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This paper provides an overview of carbon dioxide enhanced oil recovery (CO2-EOR)

and its ability to reduce greenhouse gas (GHG) emissions (even to the point of negative

emissions), the role it needs to play in the challenge of decarbonization, and the need to

scale up implementation and deployment in order to meet climate goals. Limitations in

current legal and regulatory frameworks for CO2 injection are explored for both economic

and environmental purposes, as well as the economic implications of combining

CO2-EOR with geologic carbon storage. Results from a recent study, which demonstrate

that all CO2-EOR operations produce negative emissions oil during the first several years

of production, are analyzed in the context of the urgency of climate change mitigation.

Acknowledging that fossil fuels currently provide the energy foundation upon which

global societies function, and that a sudden shift in the composition of that foundation

can potentially destabilize the global economy and key elements of modern society, we

bring CO2-EOR to the fore as it can supply reduced carbon oil to support the current

energy foundation as it steadily transitions toward decarbonization. In order to meet this

urgent transition, greater fiscal, and regulatory incentives are needed to begin scaling

CO2-EOR with storage around the globe. A viable and large-scale CO2-EOR/storage

industry depends upon significant capital investments for CO2 capture and transportation

infrastructure. Policy consistency and predictability, combined with targeted subsidies,

will help to achieve this goal.
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INTRODUCTION

Carbon capture and sequestration (CCS), a technology where carbon emissions are captured at a
point source, transported, and injected deep underground into a safe, permitted geologic site for
long term storage, was included in the portfolio of climate change mitigation options released in
2005 by the Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2005). The technology
continued to be acknowledged and strongly reiterated in successive reports by the International
Energy Agency (IEA) (International Energy Agency, 2008a,b, 2011, 2013).

The goal of climate change mitigation is to hold the increase of global average temperature
to well-below 2◦C above pre-industrial levels (Article 2, United Nations, 2015). Although not
explicitly mentioned in the Paris Agreement of November 4, 2016, it is clear that extensive
investments in large-scale emission reduction technologies like CCS will be required, at least during
a transitional stage (Article 4, United Nations, 2015).
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Part of the continued discussion of whether CCS will
contribute enough to meet climate targets is the discussion
around the role of carbon dioxide enhanced oil recovery (CO2-
EOR). Storing captured CO2 through CO2-EOR enters into a
category called carbon capture, utilization and storage (CCUS),
where the captured CO2 is utilized for a commercial activity, in
this case EOR, as it becomes ultimately stored.

A few large-scale CCUS projects are operational today. The
Weyburn-Midale Carbon Dioxide Project located in Midale,
Saskatchewan, Canada, started CO2 injection in October 2000
and continues to produce oil fromWeyburn andMidale oil fields
at a rate of 14 thousand barrels of oil per day (Jensen, 2019).
The CO2 injected is captured at a lignite-fired synfuels plant in
Beulah, North Dakota, U.S., and transported to the fields via a
320 km long transnational pipeline. More recently, a couple of
large-scale CCUS projects emerged in the U.S. The Air Products
Capture Project injects CO2 captured at a hydrogen production
facility in Port Arthur, Texas, into the West Hastings field for
EOR, and the Petra Nova project injects CO2 captured at NRG’s
Parish Power Plant, southwest of Houston, into the nearby West
Ranch oil field, also for EOR.

Many in the environmental community have argued that
CO2-EOR only serves to prolong the use of fossil fuels and, as
it produces carbon emitting oil, is not able to reduce emissions.
However, a recent study by Núñez-López et al. (2019), shows
that, depending on strategic operational choices, the incremental
oil produced from CO2-EOR can achieve a net carbon negative
status throughout most of the life of the operation (i.e., because
a large percentage of the injected CO2 is unavoidably and
permanently trapped in the subsurface, as discussed in section
Associated Storage of CO2 through EOR). The study uses a novel
dynamic lifecycle analysis (d-LCA) that includes greenhouse
gas (GHG) emissions at the CO2-EOR site and downstream
(including crude oil refining and refined product combustion),
and is linked to an operational EOR performance model.

Other LCA studies, such as Aycaguer et al. (2001) and
Fox (2009) conclude that GHG emissions generated by the
combustion of the final product (e.g., gasoline) are offset by the
mass of CO2 storage within the oil reservoir. Most LCA studies
for CO2-EOR, however, are difficult to compare because the
boundaries used for GHG emission accounting tend to be drawn
differently across studies.

Carbon dioxide enhanced oil recovery (CO2-EOR) has
historically used more captured CO2 than any other industrial
process, and is the only commercially established carbon
utilization option that provides large-scale permanent storage for
captured CO2. As opposed to carbon storage generally being seen
as a waste disposal activity when done in isolation of market
activities, carbon storage paired with EOR can be a profitable
activity that also reduces greenhouse gas emissions.

At this point in CCS technology development and
deployment, much is still uncertain. Starting CCS projects
at EOR sites, where oil profits offset the cost of deployment, is the
most intuitive and economically justified action at the current
stage of technology development. Many of the risks associated
with CCS (carbon capture and storage in deep, brine-filled
porous rocks referred to as saline aquifers) are reduced with

EOR-associated storage. In CO2-EOR the (fluid) trapping and
confining qualities of the deep subsurface container are well-
demonstrated by the existence of the hydrocarbon accumulation.
Furthermore, the historical records available to EOR projects
contain valuable data that saline storage projects lack, as saline
projects have not benefitted from decades of application. This
data availability in EOR projects add value and accuracy to
testing and monitoring results, which increases confidence in
CCS. The only risk that is higher in EOR than in saline CCS
is the larger density of well-penetrations, both from legacy
operations and from the EOR activity. However, if operators take
the necessary precautions, then the benefits are plentiful.

The long-established process of CO2-EOR has been overseen
by existing law, regulations, and standards of the oil and gas
industry. Yet, standardizations and framework for monitoring,
quantifying and reporting CO2 retention within the reservoir
throughout the EOR process have lagged behind. However, with
emerging developments in this area and increased confidence
that CO2-EOR can be used as a legitimate greenhouse gas
emission reduction technology, we may see the adoption of laws,
regulations, and standards that will lead to the proliferation of
this resource to meet larger climate targets.

FUNDAMENTALS OF CO2-EOR

Oil field development is carried out in two or three recovery
stages. During primary recovery, oil is produced by natural drive
mechanisms (dissolved gas expansion, gas cap expansion, saline
water influx) supported by the reservoir’s natural energy. As
reservoir fluids are extracted, the reservoir pressure declines, and
so do oil production rates. To prolong the duration of primary
production, pressuremaintenance and fluid lifting techniques are
employed. During secondary recovery, a fluid, most commonly
water, is injected (a.k.a. waterflooding) not only to maintain
reservoir pressure but also to displace oil toward producing (i.e.,
extraction) wells. On average, only 30–50% of the oil is recovered
after secondary recovery and 50–70% of the oil remains in the
reservoir (Stalkup, 1984). Extracting the remaining oil requires
more advanced and costly technologies; consequently, reservoirs
were historically abandoned at this point.

Any technique applied after secondary recovery is considered
tertiary recovery (Lake et al., 2014). EOR is often considered a
tertiary phase of recovery for this reason, even though it can be
applied at any stage of petroleum field development. In an EOR
process, the oil is recovered by the injection of a material that is
not originally present in the reservoir; in the case of CO2-EOR,
carbon dioxide is the injected material.

Several physical mechanisms enhance oil production when
CO2 is introduced into the reservoir. If the technology is
applied after waterflooding, the goal is to produce (extract)
the mobile oil that was bypassed by water and the immobile
residual oil trapped by capillary force. In the desirable case
where the reservoir pressure is above the minimum miscibility
pressure (MMP) and the injected CO2 and residual oil are
miscible, the physical forces holding the two phases apart
(interfacial tension) effectively disappears. This promotes a
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mass transfer (extraction/vaporization) of light and intermediate
hydrocarbons, which reduces the residual immobile oil
saturation. Additionally, the CO2 rich oil phase expands/swells
regaining mobility. Mass transfer is improved at higher pressure,
lower reservoir temperature and lighter oil. A reduction of
mobile oil saturation can also be achieved through viscosity
reduction, and pressure increase (Walsh and Lake, 1989).

Because CO2-EOR is a displacement process, CO2 is injected
into the deep subsurface rock reservoir through an injection well
to displace oil toward a production (extraction) well. CO2 is
produced along with reservoir fluids, separated at the surface,
and commonly, reinjected/recycled into the reservoir. The cycle
repeats throughout the operation. Although CO2 is injected in
supercritical (dense) phase, it remains significantly less viscous
than reservoir fluids and thus highly mobile. When mobility
contrast is high, an unstable displacement results in the form of
viscous fingering (the uneven advance of CO2 -resembling fingers

in a profile image- toward a producing well), which adversely
impacts oil recovery (Juanes and Blunt, 2007).

To reduce the degree of fingering and stabilize the
displacement front, water is injected in alternation with CO2

in a process called Water Alternating Gas (WAG; Caudle and
Dyes, 1958). As viscous fingering is a common challenge in CO2-
EOR, over 90% of CO2-EOR operations around the world have
employed WAG techniques (Merchand, 2017). Figure 1 shows a
cross-section illustrating the CO2-EOR displacement process, the
mechanisms that enhance oil recovery, and the water-CO2 cycles.

COMMERCIAL MOTIVATION FOR
CO2-EOR

The U.S. has an oil resource base on the order of ∼600
billion barrels of original oil in place. About one-third of

FIGURE 1 | CO2-EOR displacement process (National Energy Technology Laboratory, 2010).
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this resource base, ∼200 billion barrels, has been recovered
after primary and secondary oil production. This means that
a significant target of ∼400 billion barrels of oil are still
trapped in the subsurface (Kuuskraa et al., 2009). Not all of
the stranded oil can be produced or placed into proved oil
reserves, and not all is amenable for CO2-EOR technologies.
The same report by Kuuskraa et al. (2009), estimates that
from the ∼400 billion barrels of oil remaining, ∼84.8 billion
barrels of oil are technically recoverable through CO2-EOR
applications. However, the CO2-EOR market is still large and
very attractive to developers. Several screening methodologies
to identify candidate oil reservoirs for CO2-EOR exist in the
literature, such as Kovscek (2002), Núñez-López et al. (2008), and
Bachu (2016). Some methodologies lay out the conditions for
miscible displacement (lighter hydrocarbons, higher pressures,
lower temperatures), others rely on the estimation of MMP and
screen for reservoirs that have pressures above MMP.

Carbon dioxide enhanced oil recovery (CO2-EOR) has been
a successful commercial activity in the U.S. since 1972, when it
first started in the Permian Basin, more specifically in SACROC
Field, Texas. The Permian Basin, by far the most active CO2-EOR
region in the world, is located in West Texas and southeastern
New Mexico. This oil producing region, the third largest in
the U.S., has produced over 30 billion barrels of oil, out of
which 1.3 billion have been produced with CO2 (Merchand,
2017). Current EOR activities there produce on average 350,000
barrels of oil per day (BOPD) (the IEA estimates current world

CO2-EOR production at 450,000 BOPD). The CO2, mostly
naturally sourced, is transported to oil fields through a network of
4,500miles of pipelines. The development of this vast CO2 supply
infrastructure in the region has resulted from the increasing CO2

demand for EOR. CO2 supply has not always met the demand,
restricting EOR production. The latter is starting to force a
change in the low-cost natural CO2 supply trend, with forecasts
including emerging industrial CO2 capture projects.

ASSOCIATED STORAGE OF CO2

THROUGH EOR

A large fraction of the CO2 injected becomes trapped within
the formation and cannot be produced back to the surface
along with the produced reservoir fluids. In fact, the current
operational experience is that 90–95% of the purchased CO2

remains geologically trapped (Melzer, 2012). The industry refers
to this volume as CO2 retention and is considered a loss that
needs to be replaced with new purchased CO2. In CCUS, the CO2

lost to the formation through the conventional process of EOR is
referred to as associated storage.

The mechanisms that trapped oil within the reservoir also
act to trap CO2. The fact that oil was trapped over geologic
time provides confidence that CO2 will be safely trapped/stored
for that long in four different forms: (1) structurally beneath
an impermeable barrier, (2) residually as an immobile phase

FIGURE 2 | CO2 trapping mechanisms (Hosseininoosheri et al., 2018).
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due to relative permeability and capillary curve hysteresis, (3)
dissolved in reservoir brine and oil, and (4) mineralized over time
(see Figure 2).

As CO2 is considered a commodity within an economic
activity, the primary goal of conventional CO2-EOR is to produce
more oil with less purchased CO2. If an incentive to store CO2

exists, through a tax credit or a carbon market, the operator can
adjust its practice to achieve a second goal of storing CO2.

The first adjustment is to switch the source of the CO2

from natural to captured from industrial emitters. The second
adjustment is in regard to operational changes needed to
confirm and account for CO2 storage, and possibly increase
the amount of CO2 use. The IEA developed three models that
combine oil production with CO2 storage: (1) Conventional
EOR+: a conventional practice that maximizes oil production
and minimizes CO2 use, but uses additional monitoring and
verification practices; (2) Advanced EOR+: the co-exploitation
of oil recovery and CO2 storage with larger amounts of CO2 use
under Conventional EOR+; and (3) Maximum Storage EOR+: a
model focused on maximizing long-term storage of CO2 while
achieving the same level of production as Advanced EOR+
(International Energy Agency, 2015).

The use of captured CO2 for EOR dates back to the origins
of the EOR industry in the early 1970s with CO2 captured
from natural gas production (Marston, 2017). However, the use
of natural CO2 (i.e., non-anthropogenic CO2 from the Earth’s
subsurface) has always been dominant. As of the mid-2010s,
over three-quarters of the approximately 60 million tons of CO2

(Godec et al., 2013) used in North American EOR operations
came from a few naturally-occurring CO2 reservoirs (Marston,
2018). With recent oil prices, the price paid today for CO2

injection for CO2-EOR averages $40-per-ton (Middleton, 2013;
Martin et al., 2017). With prices still running about breakeven,
industry does not have enough incentive for a major sourcing
push from natural reservoirs to anthropogenic sources, which
would increase the cost (Massachusetts Institute of Technology,
2010). Oil fields that are farther away from natural CO2 source
reservoirs have more of an incentive to use anthropogenic
sources of CO2 (Kuuskraa et al., 2009). Identifying these hot spot
areas for development would further progress a likelihood that
more anthropogenic-sourced and greenhouse gas-offsetting EOR
projects come online.

CARBON LIFECYCLE ANALYSIS OF CCUS
SYSTEMS

Even though large amounts of CO2 are geologically stored
through EOR, the extent to which the technology can reduce
greenhouse gas emissions, if any at all, has been assessed by many
(Jaramillo et al., 2009; Stewart and Haszeldine, 2014; Cooney,
2015). Carbon lifecycle analysis (LCA) is a systematic process,
standardized in ISO 14044:2006, used to assess the environmental
impact of a product system throughout the product’s lifecycle,
from raw materials acquisition through production, use, final
treatment, recycle, and disposal. LCA applied to CO2-EOR
answers the question of whether CO2 emissions resulting from

the EOR energy consumption and, more significantly, from the
combustion of the incremental oil produced, are offset by the
mass of anthropogenic CO2 stored (Figure 3).

The definition of boundaries in LCA studies is very important.
Interpretations and comparison of results among different
existing LCA studies of CCUS systems is difficult because
different boundaries are used. For example, Jaramillo et al.
(2009) assessed the net lifecycle emissions of CO2-EOR in a
full CCUS system boundary (cradle-to-grave), from coal mining
to product combustion, and concluded that CO2-EOR projects
have historically emitted more CO2 than they have removed
through geologic storage. On the other hand, Aycaguer et al.
(2001) assessed CO2-EOR emissions at the EOR site in a gate-to-
gate boundary and concluded that CO2-EOR effectively results
in net CO2 emission reduction. Figure 4 shows the general
components of CCUS systems and the lifecycle boundaries most
commonly used.

Núñez-López, first author of this paper, conducted a study
that analyzed the dynamic potential of CO2-EOR to reduce
greenhouse gas emissions using a novel dynamic LCA (d-LCA).
It was determined that a dynamic approach was needed, given
that the rate of crude oil production varies significantly with
time. The d-LCA linked instant energy demand and associated
greenhouse gas (GHG) emissions to instant carbon storage mass,
and provided a better understanding of the evolution of the
environmental impact (CO2 emissions) and mitigation (geologic
CO2 storage) associated with an expanded carbon CCUS system,
from start to closure of operations.

The d-LCA was applied to an ongoing CO2-EOR operation in
Cranfield field, a 3,000m. deep clastic reservoir in southwestern
Mississippi, U.S. A scenario analysis captured oil production,
CO2 storage, and CO2 utilization curves for four common and
recent CO2 injection strategies used in the USA: (1) Continuous
gas injection (CGI), where CO2 is injected continuously into
the oil bearing formation; (2) WAG, where CO2 slugs and
brine slugs are injected in an alternating fashion to improve
flood conformance and economics; (3) Water curtain injection
(WCI), a continuous gas injection with peripheral water injection
(commonly along the oil-water contact); and (4) HybridWAG+

WCI (see Figures 5, 6).
Results of the gate-to-grave CCUS system, in a CO2-EOR

scheme analogous to IEA’s Conventional EOR+ model, indicate
that all four CO2 injection scenarios start operating with a
negative carbon footprint and, after years of operation transition
into operating with a positive carbon footprint (Figure 7). For
WAG, the period of negative emissions is longest, from 14 to 18
years depending on the process technology used to separate the
CO2 from other reservoir gases at the surface before re-injection.
Gas separation technologies (e.g., Ryan-Holmes, membrane,
fractionation, and refrigeration) were included as variables as
they are carbon intensive.

The study included a scenario analogous to IEA’s Maximum
Storage EOR+, where excess CO2 from the recycling facility is
injected into an underlying saline aquifer in a stacked storage
fashion for long term CO2 offtake and storage. This scenario
demonstrates significant potential for improving environmental
performance while providing a better understanding of how EOR
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FIGURE 3 | General components of CCUS Systems.

FIGURE 4 | Lifecycle analysis CCUS boundaries. Adapted from Núñez-López et al. (2019).

and saline storage can be co-managed as a CCUS project matures.

Results are illustrated in Figure 8, where the negative emissions

period is extended considerably in all scenarios. In the WAG

scenario, oil can be produced with negative emissions from 18

years to potentially the entire life of the EOR project if gases are

not separated at the surface.
Results like this, which demonstrate that all CO2-EOR

operations produce negative emissions oil during the first several

years of production are critical in the context of the urgency of
climate change mitigation. Further details of the study can be
found in Núñez-López et al. (2019).

CCUS ECONOMICS

The proposition that CO2-EOR can be a bridge to deploying
CCUS on a larger scale stems from the fact that revenues
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FIGURE 5 | (A) Cumulative oil production as a function of CO2 volumes injected. (B) CO2 storage as a function of CO2 volumes injected. HCPV, hydrocarbon pore

volume [intergranular pore volume occupied by hydrocarbons]. Núñez-López et al. (2019).

FIGURE 6 | (A) Net utilization ratio (purchased CO2 needed to produce one barrel of oil). (B) Gross CO2 utilization ratio (purchased plus recycled CO2 needed to

produce one barrel of oil). Mscf/STB, thousand standard cubic feet per standard barrel. Núñez-López et al. (2019).

associated with selling CO2 to an EOR operator can result
in substantial income to offset the cost of employing CCS
for emissions-heavy industry. This fact has been cited as an
opportunity to speed commercial adoption on a large enough
scale to provide a means of climate mitigation (Massachusetts
Institute of Technology, 2010). The revenue generated from
sales of CO2 at capture plants can be enough to offset the cost
of the capture technology and transportation to an EOR site.
According to the Global CCS Institute (2019), for example, this
was the case at the Terrell, Enid Fertilizer, and Great Plains
CCS facilities.

Determination of a reservoir to be geologically amenable
to CO2-EOR (as discussed in previous sections) does not
necessarily imply that CO2-EOR will be economical. In general,
the costs of a CO2-EOR operation vary depending on three basic
extrinsic parameters: oil price, CO2 cost, and storage tax credit

(Ettehadtavakkol et al., 2014). The single largest EOR project cost
is the purchase of CO2. CO2-related costs, including the capital
costs of CO2 supply, injection, and recycling, can amount to 25–
50% of the cost per barrel of EOR oil produced (Kuuskraa et al.,
2009).

For this reason, operators design the EOR flood such that
the use of CO2 is optimized and purchases are minimized.
Oil reservoirs with higher capital cost requirements and
less favorable CO2 utilization rates (volume of CO2 needed
to produce one barrel of oil) will not achieve economic
targets without advanced, highly efficient CO2-EOR
technology, and without tax or other fiscal incentives for
storing CO2 (National Energy Technology Laboratory,
2010). The efficiency of the CO2 displacement process,
which controls critical economic parameters such as oil
production rate, CO2 utilization rate, and CO2 recycle ratio,
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FIGURE 7 | Carbon balance (CO2e emissions minus CO2 storage) of the gate-to-grave CCUS system for: (A) continuous gas injection, (B) water curtain injection,

(C) water alternating gas, and (D) Hybrid WAG + WCI. Núñez-López et al. (2019).

FIGURE 8 | Carbon balance (CO2e emissions minus CO2 storage) of the gate-to-grave CCUS system with stacked saline carbon storage for: (A) continuous gas

injection, (B) water curtain injection, (C) water alternating gas, and (D) Hybrid WAG + WCI. Núñez-López et al. (2019).

is affected by reservoir rock characteristics, oil quality,
production history, and other site-specific parameters
(Núñez-López et al., 2019).

To transition to a large-scale CO2-EOR with storage,
operators must account for the additional costs of undertaking
storage: additional monitoring, measuring, and verification
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(MMV), and closure activities, which can all influence project
costs. The economic costs of reducing emissions from large point
sources must be smaller than the additional costs associated with
storage (International Energy Agency, 2015). Though companies
employing CO2-EOR generally do not make the price of CO2

publically available, the price of CO2 for EOR is known to be
generally linked to the price of oil. A general rule to the price
an EOR operator is willing to pay is about 2% of the price of a
barrel of West Texas Intermediate (WTI) oil per million cubic
feet or 28,316.85 million cubic meters of CO2 (Kuuskraa et al.,
2011; Middleton, 2013). A price of $40/tCO2 is prevalent in the
literature (Middleton, 2013; Martin et al., 2017).

There are several project design and operator choice decisions
that influence the return of the CO2-EOR with storage project.
The forthcoming National Petroleum Council study report
on CCUS will likely have a thorough outline of the project-
associated costs of a CO2-EOR project (Tip Meckel, personal
communication). Transport and storage costs are outlined in a
report from the U.S. Department of Energy (DOE) (National
Energy Technology Laboratory, 2013) and the costs associated
with verifying CO2 storage during and after EOR are outlined by
Godec et al. (2017). King et al. (2013) studied the cost of vertically
integrated systems and found that using anthropogenic CO2 in
EOR projects generally results in a negative profit (aka financial
loss), but the State CO2-EOR Deployment Work Group have
reported profit from sourcing anthropogenic CO2 (State CO2-
EOR Deployment Work Group, 2016). Varied business models
and cost data make project cost studies difficult (Jablonowski and
Singh, 2010).

U.S. LEGAL AND REGULATORY
FRAMEWORK

As early as the 1970s, targeted efforts by the Federal government
were made to increase national security by subsidizing tertiary
oil recovery to remove financial risk, rather than bring new
fields into production, as a way to boost domestic production
(Massachusetts Institute of Technology, 2010). Legislation like
the 1976 Emergency Petroleum Allocation Act, the President’s
1977 National Energy Plan, and Windfall Profits Taxes in the
1980s all supported the advancement of CO2-EOR (Dooley et al.,
2009). Incentives were codified with the U.S. Federal EOR Tax
Incentive in 1986 that applied to costs associated with CO2 flood
installation, purchase, and injection, triggering a boom in CO2-
EOR national growth (National Energy Technology Laboratory,
2010).

While geologists and engineers have increasingly gained
confidence in the ability of EOR to effectively store carbon
dioxide, several risks, logistical, and financial, still exist for
the technology in the context of CCS. The role of a legal
and regulatory framework will be crucial in the scale-up
of CCS for widespread, commercial deployment to reconcile
complex relationships.

To date, fluctuating support and the rate of funding
and project emergence has slowed deployment. To counter
this, political commitments will be necessary to buoy the

recent technological advancements. The first regulatory
acknowledgment of the associated risks and long-term nature
of CCS was in the early amendments to both the London
Protocol and the OSPAR Convention (Havercroft et al., 2018).
Five main models of the legislation and regulatory frameworks
have emerged since then, demonstrating roadmaps for future
frameworks (Havercroft et al., 2018), summarized here:

• Stand-alone legislation dealing with CCS as a stand-
alone technology

• Stand-alone legislation confined to specific projects
• Adaptation or amendment of existing and familiar petroleum

and gas regimes
• Mixed regimes involving a stand-alone regime coupled with

significant adaptation to existing legislation
• Adaptation of existing environmental laws to develop a

comprehensive CCS regime.

Carbon dioxide enhanced oil recovery (CO2-EOR) in the U.S.
has benefitted from a long history of oil and gas development,
particularly in Texas, where the first large-scale CO2-EOR project
was demonstrated in the Permian Basin in the early 1970s
at SACROC (Hill et al., 2013). The U.S. legal and regulatory
framework for CO2-EOR (e.g., mineral rights, subsurface data)
has largely been addressed since then (Kuuskraa et al., 2011).
Because the original intent of CO2 injection was for tertiary
oil production for economic benefit and not permanent storage
(Kovscek and Cakici, 2005; Leach et al., 2011; Ettehadtavakkol
et al., 2014), the existing U.S. framework for CO2-EOR is
largely based on existing oil and gas regulations. Emerging CCS
frameworks have begun to distinguish between CO2 injection
for permanent storage and CO2 injection for EOR as mutually-
exclusive endeavors.

Many active projects benefit from policy-blend initiatives.
One example is the Texas Clean Energy Project, a combination
of private finance benefitting from a federal grant (e.g., D.O.E.
funding), federal tax credits, and state bills (Kapetaki and
Scowcroft, 2017). Because CO2 capture and storage currently
has no direct market, additional government incentives have
been pursued in recent years. In February 2018, the 45Q tax
credit was amended and expanded under the FUTURE Act.
The incentive increased to a 10-year ramp up to $35 and $50
per ton of CO2, respectively. The $35 per ton of CO2 was also
expanded to include CO2 utilization other than CO2-EOR (e.g.,
converting captured CO2 to fuels) and the cap of 75 million
tons was removed (Zapantis et al., 2018). The 45Q expansion
amendments follow many recommendations laid out by
State CO2-EOR Deployment Work Group (2016).

In 2015, the EPA issued regulatory guidance that enabled
CO2 injected during EOR to also be classed as stored CO2

(Global CCS Institute, 2015). CO2 injection activities associated
with EOR are regulated under Class II of EPA’s Underground
Injection Control (UIC) Program (as opposed to Class VI
wells for geologic sequestration of CO2) and most states
have primary enforcement authority—or primacy (Primary
Enforcement Authority for the Underground Injection Control
Program, n.d.). The EPA has released guidance on how a
project can transition into a storage project under Class
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VI (Environmental Protection Agency, 2013). Sites aiming
to transition will need to plan for increased regulatory
requirements like monitoring and verification of storage
(Adelman, 2018).

Under the Clean Air Act subparts RR and UU,
CO2-EOR facilities are required by law to report
greenhouse gas data to the EPA annually. Subpart RR
applies to facilities that inject CO2 for sequestration
and subpart UU applies to facilities that inject CO2

underground for any reason, including enhanced oil
and gas recovery. The first edition of the non-legally-
binding ISO standard 27916:2019, titled “Carbon dioxide
capture, transportation and geological storage—Carbon
dioxide storage using enhanced oil recovery (CO2-EOR),”
was published in January of 2019 to help operators
resolve the previous complexities of accounting for
long-term storage in CO2-EOR projects, including
how to account for recycling and anthropogenic CO2

use when mixed with non-anthropogenic sources. The
standard accounting does not include lifecycle emissions
(International Organization for Standardization, 2019).

ROLE OF CO2-EOR IN THE LARGER
DECARBONIZATION PICTURE

The latest IPCC Special Report (IPCC, 2018) calls for the large-
scale transformation of a global energy system that needs to be
urgently decarbonized in order to mitigate the impending effects
of climate change. Renewable energy and energy efficiency are
identified as the most cost-effective pathways to achieve 90% of
the emission reduction goals, with CCUS acknowledged in most
models as a critical technology in the mitigation portfolio. The
IEA Sustainable Development Scenario (SDS) allocates to CCUS
7% of cumulative emission reductions needed by 2040.

The need to reduce GHG emissions is unquestionable, but
the subject of decarbonization of energy systems is complex,
as developed and developing societies still rely on fossil fuels.
Some developing countries justifiably resist carrying out the
costs of decarbonization, not having contributed to the global
problem as developed nations have. At the same time, developed
nations resist bearing those costs alone in a competitive
global economy.

According to IEA’s Key World Energy Statistics (International
Energy Agency, 2018) wind and solar still supply <5% of
the world’s energy, with fossil fuels continuing to supply a
steady 80%. Unquestionably, fossil fuels currently provide the
energy foundation upon which global societies function, and
any sudden shift in the composition of that foundation can
potentially destabilize the global economy and key elements of
modern society.

The energy transition will require a balanced action plan
in which CCUS plays a critical role, as the only technology
with large enough scale to significantly reduce emissions from
coal and gas power generation, as well as the only technology
through which industries like steel, cement and petrochemicals
can be decarbonized (Bui et al., 2018). Without other carbon

utilization technologies quickly outpacing CO2-EOR, negative
emission technologies like bioenergy with CCS (BECCS) and
direct air capture (DAC) will need geologic carbon storage.

In CCUS, the means for decarbonization is the mass of
captured CO2 that can be stored in oil reservoirs through EOR
as well as in saline aquifers underneath the same EOR footprint.
Simultaneously, CO2-EOR can supply reduced carbon oil to
support the energy foundation, as well as provide what is most
critically needed, time to find long lasting climate solutions.

THE FUTURE OF NEGATIVE EMISSIONS
OIL: SCALING UP FOR CLIMATE
MITIGATION

An industrial-scale EOR-storage implementation faces several
challenges. The revenue of EOR must be matched with
accelerating measures such as those seen in other countries that
lower the price of commercial-scale implementation, including:
tax credits (carrot), carbon pricing (stick), emissions regulation,
capital grants, and state ownership of CCS facilities (Global CCS
Institute, 2019).

Only nine natural CO2 reservoirs remain commercially viable
in the U.S. Natural reservoirs accounted for 85% of all U.S. CO2

supply in 2010. Anthropogenic, captured CO2 from natural gas
processing and hydrocarbon conversions are the source for the
majority of the remaining CO2 for EOR (DiPietro et al., 2012).
The lack of available CO2 limits the growth of EOR (Benson et al.,
2012). A study by Advanced Resources International (ARI) states
that an additional 4–47 billion barrels of domestic resources
could be economically recovered using CO2-EOR and at least 8
billion tons of CO2 could be sequestered in the U.S. by using EOR
(Advanced Resources International Inc, 2011).

Carbon dioxide enhanced oil recovery (CO2-EOR) offers large
CO2 storage capacity potential and could accommodate a major
portion of the CO2 captured from industrial facilities for the
next 30 years (Godec et al., 2013). Assuming that renewable
energy generation continues to increase and displace fossil
fuel electricity generation, industry-generated CO2 (steel mills,
cement, chemicals) will continue to contribute a larger portion
of national emissions. These are often considered “locked-in”
emissions because a decarbonized alternative does not exist. The
only way to decarbonize those industries is through CCS.

In order to be considered for its climate mitigation value,
CO2-EOR projects must transition to using either anthropogenic
CO2 captured at industrial sources or CO2 from DAC.
Combining DAC with CO2-EOR/storage on a commercial scale
is the goal of a recent project announced by Carbon Engineering
and Oxy Low Carbon Ventures, where a DAC facility is being
designed to capture 500,000 tons of CO2 a year directly from
the atmosphere for EOR and subsequent geologic storage in
a Permian Basin oil field (Global CCS Institute, 2019). This
project is being regarded as “the world’s largest direct air
capture and sequestration facility.” However, for scale-up to
be sufficient to significantly impact national emissions, capture
will have to happen across sectors, starting with the most
economical prospects.
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Bains et al. (2017) conclude that, based on the purity of
the stream (lower cost), the relative contribution to overall
industrial process emissions, and the proximity to potential
storage reservoirs, the best implementation path forward is to
prioritize initial capture efforts on ethanol production facilities,
then cement and ammonia industries, and finally natural gas
processing and ethylene oxide production plants. The lowest cost
opportunities for deploying CCS have been found to be in the
Midwest and along the Gulf Coast, where extensive geologic
storage reservoirs are co-located with EOR operations (Bains
et al., 2017).

The hub nature of scale-up will require intensive upfront
time and financial investments as one capture, transport,
or storage value chain is completed. Because of this,
anthropogenic-supplied CO2 is expected to be delivered in
“bulky increments” (Marston, 2018), and early adopters are
vulnerable to infrastructure devaluation, stranded assets, and
missing markets (Zapantis et al., 2019). Banks and insurance
companies offering high risk premiums and insurance can help
offset risk (Zapantis et al., 2019). However, Dooley et al. (2010)
suggest that this will lead to oligopoly (where a small number
of suppliers control supply) when CO2 quantities are scarce at
the beginning of scale up, which enables CO2 to have a positive
price. As more anthropogenic CO2 sources become available, a
set price on carbon will be needed to sustain values.

The scale-up problem that CCS faces is largely the result of an
insufficient value on carbon—presenting risks to private sector
investments and, by proxy banking institutions, which have the
potential to be partially alleviated through policy and regulation
(Zapantis et al., 2019). The CO2 pipeline infrastructure scale-
up needed between customers and suppliers of anthropogenic

CO2 to meet a U.S. climate policy case scenario laid out in
Wallace et al. (2015) is unprecedented but comparable to pipeline
projections in other sectors. Turning the market focus from the
value of oil to climate mitigation would likely require additional
funding to help offset the “technology valley of death” that many
emerging technologies face (i.e., technologies that are technically
proven but unable to bridge the gap to commercial-scale).
Because companies are already implementing the technology
outside of a stable political and economic framework, the private
sector is assuming the economic, technical, construction, and
operational risks, but these risks could be partially abated by a
policy infrastructure.

Carbon dioxide enhanced oil recovery (CO2-EOR) is the
main conduit through which companies planning to or already
employing CCS find value in the face of political uncertainty.
For simplicity, Marston and Moore (2008) advises to keep
CCS frameworks in the hands of the oil and gas regulatory
authority since many years will transpire before commercial scale
volumes of CO2 from power plants exceed the capacity of the
EOR industry.

The Global CCS Institute (2015) concluded that the U.S.
framework has not dealt with CCS in a fully-integrated,
comprehensive manner at the state or the federal level. Proper
division of state and federal responsibilities will be required
for commercialization (Ekins et al., 2017). By incorporating
what Ekins et al. (2017) call “flexibility instruments” that
incorporate legal adaptation in legislation, federal, and local

governments can better navigate any unintended consequences
of adopted legislation.

The lack of a comprehensive CCS regulatory regime has
been cited by numerous experts as a primary obstacle to
deployment (Davies et al., 2013). The current mix of federal
and state policies is what the State CO2-EOR Deployment
Work Group (2016) describes as “too cumbersome for project
developers to utilize effectively.” The Work Group recommends
that Congress establish federal price stabilization contracts, or
contracts for differences (CfD) to reduce price volatility between
capture facilities and EOR operators (in non-vertically-integrated
projects), to make carbon capture eligible for tax-exempt private
activity bonds (PABs), and master limited partnerships (MLPs)
to provide debt and equity on more favorable terms. There
are generalized models of CCS regulatory frameworks that
have the potential to support commercial-scale development
country-wide (Ekins et al., 2017, p. 83; Jacobs and Craig,
2017).

CONCLUSIONS

Carbon dioxide enhanced oil recovery (CO2-EOR) has potential
for decarbonization during the first several years of operation.
The timing of EOR net emission reductions (the first years,
not the last) is of critical importance given the urgent need to
abate climate change. The near-term profitability of this climate
mitigation opportunity can accelerate deployment of CCS in
general and economically incentivize research in support of
this goal. As we get closer to maxing out the global carbon
budget, CCS will become an increasingly important carbon
removal technology.

Carbon dioxide enhanced oil recovery (CO2-EOR) is the only
commercially established carbon utilization option that provides
large-scale permanent storage for captured CO2, and CCS is
the only technology through which industries like steel, cement,
and petrochemicals can be decarbonized. As part of an already
established market, carbon storage paired with EOR can be a
profitable activity that also reduces greenhouse gas emissions.
Until other utilizations for carbon under CCUS become more
widely adopted than CO2-EOR, carbon removal technologies like
BECCS and DAC projects will require a geological carbon storage
counterpart, and the reservoir knowledge gleaned from CO2-
EOR projects will prove worthwhile even if oil production and
use slows.

Carbon dioxide enhanced oil recovery (CO2-EOR) is at
the nexus of energy production and environmental protection,
reflecting various tensions in the competing spheres. CO2-
EOR has benefitted from decades of technical experience and
policy development under an oil and gas regulatory framework
while CCS has remained largely under a separate environmental
law framework. As CO2-EOR becomes a more appealing and
viable entryway to scale up CCS infrastructure, the two legal
and regulatory frameworks will have to be reconciled so that
the storage achieved during CO2-EOR is supported by robust
documentation and procedure.

Though large technology scale-ups take time, they are
not unprecedented. The most direct corollary to the type of
massive, game-changing buildout that CO2-EOR requires is
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the development of unconventional natural gas resources. By
exploiting the existing conventional oil and natural gas resources,
the unconventional natural gas infrastructure developed a
critical market mass use in the U.S. within roughly a
decade, or what has been called, “seemingly serendipitous
development” (Massachusetts Institute of Technology, 2010).
With the economy refocusing on a low-carbon future, what
was previously ignored as a climate mitigation option may
become the basis of a large, multi-pronged market under a
carbon capture, storage, and utilization framework. EOR is
one way that existing infrastructure can best leverage carbon
prices to develop a climate mitigation technology for a shifting
energy landscape.
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