. In summer, the

observational curves (red curves) differ according to the sub-

region: For SAZ and SAM, the most likely value was about 8

mm/day, while for NAZ, it was ∼7 mm/day, LPB, 5 mm/day,

and NEB, 4 mm/day. Even though SAM average precipitation

is close to the SAZ value, the rainy seasons are not perfectly

in phase, and the peak of rainfall in SAM occurs in DJF, while

in SAZ, it is in JFM. Besides these differences, NAZ and SAZ

curves were flatter than the other sub-regions, indicating a

higher variability in monthly precipitation, as confirmed by the

SD values (about 3.3 mm/day, while the value is below 2.7

mm/day for other regions). Model observation PDF comparison

shows some important differences. The frequency of months

with low precipitation (≤4 mm/day) is higher for the CMIP6

ensemble than for the observed curve for NAZ, SAZ, and LPB.

However, the opposite occurs over SAM andNEB, where CMIP6

ensemble curves present a higher probability of rain above

10 mm/day compared to observations. These results endorse

those obtained in the previous section (Figure 6), suggesting

that CMIP6 models overestimate precipitation over NEB while

underestimating precipitation over the Amazon. In addition,

the SD of the CMIP6 ensemble is higher than the observations

for SAZ, SAM, NEB, and LPB, indicating that models simulate

a more variable rainfall climate than observations. Concerning

the agreement among CMIP6 models, SAM presents the largest

spread, implying a higher uncertainty in the monthly mean

precipitation simulations for this region.

During winter (JJA), NAZ and SAZ PDFs show the same

variance (SD = 4.26 mm/day), differing only on the most

likely value (6.64 mm/day to NAZ and 3.89 mm/day to SAZ),

indicating more precipitation in the northern than southern

Amazon in this season. There is a high frequency of near-

zero precipitation values in SAM due to a well-defined dry

season in this region (shown in detail in Figure 11). NEB has

a most likely value of around 1 mm/day while for LPB, it

is closer to 2 mm/day. The CMIP6 ensemble reproduces the

observed PDF adequately for NEB but tends to underestimate

the most likely values for the other regions, despite the

good agreement on the variance. Generally, the results

indicate that the CMIP6 ensemble simulates the precipitation
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frequency distribution better in winter than in summer for

all regions.

Temperature frequency distributions
A similar analysis of the PDFs is done for surface air

temperature (bottom of Figure 10). The observational PDFs

for austral summer (DJF) indicate a most likely temperature

between 26 and 27◦C for NAZ, SAZ, and NEB; about 26◦C

for SAM and 25◦ for LPB. The LPB shows a flatter curve,

indicating a larger variability (SD = 2.04◦C) in the monthly

averaged temperature. The CMIP6 ensemble is more consistent

with the observations than for precipitation, despite some

minor differences. For NEB and SAM, for example, the most

likely values of the ensemble distribution were almost 1.0◦C

lower than observations. The CMIP6 SDs were higher than the

observation for all regions, and NAZ and SAZ show the most

significant spread of model curves. The results for winter were

similar for NAZ, SAZ, and NEB. For SAM, the CMIP6 ensemble

underestimates the most likely value by almost 1.5◦C and also

presents higher variability and spread among the models. This

model limitation is not associated with a precipitation bias in

this region, so this is likely to be associated with other processes.

The models achieve the best results for temperature simulations

over LPB, reproducing the most likely value and the variability

in this region.

Annual cycle

This section analyzes how the ensemble mean and the

models individually reproduce the annual cycle of precipitation

and temperature in the five selected sub-regions. Hence,

monthly average values from CRU data for all years and grid

points (within the region) were grouped in climatology bins,

ranging from January to December, and used as a reference.

We defined a range of two standard deviations for each bin

to settle an objective method to compare the models’ skills

in simulating the annual cycle. The CMIP6 models’ monthly

simulations within this range were highlighted (with an asterisk)

in Figures 11, 12, indicating a hit (success). Thus, for each

model (in each region), more asterisks indicate a better ability

in simulating the annual cycle.

Annual cycle of precipitation
Figure 11 shows the annual cycle of precipitation

simulated by CMIP6 models over each of the study

areas. CRU TS and precipitation were used as

observational references.

In NAZ (Figure 11A), the HadGEM3-GC31-MM and IPSL-

CM6A-LR models show better performance than others in

simulating the annual precipitation cycle, despite both showing

a delay in the rainy season onset of at least 1 month. In the

SAZ area (Figure 11B), the HadGEM3-GC31-MM shows the

best result again when analyzing the sum of hits throughout the

year. Moreover, the INM-CM4-8, INM-CM5-0, and MIROC6

models show a similar ability to simulate precipitation, if we

consider only the rainy season. In both Amazon regions, the

CMIP6 ensemble underestimates the rainfall, especially during

the rainy season. In NAZ, it also shortens the rainy season and

delays its onset.

Most CMIP6 models capture the dry season pattern in

NEB (Figure 11C) but overestimate precipitation during the

rainy season. FIO-ESM-2-0, ACCESS-ESM1-5, FGOALS-g3,

SAM0-UNICON, EC-Earth3-CC, and HadGEM3-GC31-

MM were the models that best simulated the annual

precipitation cycle.

In SAM (Figure 11D), most models were able to reproduce

the rainy season pattern betweenNovember and January, despite

the overestimation compared to observations. This is similar

to the result found by Ortega et al. (2021) when analyzing the

models’ ability to simulate the annual precipitation cycle in

the Brazilian Cerrado. Among them, IPSL-CM6A-LR-INCA and

INM-CM5-0 models show the best performance in quantifying

the monthly totals of precipitation.

La Plata Basin does not present a well-defined rainy season,

differing from the other areas of this study. Concurrently,

it is the region where the models showed the best results

(Figure 11E). For LPB, GISS-E2-1-H and GISS-E2-1-G-CC

models show the worst performance, underestimating the

precipitation amount in most months.

Overall, most CMIP6 models simulate the seasonal behavior

of precipitation over the five regions, especially in SAM and LPB.

However, the models tend to underestimate the precipitation

in NAZ and SAZ, both in the dry and wet periods, besides

a delay of 1 or 2 months in the rainy season onset. The

opposite occurs in NEB, where models tend to overestimate the

precipitation amount. This bias is consistent with the shift in

precipitation identified and discussed in Section Recognizing

the spatial patterns. The same limitation was observed in

previous CMIP model assessment studies. Almazroui et al.

(2021a) found a good agreement in evaluating the CMIP6GCMs

ensemble mean annual precipitation cycle over SA. Despite that,

some regions of the Northeast, South, Central, and part of

southern Amazon showed large biases, indicating over (under)

estimation during the wet (dry) season. Concerning the lags,

Rivera and Arnould (2020) also noted a delay of 1 month

in maximum precipitation in several CMIP6 models when

reproducing the annual cycle in the north of southwestern

South America.

Annual cycle of temperature
Figure 12 shows the surface temperature annual cycle,

obtained from the same procedure as for precipitation in
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FIGURE 12

Same as in Figure 11 but for temperature.
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FIGURE 13

Ranking of CMIP6 models based on the skill of the models simulates the precipitation (left) and temperature (right) annual cycle for the historical
period (1995–2014) over five-study regions. The values correspond to the percentage of hits (hit score) based on Figure 11 (precipitation) and
Figure 12 (temperature).

Figure 11. In the NAZ and SAZ regions (Figures 12A,B), the

models adequately simulate the mean temperature behavior

during the austral summer but underestimate (overestimate) it

during the winter (spring). Some models such as BCC-ESM1,

CMCC-CM2-SR5, MIROC6, and MPI-ESM1-2HR e MRI-

ESM2-0 partially simulated the observed characteristics, but

CMCC-ESM2 performed slightly better, based on the number

of hits. In SAZ, the models show a lower ability to simulate the

annual temperature cycle compared to NAZ.

Most models could simulate the temperature seasonal

behavior in NEB (Figure 12C). CMCC-ESM2 and FGOALS-g3

models, for example, simulated the annual temperature cycle

well. BCC-CSM2-MR, CMCC-CM2-SR5, MRI-ESM2-0, GISS-

E2-1-G, and GISS-E2-1-G-CC also showed good performance

for 10 or more months. Underestimates were centered in the

winter months (JJA) for most models.

For the SAM region (Figure 12D), a few models adequately

simulate the temperature annual cycle, while most of them

underestimate temperature in the winter months and

overestimate it in spring. These results were similar to

those of Ortega et al. (2021) for the Brazilian Cerrado, using

ERA5 as the observational reference. In our case, BCC-CSM2-

MR, BCC-ESM1, ACCESS-ESM1-5, CMCC-CM2-SR5, and

FIO-ESM-2-0 showed outstanding performance. Fan et al.

(2020) also observed this tendency to underestimate the winter

temperature for SA when evaluating the global performance of

CMIP6 models.

For LPB, models showed a better ability at simulating

the annual temperature cycle (Figure 12E), especially for

austral winter (JJA). Among 35 CMIP6 models analyzed by

this study, 15 (ACCESS-ESM1-5, CanESM5, CMCC-CM2-

SR5, CMCC-ESM2, EC-Earth3, EC-Earth3-CC, EC-Earth3-Veg,

FGOALS-g3, FIO-ESM-2-0, GFDL-ESM4, HadGEM3-GC31-

LL, HadGEM3-GC31-MM, IPSL-CM6A-LR, IPSL-CM6A-LR-

INCA, and MRI-ESM2-0) simulate the annual cycle of

temperature well, as well as the ensemble mean.

Models’ performance

To quantify the models’ performance and identify the best

ones at simulating temperature and precipitation over Brazil,

two approaches were adopted: model ranking based on the

annual cycle simulations presented in Figures 11, 12, and Taylor

diagrams analysis, accounting for spatial correlation, RMSE, and

standard deviation.

Annual cycle ranking
To quantify and compare the model’s ability to simulate

the annual cycle, we ranked the 35 models and the ensemble

based on their hit scores (Figure 13). The hit score was defined

as the percentage of hits (asterisks) calculated from Figure 11

(precipitation) and Figure 12 (temperature), considering all
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FIGURE 14

The Taylor diagram for CMIP6 models precipitation (top) and temperature (bottom) simulation in summer (DJF) (left) and winter (JJA) (right) over
each sub-region. The angular coordinate at the right side of each diagram corresponds to the R; the radial distance from the origin represents
the ratio of the standard deviation of the simulation to that of the observation, and the distance from the reference point (observations) is a
measure of the RMSE.
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five regions. For precipitation (left of Figure 13), HadGEM3-

GC31-MM showed the best performance (hit score of 91.7%),

followed by ACCESS-ESM1-5, IPSL-CM6A-LR (78.3%), and

IPSL-CM6A-LR-INCA, INM-CM4-8, INM-CM5-0, and MRI-

ESM2-0 (∼75%). Remarkably, the ensemble mean was in the

19th position, presenting a hit score of 61.7%, which suggests

a substantial impact of under-performing models. Nonetheless,

it is important to note that 30 out of 36 models showed a hit

score equal to or higher than 50% for the five regions combined,

indicating that most models reproduce the annual precipitation

cycle for Brazil.

Concerning surface temperature, CMCC-ESM2, CMCC-

CM2-SR5, MRI-ESM2-0, BCC-ESM1, and HadGEM3-GC31-

MM were the top five models in the five key regions (right of

Figure 13). The ensemble mean was in the eighth position and a

total of 14 models showed a hit score above 50% for the annual

temperature cycles.

In summary, these results support the proposition that,

despite the fact that combining model outputs may generally

increase the skill of simulations, as suggested by some studies

(Knutti et al., 2010; Raju and Kumar, 2020), selecting a subset of

top-ranked models could lead to better results. This strategy can

outperform the multi-model ensemble means as well as the best

single GCM as discussed by Ahmed et al. (2020).

Precipitation Taylor diagram
Figure 14 (top row) summarizes the degree of spatial

correspondence between the precipitation observed (CRU)

and simulated by the CMIP6 models, considering the austral

summer (DJF) and winter (JJA), respectively, for the five

sub-regions analyzed in this study. For DJF (top and left of

Figure 14), the CMIP6 ensemble mean of precipitation shows

good agreement with the observations. The sub-regions show

correlation values for the ensemble mean of about 0.8 (NAZ,

SAZ, and SAM), and 0.9 (LPB), with the worst performance for

the NEB region (R∼0.6). Most models have a spatial correlation

between 0.6 and 0.8 over NAZ and SAZ and between 0.7

and 0.95 over LPB. For NEB and SAM, the models present a

large spread (0 to 0.9), so some models were excluded from

the plots due to a negative correlation coefficient: GISS-E2-1-

G, GISS-E2-1-G-CC, GISS-E2-1-H, and NESM3 for the NEB

region and CanESM5, IPSL-CM6A-LR e IPSL-CM6A-LR-INCA

for the SAM region. Other regional differences were related

to the standard deviation, which has values around 0.25 over

NAZ, NEB, and SAM; and 1.25 over SAZ and LPB for the

ensembles. The best performances for the ensemble RMSE

were over LPB (∼0.5) and NAZ (∼0.6), where the models also

showed more consistency, with RMSE varying from 0.5 to 1

for most models. Generally, the CMIP6 models were more

skillful over LPB and showed poor performance and a large

spread over NEB. Some outstanding models were highlighted by

sub-region: GFDL-ESM4, CMCC_CM2-SR5, BCC-CSM2-MR,

GISS- E2-1-G, INM-CM4-8 (LPB); EC-Earth3-Veg-LR, CMCC-

CM2, FIO-ESM-2-0 (NAZ); SAM0-UNICON, EC-Earth3-Veg-

LR, HadGEM3-GC31-MM (SAZ); EC-Earth3-Veg-LR, MRI-

ESM2-0, MPI-ESM1-2-HR (SAM); SAM0-UNICON, ACCESS-

ESM1-5, and HadGEM3-GC31-MM (NEB).

In the winter (JJA), the CMIP6 models show a high

correlation over all the sub-regions. The correlation coefficients

range from 0.6 to 0.9 for most models, with the ensemble

mean achieving values above 0.9 for the five sub-domains.

Nonetheless, for all the sub-regions, most models present a

normalized standard deviation between 0 and 1, which means

that the simulated standard deviation is lower than the observed.

This is consistent with the results from Figure 10, indicating

that most models underestimate extreme monthly precipitation

events during winter (JJA). At last, the RMSE varies between

0.5 and 1, except for SAZ, where the RMSE is lower than 0.7,

evidencing a better spatial correlation of precipitation.

Temperature Taylor diagram
Figure 14 (bottom) shows the Taylor diagrams for DJF

and JJA for surface air temperature. Generally, the models

show worse performance and a large spread in simulating

temperature over the Amazon (NAZ and SAZ) in DJF than

over other sub-regions. The correlation coefficient was about

0.65 for the ensemble mean, while it ranges from 0 to 0.8 for

individual models. Despite a relatively low difference between

standard deviations of ensembles and observation (ratio close

to 1), most models show higher values, ranging from 0.75

to 2.5 over both sub-regions. The RMSE agreed with other

metrics, with values between 1 and 2 for most models, reaching

values near 1 for the ensemble mean. Three models show

outstanding performance for DJF temperature over NAZ and

SAZ: IPSL-CM6A-LR, IPSL-CM6A-LR-INCA, and MRI-ESM2-

0. Summer temperature simulations for NEB show slightly better

performance, with an ensemble correlation coefficient of about

0.82 (ranging from 0.4 to 0.8), a standard deviation of 0.6 (0.5

to 1), and an RMSE of 0.6 (0.5 to 1). GFDL-ESM4, HadGEM3-

GC31-MM, and CanESM5 achieve the best results. CMIP6

models perform even better over the SAM region, where the

ensemble presented a correlation coefficient of 0.91 (ranging

from 0.7 to 0.95), combined with a standard deviation close

to the reference (ranging from 0.7 to 1.3) and an RMSE <

0.5 (ranging from 0.3 to 0.8 for most models). For SAM, the

models with the best performance were EC-Earth3-AerChem,

EC-Earth3, EC-Earth3-Veg, and EC-Earth3-CC. The best results

were found over LPB again, with a correlation around 0.88 (0.75

to 0.85), a relative standard deviation of 1.2 (1 to 1.5), and

an RMSE of 0.6 (0.5 to 0.8), with the models FIO-ESM-2-0,

CanESM5 and HadGEM3-GC31-MM outstanding.

CMIP6 models demonstrated better performance in

simulating winter than summer temperatures. NAZ and SAZ

show similar results again. The multi-model ensemble shows
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a good correlation for these regions, with coefficients of 0.89

and 0.83, but a wide spread among individual models (0 to

0.9). The ensemble standard deviations were similar to the

observation over both sub-regions (ratio close to 1). The RMSE

was close to 0.5, with a large spread among the models. The

best models for simulating winter temperature over NAZ

and SAZ were HadGEM3-GC31-LL, IPSL-CM6A-LR, and

IPSL-CM6A-LR-INCA. The ensemble mean performance was

also similar over NEB and SAM, with a correlation coefficient

of 0.92 and 0.96, respectively, a normalized standard deviation

of about 1.2, and an RMSE of <0.5. Most models present

a relatively good consistency, ranging from 0.8 to 0.98 for

correlation coefficient, 0.8 to 1.5 for standard deviation, and

0.2 to 0.8 for RMSE. FIO-ESM-2-0 and HadGEM3-GC31-MM

provided the best simulations over NEB while IPSL-CM6A-LR

and CAS-ESM2-0 over SAM. The ensemble mean shows a high

correlation (0.98) for LPB, combined with a standard deviation

close to 1 and a low RMSE (0.2). Most models also presented

a good consistency (correlation coefficient above 0.9, standard

deviation from 0.6 to 1.4, and RMSE below 0.5). EC-Earth3-CC,

EC-Earth3-Veg, MRI-ESM2-0, and HadGEM3-GC31-MM

showed the best performance.

We note that some CMIP6 models show limitations in

simulating precipitation and temperature for DJF and JJA over

the five sub-regions in Brazil, despite the good performance of

the ensemble mean. During winter, we found the best results,

especially for LPB, followed by SAM and NEB. Over NAZ

and SAZ, models demonstrated similar ability for temperature

simulations, but important differences for precipitation skill,

despite the proximity between these regions.

Summary and conclusion

There is now a wide range of climate projections that

can be used across a number of sectors. However, it is

essential to assess the skill of projections to ensure they are

appropriate for their intended use. In this study, we provide

a comprehensive assessment of precipitation, circulation, and

temperature simulations of 35 CMIP6models over Brazil during

the present day. First, we analyzed atmospheric circulation

patterns in the austral summer (DJF) and winter (JJA) seasons.

Themain findings indicate that manymodels showed large-scale

deficiencies in reproducing the SALLJ, an important mechanism

transporting heat andmoisture from low to high latitudes in DJF

over Brazil.

The spatial analysis of rainfall shows a systematic bias in

the CMIP6 model simulations, with an underestimation of the

mean precipitation during summer over NAZ and SAZ and

an overestimation over Northeast Brazil, and this is might be

partially related to model limitations in simulating cloud physics

(Khairoutdinov et al., 2005). Overall, this result is in line with

previous regional studies (Yin et al., 2013; Sierra et al., 2015;

Almazroui et al., 2021a; Ortega et al., 2021).

Although they exhibit systematic bias, some robust

conclusions still emerge from the PDF of precipitation, which

showed that the CMIP6 models reproduce the winter PDFs

better than the summer ones, when they increase the frequency

of extremes. Among all regions, models converge and better

reproduce the precipitation PDF over LPB, whereas the highest

spread occurs over SAM. This suggests that SAM is the

most challenging region for precipitation simulation over the

study area.

For temperature, there is a high spread among models.

However, the ensemble underestimates the temperature over

Northeast and Central Brazil, consistent with the systematic

precipitation bias. Most models perform better in simulating the

monthly surface temperature distributions than precipitation,

especially over LPB.

The annual precipitation cycle simulated by most CMIP6

models showed a 1- to 2-month shift in the rainy season over

NAZ and SAZ. This shift may cause the precipitation deficit

identified in summer over the same regions (Figures 6, 10). On

the other hand, the models adequately capture the annual cycle

over NEB but overestimate the precipitation during wet months.

CMIP6 models better reproduce the annual precipitation cycle

over SAM and LPB.

Another important outcome is that most models

overestimate temperature over NAZ, SAZ, and SAM while

underestimating it in the winter over SAM. The annual cycle of

temperature over LPB presented higher thermal amplitude and

was well simulated by most of the models.

The models with the highest ability in simulating monthly

precipitation (higher hit score), aggregating all five regions,

were HadGEM3-GC31-MM, ACCESS-ESM1-5, IPSL-CM6A-

LR, IPSL-CM6A-LR-INCA, and INM-CM4-8, whereas, for

monthly temperature, they were CMCC-ESM2, CMCC-CM2-

SR5, MRI-ESM2-0, BCC-ESM1, and HadGEM3-GC31-MM.

Remarkably, the CMIP6 ensemble mean is not included among

the best-performing models, which suggests that selecting a

subset of top-ranked models could lead to better results than the

ensemble mean.

The Taylor diagram shows how CMIP6 models represent

spatial patterns inside each sub-region. Based on these results,

it was noted that models perform better for winter precipitation

than summer. In both seasons, the worst performance was found

for NEB. Results also show that the model presents deficiencies

in simulating temperature in both Amazonian regions. The

results also confirm previous studies with LPB showing good

overall performance for precipitation and temperature.

This study has identified the best subset of CMIP6 models

in simulating the mean precipitation and temperature over

Brazil, although some systematic biases were found, and the

highest skill depends on the area and/or season. In addition,

performance will depend on the metrics adopted. For instance,
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some models may present a strong mean bias in some areas but

capture the onset and duration of the rainy season adequately.

Finally, despite the limitations intrinsic to the climate modeling

process, the CMIP6 dataset offers opportunities to advance

climate change science and enable decision-makers to better

prepare the Brazilian society for climate change issues based on

these results.
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