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Because of the impact of extreme heat waves and heat domes on society and

biodiversity, their study is a key challenge. We specifically study long-lasting extreme heat

waves, which are among the most important for climate impacts. Physics driven weather

forecast systems or climate models can be used to forecast their occurrence or predict

their probability. The present work explores the use of deep learning architectures, trained

using outputs of a climate model, as an alternative strategy to forecast the occurrence

of extreme long-lasting heatwave. This new approach will be useful for several key

scientific goals which include the study of climate model statistics, building a quantitative

proxy for resampling rare events in climate models, study the impact of climate change,

and should eventually be useful for forecasting. Fulfilling these important goals implies

addressing issues such as class-size imbalance that is intrinsically associated with rare

event prediction, assessing the potential benefits of transfer learning to address the

nested nature of extreme events (naturally included in less extreme ones). We train

a Convolutional Neural Network, using 1,000 years of climate model outputs, with

large-class undersampling and transfer learning. From the observed snapshots of the

surface temperature and the 500 hPa geopotential height fields, the trained network

achieves significant performance in forecasting the occurrence of long-lasting extreme

heatwaves. We are able to predict them at three different levels of intensity, and as early

as 15 days ahead of the start of the event (30 days ahead of the end of the event).

Keywords: heatwave, extreme event, deep learning, prediction, atmosphere dynamics

1. INTRODUCTION

Context: Climate extreme event impacts and forecast. Climate change constitutes one of the
major concerns of modern societies. Its most severe impacts are caused by rare and extreme events.
For instance, recent decades witnessed a number of exceptionally warm summers and record
breaking heatwaves (IPCC, 2013). At Northern Hemisphere mid-latitudes, relevant such examples
were observed over Western Europe during the summer 2003 with a death toll of about 70, 000
(García-Herrera et al., 2010), or over Russia during the summer 2010 (Barriopedro et al., 2011;
Otto et al., 2012), or over the North American Pacific coast (Philip et al., 2021) during the summer
2021. The two main drivers of the death toll for the 2003Western Europe heat wave, were the high
level of temperature and the long duration (two successive heat events along an overall period of 1
month). The three main drivers of the impacts of the 2010 Russian heat wave, were the compound
effect of high temperature, long duration (1 month), and related fires. As this is key for impact, we
study specifically in this work long-lasting extreme heat waves.
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Those three extreme heat waves were unprecedented in
historical data-sets. Because of the scarcity of these events,
estimating their return periods in preindustrial or current
climates, estimating their occurrence probability, forecasting
them several weeks in advance, or detecting early-precursors
are major challenges in climate sciences. The three main
scientific difficulties stem from a lack of historical data for such
unprecedented events, the difficulty to build reliable statistics
using weather or climate models because of the huge numerical
cost needed to obtain a sufficient number of events, and the
quantitative assessment of model biases for those extremes given
the scarcity of the data. Machine learning should be used in the
future, in several different ways, in conjunction with physical
models, to solve these three issues. In this paper we focus on
a specific goal which is the forecast problem, which is a key
starting point, for addressing several of these goals, as further
discussed below.
Related work: Study of long-lasting extreme heat waves and

machine learning in climate sciences. To define heatwaves,
several indices have been used in the meteorology, climate,
and impact literature, for different purposes (Perkins, 2015).
Quoting (Perkins, 2015), “it seems that almost, if not every
climatological study that looks at heatwaves uses a different
metric.” Many meteorology criteria and past climate studies of
temperature extremes remained focused on intra-day data (see
for instance IPCC, 2013). This might indeed be relevant for
several application and risks. However, long-lasting heatwaves
are the most detrimental to health (Barriopedro et al., 2011) and
biodiversity. Moreover, many of the extreme heatwaves with the
largest impact, for instance the Western European one in 2003,
the Russian one in 2010, or the North American Pacific coast one
in 2021, lasted long, from 2 to 5 weeks. They were often composed
of several sub-events with the classical definitions (Perkins,
2015). The lack of comprehensive studies of the statistics of long-
lasting events has actually been stressed in the last IPCC report
(Masson-Delmotte et al., 2021). Moreover, many definitions that
actually involve ameasure related to the persistence of anomalous
daily maximum temperature values with prescribed amplitude.
Then they do not always carry a natural definition of a heatwave
amplitude (Perkins, 2015). This prevents to study independently
impact of amplitude and duration of the heat-wave. This calls for
a complementary definition of heatwaves, that can quantify both
their amplitude in terms of temperature and their duration, in an
independent way.

Seminal studies (Schär et al., 2004; Barriopedro et al., 2011;
Coumou and Rahmstorf, 2012) of the 2003 and 2010 heatwaves
already considered the averaged temperature over variable long
time periods (7 days, 15 days, 1 month, and 3 months). To
deal with the goal of quantifying heat wave amplitudes for
several independent duration, heatwave indices based on the
combined temporal and spatial averages of the surface or 2-meter
temperature has been adopted in a set of recent studies (Ragone
et al., 2018; Gálfi et al., 2019; Gálfi et al., 2021; Ragone and
Bouchet, 2019, 2021; Galfi and Lucarini, 2021). This viewpoint
is expected to be complementary with the classical definitions
(Perkins, 2015), and extremely relevant to events with the most
severe impacts. Moreover, such definitions have the advantage to

define events which are spatially and temporally very precisely
located, which is much better suited in a prediction and forecast
perspective. Moreover, the amplitude of a heatwave is naturally
defined. In the present work, we follow this definition of long-
lasting extreme heat waves, and assess their predictability using
machine learning.

Machine learning has now been used for decades in climate
and weather forecast sciences with various goals, such as post-
processing, data assimilation, physical analysis, etc. Recently,
deep neural networks were used with noticeable successes
for prediction purpose (Dueben and Bauer, 2018; Scher and
Messori, 2019; Weyn et al., 2019). While deep learning-
based prediction performance remains far from challenging the
prediction capabilities of physics modeling-driven procedures
(Weyn et al., 2019), they prove useful to improve physics models
(Schneider et al., 2017) or their parameter tuning (Brenowitz
and Bretherton, 2018; Gentine et al., 2018), to complementing
them for analysis or pattern recognition (Liu et al., 2016), or
to performing tasks not achievable with physics models. Deep
learning has also been used for extreme weather event prediction
(Chattopadhyay et al., 2020) or severe weather risk assessment
(McGovern et al., 2017). In Chattopadhyay et al. (2020), it is
shown that the CapsNet deep neural network is a fast and efficient
tool, for predicting hot days several days ahead (intra-day heat
waves). In Karevan and Suykens (2020), it is shown that Long
Short-Term Memory neural networks, focused this time on time
series, are efficient in temperature prediction. As far as we now,
no machine learning approach has been used so far to study
long-lasting heatwaves. From a forecast point of view, compared
to the prediction of intra-day heatwaves, this is a more difficult
task as one should be able to perform a prediction over the sum
of the number of days ahead of the heat wave and the heat
wave duration. Moreover, the phenomenology is expected to be
very different.
Goals of this study. This work intends to use machine learning
to predict the future occurrence of long-lasting extreme heat
waves. As far as we now, this is the first use of machine learning
for this goal. The learning uses 1,000 years of outputs of a
climate model. From this data, our algorithm predict, from the
observation of the surface temperature and 500 hPa geopotential
height, whether a long-lasting heat wave that starts within τ days,
will occur. We focus on this prediction task in this article, using
climatemodel data.We argue in the conclusion how thismachine
learning prediction algorithm should be useful in the future
as a key element to solve the three major scientific challenges
of climate extreme studies: lack of historical data, the issue of
model sampling, and model bias studies. More precisely, the
present work targets specific goals: first advancing the machine
learning methodology to study rare long-lasting heatwaves ;
second performing the first study of the predictability of those
extreme events.

The first specific goal is to evaluate deep learning-based
architectures for the heatwave forecast problem, and to quantify
their performance, so as to avoid the recourse to an arbitrary
choice of features as commonly done in classical machine
learning. To that end, we build and train a classifier from a
data-set of outputs of the planet simulator (PLASIM) climate
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model. Such data can be made available in reasonable size, and
at reasonable costs. It allows us to formulate the problem as
supervised classification, and to train a deep learning method.

We address a number of crucial methodological issues: i)
propose a suitable deep learning architecture; ii) overcome the
imbalance in class-sizes intrinsically associated with extreme
events and requiring the use of sampling strategies; and iii)
account for the nested nature of extreme events (most extreme
events are included in less extreme ones). This last point suggests
the potential use of transfer learning and we will study this aspect.

Defining long-lasting heat waves as temporal and spatial
averages, the first works (Ragone et al., 2018; Gálfi et al., 2019;
Gálfi et al., 2021; Ragone and Bouchet, 2019, 2021; Galfi and
Lucarini, 2021) focused, on the one hand, on discussing their
statistics and probability, and on the other hand, on improving
the statistics of extremely rare events using rare event algorithms
(Ragone et al., 2018; Ragone and Bouchet, 2019, 2021). The
second goal of this work will be to assess the predictability and
forecast potential of these extreme heat waves. We will achieve
it by showing that the trained network can indeed predict long-
lasting heat waves up to 15 days ahead of the start of the event.
Contributions and outline. The climate model, the dataset of
model outputs, and the definition of long-lasting heat waves are
discussed in Section 2.1. The machine learning methodology,
dealing with class imbalance, and transfer learning are addressed
and discussed in Section 2.2.

Results are reported in Section 3. We first compare
aggregation protocols aiming to best combine different available
observations, and second discuss the benefits of using transfer
learning in nested extreme events prediction strategies as well
as non-extreme event large class undersampling, in Section 3.1.
Furthermore, the significant ability of Convolutional Neural
Network-based deep learning architectures to perform relevant
forecast of the occurrence of long-lasting extreme heatwaves,
several days in advance is quantified in Section 3.2. Notably, it
is shown that the occurrence of heatwaves can be predicted up
to τ = 15 days in advance, thus significantly beyond typical
correlations times for climate data of the order of 3–5 days (Vallis,
2017).

Finally we discuss in Section 4 perspectives for using the
deep learning-based forecast of extreme heatwaves, as a key
element to tackle the three key scientific challenges of climate
extreme events.

2. DATA AND METHODS

2.1. Climate Data and Heatwaves
Climate model data. As explained in the Introduction, because
of the lack of historical data for unprecedented heatwaves, data-
based heatwave forecast must necessarily start from model data.
Hence, we use simulated climate model outputs as a training
set for the task of classifying whether a given observation of the
atmosphere leads to extreme events. We also reserve a part of the
simulation to test the prediction and compute its accuracy.

The data used in the present work are produced by the
Planet Simulator (PlaSim) climate model (Fraedrich et al., 1998;
Fraedrich et al., 2005), as computed for the work (Ragone et al.,

2018). Its dynamical core solves the primitive equations for
vorticity, divergence, temperature and surface pressure. Moisture
is included by transport of water vapor. The governing equations
are solved using a spectral transform method. Unresolved
processes, such as radiation, interactive clouds, moist and dry
convection, large-scale precipitation, boundary layer fluxes of
latent and sensible heat and vertical and horizontal diffusion are
parametrized. The model also simulates the coupling with land
surface scheme and ocean.

The horizontal resolution is T42 in spectral space,
corresponding to a spatial resolution of about 2.8 degrees
in both latitude and longitude. In practice, the horizontal fields
of data have a spatial size of 64 × 128 pixels, covering the
entire globe. The vertical resolution corresponds to 10 vertical
layers. Moreover, each field is sampled in time at δt = 3 h
sampling period.

The model is setup to run with fixed greenhouse gases
concentrations and boundary conditions (incoming solar
radiation, sea surface temperature and sea ice cover distributions)
cyclically repeated every year, in order to generate a stationary
state reproducing a climate close to the one of the 1990’s. The
simulation has been run so that a thousand of physical years
of model outputs are available. They were computed on 16
processors and the total simulation took 1, 111 h to compute,
hence with a moderate cost.
Climate data and heatwaves. The present work focuses on
predicting summer heatwaves. For that, two horizontal fields
classically associated with heatwave mechanisms (Ragone et al.,
2018) are used only amongst the very large size PlaSim
outputs: the surface temperature Ts (in Kelvin) and the
height Zg (in meters) of the geopotential on the isopressure
surface of 500 hectoPascal (hPa), located in the middle
troposphere. The relation between surface temperature and
heatwaves is straightforward. In weather and climate dynamics,
the geopotential height in the middle of the troposphere is
considered an excellent representation of the dynamical state of
the atmosphere. Indeed, the geopotential height (in meters) at
500-hPa, Zg is further tightly related to anticyclones (positive
values) and cyclones (negative values) in the lower atmosphere.
Moreover, to a good approximation, the wind flows along the
isolines of the geopotential height.
Heatwave definition. Let us precisely define heatwaves, as
proposed for the present work and following recent studies
(Ragone et al., 2018; Gálfi et al., 2019; Gálfi et al., 2021;
Ragone and Bouchet, 2019, 2021; Galfi and Lucarini, 2021).
For that, it is first needed to define the fluctuations in
temperature and geopotential height, which are called anomalies
when the fluctuations are large. Let Ts (Er, t) denote the surface
temperature at location Er and time index t, where time is
counted independently from 0 for each year and sampled at
a 3-h resolution. The ensemble average 〈Ts〉 (Er, t) is obtained
as the average across the 1, 000 years of Ts(Er, t) for each given
location Er and intra-year time t, thus preserving intra-year
seasonal effect. The temperature fluctuation is further defined
as (Ts − 〈Ts〉) (Er, t). Geopotential height fluctuation is defined
accordingly. A snapshot of maps of temperature and 500-hPa
geopotential height fluctuations is shown in Figure 1.
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FIGURE 1 | Snapshot of the surface temperature surface fluctuations (Ts fluctuations, according to the color bar, in Kelvin) and of the geopotential height at 500mbar

(Zg fluctuations, contours) over the Northern Hemisphere. This snapshot is taken on July 20th on a arbitrary year of the PlaSim simulation. The spatial resolution is

64× 128 (latitude×longitude). The thin contour lines, representing the anomaly of Zg, are in meters. The thick black contour delimits the zone that is used for

prediction by the machine learning procedure.

We define Y(t) the time-space average of the temperature
fluctuations as

Y(t) =
1

D

∫ t+D

t

1

|A|

∫
A

(Ts − 〈Ts〉) (Er, u)dErdu

over the region A and a duration D, at time t. |A| is the area of
the region A. A heatwave of duration D and of strength a, is said
to occur at time t when Y(t) > a. For the present work, we study
summer heatwaves (occurring in June, July, August only) over
France (≡ A) lasting for D = 14 days.

By nature, extreme heatwaves constitute rare events. We will
consider three strength levels for a, defined as the 5%, 2.5% or
1.25% most extreme events. From the data, it gives thresholds in
time-space average of temperature fluctuations of a5 = 3.08K,
a2.5 = 3.7K, and a1.25 = 4.23K, respectively.

As explained in the introduction, this definition of heat-waves
follows seminal studies (Schär et al., 2004; Barriopedro et al.,
2011; Coumou and Rahmstorf, 2012) of the 2003 and 2010
heatwaves; it is specifically suited for the study of high impact
events, and has been adopted in a set of recent studies (Ragone
et al., 2018; Gálfi et al., 2019; Gálfi et al., 2021; Ragone and
Bouchet, 2019, 2021; Galfi and Lucarini, 2021).
Heatwave prediction dataset. For the prediction of heatwaves
over France, data are restricted to dynamically relevant areas:
North Hemisphere mid-latitudes, above 30◦N. On Figure 1, it
corresponds to the thick black box, and the size of the fields is
then 25× 128 pixels at the model resolution.

Instead of the direct use of data in the physical space, which
would imply to handle spherical geometry and related boundary
conditions, it has been chosen here to work with their spatial
Fourier Transform (FT), computed on a 64 × 64 grid, with

a frequency resolution of approximately δF ≃ 10−4km−1 in
each direction.

The data used as inputs of the supervised learning procedure
described in Section 2.2 below thus consist of couples (Xt , Zt),
for t ranging from June 1st to August 31st, for 1, 000 years of
simulation. Vector Zt denotes a binary label, with value 1 when
Y(t) > a, i.e., when there is an occurrence of heatwave in the next
D-days, and 0 otherwise. Xt stands for the 64× 64× 2 spatial FT
T̃s and Z̃g of fields Ts(t − τ ), and Zg(t − τ ). τ here denotes the
delay (in days) between the date of observations and the date at
which a prediction of heatwave occurrence is to be made. If δt
is the time lag between two consecutive samples (with δt = 3h
in PlaSim), then we have τ = 8 × δt. In other words, to make a
prediction of heatwave occurring sometimes between today and
the next D days, data observed τ days prior to today are used.

2.2. Deep Learning Architecture and
Procedure
Convolutional Neural Network (CNN) architecture. Heatwave
prediction is performed as a supervised classification problem,
using the CNN-based deep-learning 4 layer-architecture
depicted in Figure 2. The choice of CNN instead of
classical ML methods stems from the high dimension
of the data: other methods would require to engineer
arbitrary features.

In the proposed architecture, the first two convolutional layers
have filters of size 12 × 12 and ReLU activation functions.
They are followed by a maxpool layer so as to divide data size
by 2 × 2 with spatial dropout. The next two convolutional
layers have filters of size 9 × 9 and ReLU activation functions
and are also followed by a spatial dropout. Finally, a flatten
operation and two fully connected layers followed by a sigmoid
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FIGURE 2 | CNN-based heatwave predictor architecture. For stacked data (see aggregation protocol P4), the first layer has a size of 64× 64× 4.

activation yield an output between 0 ≤ q ≤ 1. This output is
associated with the probability of occurrence of an heatwave in
the upcoming D days.
Train/test sets. Typical time scales governing climate dynamics
permit to consider the 1, 000 year PlaSim simulation data as
1, 000 independent trajectories. Yet, there are significant intra-
year spatiotemporal dependencies, that can be exploited for
heatwave detection. Therefore, the training set does not select
events at random in time index and uniformly across the entire
dataset. Instead, the split between train/test set is based on the
random sampling of full years, with 900 such years associated
with the train set, while the test set comprises of the 100
remaining years. The overall training set thus gathers K =
648, 000 samples (900 years×3 months×30 days×8 samples per
day). Furthermore, the prediction will be about extreme events.
We need to be certain that the test set will contain enough of these
extreme events so that the evaluation is fair. Hence, we constrain
the test set to have the same proportion of extreme events as in the
training set. This prevents imbalance of events for the evaluation;
yet, this does not solve yet the issue of imbalanced data (in each
train/test set, data are imbalanced).
Learning parameters. Learning architectures, training and
testing are implemented using Python with Keras API. For
optimization, the AMSGrad variant (Reddi et al., 2018) is used,
with a learning rate of 2.10−4 andmomentum of 0.5. The dropout
rate is set to 30%. Batch size is set to 1, 000 samples. Batch
normalization (Ioffe and Szegedy, 2015) is applied after each
layer. The number of training epochs1 is set empirically to 10
when using the threshold a5, and to 5 for the two other thresholds
a2.5 and a1.25. As the problem consists in detecting the absence or
presence of heatwave (based on temperature anomaly), the loss
function is the standard Binary Cross-Entropy, commonly used
for supervised classification tasks (Goodfellow et al., 2016).
Class-size imbalance and undersampling. For the prediction
of rare events, classes are imbalanced by construction. It has
been well-documented that machine learning training is severely
impaired by imbalanced class sizes (Krawczyk, 2016; Johnson
and Khoshgoftaar, 2020). Here, we propose to handle this by

1The number of epochs is the number of training iterations over the whole dataset,

here the 900 years of the train set.

undersampling the training set (only): only a fraction Sa of
(randomly selected) non-heatwave samples are used. A natural
starting idea is to ensure, on average, equal sizes for both classes.
The class a5, for instance, contains 5% of positive event, the
dataset thus contains 19 times as many negative events (since
20 × 5% = 100%). This leads to subsampling the non-heatwave
class by factors Sa of 1/19, 1/39, and 1/79, respectively for the
three heatwave levels a5, a2.5 and a1.25. Less severe subsampling
rates are also tested by considering multiplying by s the previous
subsampling rates, with s = 2, s = 4 and s = 10. For instance,
when s = 2, we considered for simplicity that the subsampling
factors were 1/10, 1/20 and 1/40 (instead of 2/19, 2/39, and
2/79), respectively for the three heatwave levels a5, a2.5 and a1.25.
It means that in this case, each dataset contains approximately
twice as many negative events as positive events, and so on
for the different values of s. We also compared this random
undersampling with the case where no undersampling was
applied. This subsampling procedure yields training set of size
Ka,s = K×pa+K×(1−pa)×Sa×s, where pa = 0.05, 0.025, 0.0125
corresponds to the fraction of most extreme events associated
with threshold a5, a2.5 and a1.25. For clarification, note that the
test set is used without any undersampling (knowledge of the
existence of heatwave is only used to compute performance).

For the larger heatwave levels, undersampling reduces a lot the
number of training samples and will degrade the performance. In
this situation, we rely on a second technique: warm-start transfer
learning so as to leverage the larger size of the available training
set at lower level heatwaves.
Transfer learning. Heatwave detection is performed for three
different intensity levels. The direct approach is to train the
learning procedure for each of the three levels, independently and
using random initialization. The weights are initialized using the
Glorot uniform initializer (Glorot and Bengio, 2010).

However, as we consider increasingly extreme heatwaves, the
datasets contain fewer and fewer positive events, whichmakes the
learning task increasingly harder for the neural network when
starting from scratch. A more elaborated second approach is
then proposed, using transfer learning (Pratt, 1993) for the two
highest levels. The idea is to ease the learning task by using
information previously learnt with less extreme heatwaves. It
consists in three steps:
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• (i) Learning is first performed from scratch for the 5% most
extreme events

• (ii) Learning for the top 2.5% is performed, being initialized
with the weights of the CNN learnt for the 5% heatwave level;
this is a warm-start transfer learning.

• (iii) Learning for the top 1.25% is performed, being initialized
with the weights of the CNN learnt for the 2.5% heatwave level

Of importance, to ensure meaningful statistical performance
assessment, the same train/test sets are used during learning
for the three levels of heatwaves, both with and without
transfer learning.
Performance assessment. To assess quantitatively the relevance
of the proposed CNN-based heatwave occurrence prediction, the
train/test procedure for the three levels of heatwaves, with and
without transfer learning, is repeated 40 times, with independent
train/test data split, respecting the procedure described above.
For each of these 40 trials, detection performance is assessed
by computing, on the test set, the rates (in percentage) of True
Positives (TPR), True Negatives (TNR), False Positives (FPR) and
False Negatives (FNR). As usual, TPR are computed as:

TPR =
Number of correctly predicted heatwaves

Number of actual heatwave events
.

FPR are defined accordingly as:

FPR =
Number of FP(wrongly predicted heatwaves)

Number of negative events (no heatwave)
.

As TPR+FNR=1 and FPR+TNR=1, we will report and comment
only TPR and FPR. Then, the Matthews Correlation Coefficient
(MCC) (Matthews, 1975) is reported, that is a single number
score that balances the Type-I (FP) vs. Type-II (FN) errors
(false alarm for a heatwave vs. non detection when one occurs);
a main advantage is that it accounts for imbalance between
class sizes while allowing to compare performance in different
situations with only one number. The values of MCC presented
in the Tables and Figures are all computed on test sets. Means
and standard deviations (and maximum absolute deviations in
Figure 4) of these scores are computed by average across trials.
Robustness and reproductibility. To assess the robustness
and reproductibility of the prediction performance reported
in Section 3 with respect to the chosen architecture, we
have systematically applied a repeated learning from scratch
procedure: it consists in performing 40 times independently the
training of the network and the quantification of performance,
using different initializations and independent train/test splits.
Prediction performance are systematically given as mean,
standard deviations, best and worst cases. To assess the impact of
the architecture details, a number of different CNN architectures
were tested, varying the number of layers, the size of filters,
the parameters of the Dropout and MaxPool layers, the size
and number of Dense layers, the reduction of the size of
the data. Reporting results for each architecture would have
resulted in a lengthy paper. Our main conclusion is that
prediction performance are essentially similar across a large
range of variations of parameters. Performance are reported

for the architecture detailed in Figure 2 that correspond to
typical performance reported in the (large) subset of architecture
yielding equivalent the best performance.

3. RESULTS FOR EXTREME HEATWAVES
PREDICTION

This section will report the results obtained while using all or only
parts of the proposed methodology.

3.1. Data Aggregation, Undersampling and
Transfer Learning
To address the methodological issues of data aggregation,
training set undersampling and transfer learning, analyses first
concentrate on the easiest case τ = 0 (τ being the delay
in days between the date of the prediction and the start date
of the heatwave). Let us emphasize however that predicting
the occurrence of heatwave at τ = 0 is already far from a
trivial endeavor, as it implies predicting from data at time t, the
existence of heatwaves occurring at any time between t and t+D
(D being in days the duration of the heatwave).
Surface temperature vs. geopotential height. As described
in Section 2.1, data available for heatwave predictions consist
of the 64 × 64 × 2 spatial FT T̃s(t) and Z̃g(t) of Ts(t)
and/or Zg(t), respectively, for each time position t. Table 1

first compares forecasting performance from two independent
learning protocols:

P1) Ts-only, using T̃s(t) alone as a 64 × 64 × 2 tensor CNN
input ;

P2) Zg-only, using Z̃g(t) alone as a 64 × 64 × 2 tensor CNN
input.
Table 1 shows first that surface temperature and geopotential
height independently contain enough spatial structures to predict
heatwave occurrences, even for the most extreme events, with
MCC that positively departs from 0. Table 1 however also clearly
shows that surface temperature as input alone outperforms
geopotential height as input alone in terms of MCC, which is
especially true for the most extreme events. Interestingly, Table 1
further shows that the poorest performance of geopotential
height comes frommuch higher rates of False Positives. This may
come as no surprise since heatwaves are intrinsically defined in
terms of surface temperature fluctuations.

Then, we probe whether the detected events by using
Ts or Zg are the same or not. This is the line ’Events in
common’ in Table 1; it shows that FPR of events common
between (independent) predictions from surface temperature
and geopotential height is low. This suggests to combine
these two independent detections to take advantage of the
joint information available in these two fields. A naive and
straightforward approach consists in performing a logical AND
between the outputs of the two independent predictions. Table 1
indicates that the resulting MCC increases slightly (especially
with transfer learning for events at 1.25%). Yet, this comes
with the price of a big reduction of TPR as the method
only predicts True Positive events if it can be predicted from
both fields (Ts and Zg); the MCC is good because the FPR
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TABLE 1 | Compared performance for heatwave occurrence prediction from surface temperature vs. geopotential height.

Without transfer learning TPR in %: average (std) FPR in %: average (std)

Levels 5% 2.5% 1.25% 5% 2.5% 1.25%

FT of Ts alone (P1) 43.4 (11.1) 39.7 (16.7) 33.6 (22.7) 5.2 (2.9) 3.0 (2.5) 2.3 (2.7)

FT of Zg alone (P2) 56.3 (12.9) 38.3 (14.5) 22.7 (14.6) 14.2 (6.0) 10.3 (5.1) 7.5 (5.9)

Events in common 29.9 (8.3) 18.7 (10.4) 7.8 (8.1) 2.1 (1.1) 0.9 (0.8) 0.3 (0.4)

With transfer learning True positives rates False positives rates

Levels 5% 2.5% 1.25% 5% 2.5% 1.25%

FT of Ts alone − 30.4 (9.0) 24.6 (9.4) − 2.0 (0.8) 1.1 (0.5)

FT of Zg alone − 46.4 (14.2) 38.4 (12.8) − 8.1 (3.9) 5.1 (2.7)

Events in common − 19.4 (7.6) 13.5 (5.9) − 0.7 (0.3) 0.3 (0.2)

Without transfer learning MCC: average (std)

Levels 5% 2.5% 1.25%

FT of Ts alone 0.33 (0.04) 0.30 (0.06) 0.23 (0.09)

FT of Zg alone 0.25 (0.03) 0.14 (0.04) 0.06 (0.03)

Events in common 0.44 (0.06) 0.33 (0.09) 0.15 (0.12)

With transfer learning Average MCC

Levels 5% 2.5% 1.25%

FT of Ts alone − 0.27 (0.05) 0.23 (0.07)

FT of Zg alone − 0.21 (0.03) 0.17 (0.03)

Events in common − 0.35 (0.09) 0.28 (0.09)

We report in percentage the True positive/False positive Rates (average, standard deviations are in parenthesis) for prediction, for each heatwave levels (5, 2.5, and 1.25%), with and

without transfer learning. The last columns are the MCC: average value (and standard deviations) calculated across 40 independent learning. The first two lines correspond to Ts alone

and Zg alone, while the last line quantifies a logical AND (i.e., joint prediction by Ts and Zg). Percentages of True Positives (resp. False Positives) rates are quantified with respect to the

sizes of the positive (resp. negative) class. Results in bold shows the best result for each category (levels; no or with transfer learning).

is really small. This calls for more advanced data aggregation
procedures, where the training can be done end-to-end using
both fields at the same time, and hoping to obtain both good TPR
and MCC.
Data aggregation. Two new learning protocols based on
aggregation of surface temperature and geopotential height data
are proposed here. We defined them as:

P3) Combined-TsZg , using both T̃s(t) and Z̃g(t), while using
each of them as a 64 × 64 × 2 tensor input of an independent
CNN with same architecture as that described in Section 2.2, but
for the last fully-connected layer: the flattened outputs of both
CNN are concatenated to serve as the input of a single final fully-
connected layer;

P4) Stacked-TsZg , using jointly T̃s(t) and Z̃g(t) by stacking
them into a 64 × 64 × 4 tensor used as the input of the CNN.
Let us point out that from the first layer, data T̃s(t) and Z̃g(t) are
then combined thanks to the summation to obtain one map.

Table 2 reports the forecasting performance of these four
protocols in terms of TPR, FPR and MCC (averages and
standard deviations obtained from 40 independent learning).
We checked that the median of the MCC is systematically
close, with differences lower than 0.02, to the mean MCC.

Comparing Tables 1, 2 first strikingly shows that aggregation
protocol P3 (Combined-TsZg) does not outperform the much
simpler and less costly logical AND based combination of
protocols P1 (Ts-only) and P2 (Zg-only). Although P3 improves
the TPR, which is better for our prediction task, it also
detects a much larger proportion of False Positives. This Table
also shows that protocol P4 outperforms all the others and
this is particularly clear with transfer learning. This method
is the one yielding the largest proportion of False Positives,
but the MCC is high thanks to the very high number of
True Positives events predicted: still more than 50% for the
1.25% most extreme events. This clearly indicates that the
cross-spatial dynamics of surface temperature and geopotential
height also contains relevant information pertaining to heatwave
production mechanisms. This further suggests that these cross-
spatial dynamics are better exploited and revealed when the fields
mixed and combined together from the first layer of the deep
learning architecture layer (and thus from finest available spatial
dynamics scales), as in aggregation protocol P4 (Stacked-TsZg),
rather than when processed independently and combined at the
last (decision, and coarse scale) layer, as in aggregation protocol
P3 (Combined-TsZg).
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TABLE 2 | Compared performance for heatwave occurrence prediction with different data aggregation protocols.

Without transfer learning TPR in %: average (std) FPR in %: average (std)

Levels 5% 2.5% 1.25% 5% 2.5% 1.25%

Events in common 29.9 (8.3) 18.7 (10.4) 7.8 (8.1) 2.1 (1.1) 0.9 (0.8) 0.3 (0.4)

FT of Ts and FT of Zg (P3) 44.6 (7.0) 21.4 (5.7) 8.0 (4.1) 4.7 (1.6) 3.7 (1.6) 1.7 (1.4)

Stacked FT of Ts and Zg (P4) 69.8 (8.5) 37.9 (4.0) 14.8 (4.0) 7.6 (2.6) 7.7 (2.2) 4.7 (2.9)

With transfer learning True positives rates False positives rates

Levels 5% 2.5% 1.25% 5% 2.5% 1.25%

Events in common − 19.4 (7.6) 13.5 (5.9) − 0.7 (0.3) 0.3 (0.2)

FT of Ts and FT of Zg − 35.2 (8.2) 27.7 (10.6) − 2.4 (0.7) 1.2 (0.7)

Stacked FT of Ts and Zg − 64.2 (9.8) 58.5 (13.2) − 4.4 (1.5) 2.7 (1.1)

Without transfer learning MCC: average (std)

Levels 5% 2.5% 1.25%

Events in common 0.44 (0.06) 0.33 (0.09) 0.15 (0.12)

FT of Ts and FT of Zg 0.35 (0.03) 0.29 (0.05) 0.25 (0.08)

Stacked FT of Ts and Zg 0.44 (0.03) 0.37 (0.03) 0.29 (0.06)

With transfer learning Average MCC

Levels 5% 2.5% 1.25%

Events in common − 0.35 (0.09) 0.28 (0.09)

FT of Ts and FT of Zg − 0.29 (0.04) 0.24 (0.07)

Stacked FT of Ts and Zg − 0.40 (0.04) 0.35 (0.05)

We report in percentage the True positive/False positive Rates (average, standard deviations are in parenthesis) for prediction, for each heatwave levels (5, 2.5, and 1.25%), with and

without transfer learning. The last columns are the MCC: average value (and standard deviations) calculated across 40 independent learning (as in Table 2). The first line is the same

logical AND as in Table 1 for reference. The next two lines correspond to two ways of combining the FT of Ts and Zg: a simple combination of information independently learnt on the

second line and the FT stacked on the third line. Percentages of True Positives (resp. False Positives) rates are quantified with respect to the sizes of the positive (resp. negative) class.

Results in bold shows the best result for each category (levels; no or with transfer learning).

Transfer learning. To quantify the benefits of using transfer
learning, prediction performance are compared when the
training is performed independently for the three anomaly levels
(hence without transfer learning) against when the training is
performed with initialization of the weights of the network for a
given heatwave level using the network weights learned from the
immediately lower heatwave level. The weights of the training for
the 2.5% heatwave level are initialized with the weights learned at
the 5% heatwave level (i.e., the weights learned after 10 epochs).
In the same way, the weights of the training for the 1.25%
heatwave level are initialized with the weights obtained at the end
of the training for the 2.5% heatwave level (i.e., after 5 epochs).
Prediction performance achieved in terms of MCC (averaged
over the 40 independent learning), with the four protocols, with
and without transfer learning, are compared in Table 2. The runs
performed without transfer learning systematically consisted in
10 epochs and the MCC presented in Table 2 is the average of the
best MCC obtained among these 10 epochs for each run.

The results indicate that heatwave prediction performance,
in terms of increased MCC, achieved with transfer learning is
consistently comparable to without transfer learning; it is slightly
above with stacking protocol P4 (having best performance). In
the case of protocols P1 and P2, we see also a small reduction

of the standard deviations (computed across independent trials)
when using transfer learning, thus indicating a weaker sensitivity
to weight initialization prior to training. It is not so clear with
protocols P3 and P4: on the one hand, the transfer learning
leads to a decrease of the FPR associated with a decrease of the
standard deviations in the FPR. On the other hand, the clear
increase of TPR with protocol P4 goes along an increase of the
TPR standard deviation, especially for the least extreme class of
heatwaves. A main advantage is the reduction of the number
of epochs required to train the system for rare events. This last
point has been explored. For that, Figure 3 reports the training
performance with and without transfer learning of aggregation
protocols P3 and P4. The performance is reported in terms of
MCC as functions of the number of training epochs. Note that
the MCC for training are reported using undersampling so that
class imbalance ratio is 2 and that explains the difference in
MCC between training vs. test sets. On training sets, with little
class imbalance (as it is corrected), the method reports an almost
perfect MCC, close to 1 while test set gives the true performance
generalized to the much imbalanced data that we necessarily
encounter in test conditions. The fact that the MCC can be as
high as 0.4 or more indicates a good generalization on the test
set despite this imbalance. The values of the TPR and FPR in
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FIGURE 3 | Forecasting performance in terms of MCC as a function of the number of epochs, for aggregation protocols P3 (Combined-TsZg) (blue) and P4

(Stacked-TsZg) (red), without (“+,” plots on the right) and with (“o,” plots on the left) transfer learning. Solid (resp., dashed) lines correspond to testing (resp. training)

performance. Top and bottom plots correspond, respectively to the 2.5 and 1.25% most extreme events. Average MCC are obtained from 40 independent learning.

Note that the discrepancy of values of MCC between training and test sets is due to the difference in class imbalance: training (solid lines) set is undersampled and the

reduction in class imbalance (here: only 2) leads to a large MCC, while test set (dashed lines) has a high class imbalance ratio by definition of the problem of predicting

extreme events and cannot achieve the same MCC.

Table 1 supports also this conclusion. Also interestingly, it shows
that aggregation protocol P3 (Combined-TsZg) learns faster but
generalizes less; hence it overfits data as compared to aggregation
protocol P4 (Stacked-TsZg). This thus confirms that protocol
P4 (Stacked-TsZg) performs better in heatwave prediction. Note
finally that the benefits are more pronounced for the rarest
(1.25%) class of extreme events.

Finally, and importantly, Figure 3 suggests that the transfer
learning procedure leads to comparable or better performance,
compared to without transfer learning, and that such improved
performance is obtained within a single epoch of training, as
opposed to the 5 to 10 epochs needed to achieve convergence
in performance without transfer learning. Transfer learning thus
leads to better performance obtained at a significantly decreased
computational cost.
Undersampling rate. In general, supervised learning (and a
fortiori deep learning) for forecasting of extreme events faces
potentially severe class imbalance. As described in Section 2.2,
it has been chosen to address this issue during training by

undersampling the large class of non-extreme events in the
training set. Table 3 compares achieved performance in terms
of average MCC for different imbalance ratios between the non-
extreme and extreme class size, varying from 1 (undersampling
so that we have equal class size), to 2, 4 and 10, and performance
obtained without undersampling (so that we have 19 non-
extreme events for 1 heatwaves at level of 5%). Table 3 shows
that the undersampling strategy of the large non-extreme event
class during the training phase is effective as soon as it brings
the training class-size imbalance to a ratio of 1 or 2, while
performance degrades with larger ratios, 4 and 10, or no
undersampling—hence large class-imbalance. This is particularly
clear with transfer learning. To achieve optimal prediction
performance, it is thus not mandatory that classes have exactly
the same size in the training set, but it is critical that class
imbalance ratio remains limited of a few units.

For the sake of completeness, let us mention that the
discussions related to data aggregation protocols and transfer
learning, were presented with a class imbalance ratio of 2
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TABLE 3 | Compared performance for heatwave occurrence prediction with different undersampling rates.

Class imbalance 1/level 10 4

Undersampling rate 1 1 1 1/2 1/4 1/8 1/5 1/10 1/20

Levels 5% 2.5% 1.25% 5% 2.5% 1.25% 5% 2.5% 1.25%

No transfer learning

Average MCC 0.36 0.28 0.23 0.39 0.39 0.31 0.44 0.38 0.10

Median MCC 0.36 0.28 0.23 0.40 0.39 0.33 0.43 0.38 0.04

Std MCC 0.03 0.07 0.08 0.04 0.04 0.08 0.04 0.03 0.12

Transfer learning

Average MCC − 0.27 0.18 − 0.33 0.25 − 0.38 0.31

Median MCC − 0.25 0.20 − 0.33 0.25 − 0.37 0.32

Std MCC − 0.06 0.06 − 0.06 0.08 − 0.04 0.07

Class imbalance 2 1

Undersampling rate 1/10 1/20 1/40 1/19 1/39 1/79

Levels 5% 2.5% 1.25% 5% 2.5% 1.25%

No transfer learning

Average MCC 0.44 0.37 0.29 0.41 0.20 0.09

Median MCC 0.44 0.37 0.29 0.42 0.24 0.08

Std MCC 0.03 0.03 0.06 0.03 0.10 0.06

Transfer learning

Average MCC − 0.40 0.35 − 0.38 0.34

Median MCC − 0.40 0.36 − 0.39 0.34

Std MCC − 0.04 0.05 − 0.03 0.04

Performance is reported in terms of average, median and std MCC, obtained from 40 independent learning, for aggregation protocol P4 (Stacked-TsZg) for the three levels of anomalies,

without (top) and with (bottom) transfer learning, for no undersampling (left) to high undersampling (right). The bold values correspond to the best results of all configurations. This table

shows that the undersampling strategy of the large non-extreme event class during the training phase is effective for an imbalance ratio of the order of two.

corresponding to sampling rate of 1/10, 1/20 and 1/40 for
the three levels of extreme events. Equivalent conclusions were
drawn from analyzing results obtained with a class-size ratio of 1
corresponding to sampling rate of 1/19, 1/39 and 1/79.

3.2. Forecasting Performance
Heatwave prediction scheme. The methodological analyses
reported above in Table 2 already yield the first key result of the
present article: the occurrence of heatwaves can be predicted with
some success for the three levels of extreme events within the next
D days from present time t, from data observed across space at
the sole time t, and this for the four aggregation protocols.

Further, these analyses show the better performance of the
aggregation protocol P4 (Stacked-TsZg), with transfer learning
and non-extreme event class undersampling rates of 1/10,
1/20 and 1/40 for the three levels of heatwaves, as optimal.
These findings permit to conduct now a systematic analysis
of prediction performance as functions of τ , the number of
days in advance heatwaves have to be predicted: that is, surface
temperature and geopotential height fields at date t−τ are used to
predict a heatwave occurring any time between dates t and t+D.

The training procedure is repeated 40 times from scratch with
independent yearly-based train/test data split, as for τ = 0 and as
described in Section 2.2.

Heatwave prediction performance. Figure 4 reports, for the
three level of extreme events, the means, ± standard deviations
(left), and medians ± max absolute deviations (right), obtained
as averages across the 40 independent learning, as functions of
the prediction delay τ .

These plots demonstrate that the achieved MCC is
significantly positive for the three levels of extreme events
and for 0 ≤ τ ≤ 15 days. They also show that the decrease in
MCC as function of τ is slow, decreasing from the range 0.35
to 0.45 at τ = 0 to the still significant range of 0.10 to 0.20 at
τ = 15, thus that occurrence prediction as early as 15 days in
advance is achieved.

To complement these performance analyses, Figure 5 reports
the evolution, with respect to the prediction scale τ , of the
TPR and FPR (i.e., respectively TP/(TP + FN) and FP/(FP +
TN), in percentage). It shows that the decrease in performance
quantified by the decrease of MCC in Figure 3 stems from a
decrease in the TPR: While the prediction horizon τ increases,
fewer heatwaves are detected. The False Positive Rate remains
constant (and hence so does the number of FP) to less than 10%
of the total number of negative samples: While the prediction
horizon τ increases, the detection of negative events remains
“as easy”.

Altogether, achieved performance yield the following
conclusions, consisting per se of relevant findings for
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FIGURE 4 | Heatwave occurrence prediction performance in MCC as function of the number of days in advance τ . Mean MCC, with standard deviation, (left plot) and

median MCC, with max absolute deviation, (right plot), obtained as averages across the 40 independent learning, for the three levels of extreme events. These plots

clearly show that achieved MCC are significantly above 0 indicating the ability of the proposed Deep Learning procedure to predict heatwave extreme events τ days in

advances from the sole observations of the surface temperature and geopotential height fields at a single date.

FIGURE 5 | Compared performance for heatwave occurrence prediction as a function of τ . Compared rates (in percentages) of True positive (left plot) and False

positive (right plot) predictions, for each heatwave levels (5, 2.5, and 1.25%). Average across 40 independent learning as described in Figure 3. Percentages of True

Positives (resp. False Positives) are quantified with respect to the sizes of the positive (resp. negative) class.

climatologists and for ML practioners tackling this challenging
task:

i) The surface temperature and geopotential height spatial
fields in North hemisphere at a single observation time contain
sufficient spatial structures and information to predict the
occurrence of heatwaves over European territory of the size of
France, up to 15 days ahead of the beginning of a long-lasting
heat wave.

ii) Beyond independent spatial-dynamics, the cross-spatial
dynamics of these two fields contain relevant structures

permitting to enhance significantly prediction performance.
The fact that the aggregation protocol P4 (Stacked-TsZg)
outperforms other field combination strategies clearly indicates
that such cross-dynamics must be processed jointly from the
finest available physical scales.

iii) CNN-layer based deep-learning architectures are able
to extract relevant (cross-)spatial dynamics of climate data.
Convolutional filter sizes were varied and results were reported
here only for the best prediction performance, corresponding
to filter size ranging from 9 × 9 to 12 × 12. In physical units,
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this corresponds to filters exploring jointly frequency bands of
width 1f ∼ 10−3km−1 and thus (cross-)spatial dynamics within
territories of size roughly corresponding to 1, 000 × 1, 000 km2.
Incidentally, this turns out to correspond to the size of a typical
spatial correlation length, the order of magnitude of the size of
cyclonic and anticyclonic anomalies, of the order of the Rossby
deformation radius (Vallis, 2017).

iv) Predicting heatwaves at τ = 0 is already an impressive
outcome since it corresponds to predicting the occurrence of
an extreme event, within the next D = 14 days from the
observation of a extremely limited amount of climate data
potentially available for prediction (2 spatial fields only at a
single observation time). The ability of the proposed scheme
to predict heatwaves as early as 15 days in advance is even
more impressive. Indeed, typical correlation times in climate
time series are documented to be of 3–5 days (Vallis, 2017).
Predicting the occurrence of heatwaves 3 to 5 times ahead of that
correlation time suggests that the proposed forecasting scheme
has extracted relevant fine (cross-)spatial structures from data, a
remarkable outcome.

4. DISCUSSION AND PERSPECTIVES

The present work has illustrated and quantified the ability
of deep learning approaches to predict the forthcoming
occurrence of long-lasting heatwaves, from 1,000-year of a
climate model output.

One key result is that significant prediction performance can
be achieved from the analysis of the (cross-) spatial dynamics of
only two fields, the surface temperature and 500 hPa geopotential
height, observed at a single time. The forecast gives significant
results for time ahead which are much larger that the field
correlation time scales.

These successes are grounded:

i) On the ability to use a large size training database, consisting
here of 1, 000 years of simulated climate data, as well as the
use of surface temperature and geopotential height, chosen
a priori as relevant information to heatwave dynamics from
the existing scientific literature;

ii) On the use of CNN-layer based neural network architectures;
iii) On combining CNN with in-depths analyses of issues

such as data aggregation, non-extreme event large class
undersampling to address class-size imbalance intrinsically
associated with extreme-event predictions, transfer learning
and nested extreme event structure to achieve relevant
prediction of the most extreme events, using learning
performed from less extreme events. The study and
assessment of these three practical procedures can be seen
as methodological contributions valid in generic settings and
in other applications facing extreme event predictions and
imbalanced class sizes.

At the application level, the claim is not that deep learning
approaches should replace physics-driven models in climate
predictions. Rather, the present work can be read as a proof-
of-concept result for the use of learning procedure and, here,

a specific deep learning architecture, in climate extreme event
predictions. At this stage, it mostly provides climatologist with
a black-box tool that performs heatwave occurrence predictions
with satisfactory performance, and at very low computational
costs in time and computer resources and using very limited
sets of observations. Achieving the same task with the traditional
physics-model based approach requires solving a set of dynamical
partial differential equations in climate simulator engines,
involving significant computational resources and observed data
for initialization.

From the point of view of atmosphere dynamics, the key
result of this paper is that our machine learning approach has
significant forecast skills for long-lasting heat waves up to 15
days ahead of the beginning of the event. This predictability
range is long, compared to what might have been expected,
for the dynamics of midlatitude atmosphere. A very interesting
perspective, that goes beyond the scope of this work, would
be to identify the dynamical mechanisms at the core of this
potential predictability. For this aim, it would be useful to try to
incorporate physics knowledge and interpretability of the trained
neural network to contribute to the understanding of the physical
mechanisms at work in heatwave dynamics.

While the present is the first to use deep neural network to
forecast long-lasting extreme heat waves, an analogous approach
has been used recently (Chattopadhyay et al., 2020) to forecast
intra-day heat waves. Because the phenomenologies of long
lasting and intra-day heat wave are very different, it does not
make much sense to compare directly the predictive skills of
the two approaches. However, it would interesting to consider
in the future if CapsNet used in Chattopadhyay et al. (2020)
might improve our approach, and if the transfer learning and
class imbalance used in the present study might improve the
prediction of intra-day heatwaves in Chattopadhyay et al. (2020).

This work will be continued along several lines. On the
application side, the extent to which aggregating other spatial
fields available (e.g., using the geopotential height for several
values of atmospheric pressure) on the same day would improve
prediction performance will be investigated. Also, it will be
studied how combining observations made across several times,
thus aggregating temporal and spatial dynamics in deep learning
architectures, can be done to improve heatwave occurrence
forecasting performance. Further, the prediction of shorter-
duration heatwaves, or of heatwaves occurring on different areas
will be analyzed.

At the methodological level, it would be natural to try to relate
prediction performance to architecture complexity, which could
be quantified using the Vapnik-Chervonenkis Dimension tool, as
recently suggested and explored in Baum and Haussler (1989),
Friedland and Krell (2017), and Liotet et al. (2020).

We now come back to the three key issues in the study of rare
climate extreme events: lack of historical data, difficulty to sample
extremely rare events with models, and the assessment of model
biases for extreme in climate models.

Regarding the lack of historical data, an interesting perspective
would be to connect the proposed machine learning approach for
extreme long-lasting heat waves to observation or reanalysis data.
We first note that the predictive value of the proposed approach
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drops very fast if we use much less than 1,000 years of data for
training (not shown). This means that a deep neural network,
with the same predictive capability as ours, most probably cannot
be trained using only 70 years of the available reanalysis data.
This statement seems obvious if we deal with unprecedented
events, never observed in the dataset. The use of observation
or reanalysis datasets would anyway be very interesting, but it
should necessarily be coupled in an indirect way with other
datasets produced by climate model or weather forecast systems,
for instance through transfer learning. This is a very interesting
perspective for future works.

Regarding the difficulty of sampling exceptionally rare
extreme events, for instance unprecedented extreme heat waves,
we have recently developed rare event simulation techniques
that are able to multiply by several orders of magnitude the
number of observed heat waves with PLASIM model (Ragone
and Bouchet, 2019) and with CESM (the NCAR model used
for CMIP experiments) (Ragone and Bouchet, 2021). We are
currently working on coupling these rare event simulations with
the machine learning forecast developed in this paper. The point
is to improve both rare event simulations using machine learning
forecast, and machine learning forecast using the unprecedented
heat wave statistics obtained with rare event simulations. This
is a interesting perspective to propose solutions to the key
fundamental issue that is the lack of data in the science of
climate extremes.
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