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Acinetobacter baumannii, a predominant nosocomial pathogen, represents a

grave threat to public health due to its multiple antimicrobial resistance.

Managing patients afflicted with severe infections caused by multiple drug-

resistant A. baumannii is particularly challenging, given the associated high

mortality rates and unfavorable prognoses. The diminishing efficacy of

antibiotics against this superbug underscores the urgent necessity for novel

treatments or strategies to address this formidable issue. Bacteriophage-derived

polysaccharide depolymerase enzymes present a potential approach to

combating this pathogen. These enzymes target and degrade the bacterial

cell’s exopolysaccharide, capsular polysaccharide, and lipopolysaccharide,

thereby disrupting biofilm formation and impairing the bacteria’s defense

mechanisms. Nonetheless, the narrow host range of phage depolymerases

limits their therapeutic efficacy. Despite the benefits of these enzymes, phage-

resistant strains have been identified, highlighting the complexity of phage-host

interactions and the need for further investigation. While preliminary findings are

encouraging, current investigations are limited, and clinical trials are imperative

to advance this treatment approach for broader clinical applications. This review

explores the potential of phage-derived depolymerase enzymes against A.

baumannii infections.
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1 Introduction

Acinetobacter baumannii (A. baumannii) has emerged as one of

the most formidable multidrug-resistant (MDR) nosocomial

pathogens. The primary complications associated with infections

by various MDR A. baumannii strains include pneumonia,

bloodstream infections, urinary tract infections, skin and wound

infections (Nguyen and Joshi, 2021). The World Health

Organization (WHO, 2024) and the Centers for Disease Control

and Prevention (CDC, 2019) have designated this bacterium as a

critical priority pathogen due to the scarcity of effective treatment

options, emphasizing the urgent need for additional research to

address this challenge.

The exopolysaccharide (EPS), capsular polysaccharide (CPS),

lipo-oligosaccharide (LOS), outer membrane protein, pili, adhesion,

metal ion uptake system etc. of A. baumannii have been identified

as the major virulence factors based on numerous studies (Geisinger

and Isberg, 2015; Talyansky et al., 2021; Zhao et al., 2021;

Karampatakis et al., 2024). Studies involving mutant strains

lacking capsular functionality have elucidated their roles in

proliferating within soft tissue infection sites, inducing lethality in

murine septicemia models, providing defense against serum-

mediated killing, and modulating biofilm formation (Russo et al.,

2010; Lees-Miller et al., 2013). EPSs play a pivotal role in facilitating

bacterial aggregation, leading to the formation of multicellular

consortia, wherein the biofilm operates as a highly protected

multicellular system. The dense EPS matrix constitutes an

effective barrier that impedes the penetration of antibiotics to

different layers of the biofilm (Singh et al., 2021). Pathogenic

bacteria, including Staphylococcus aureus, A. baumannii,

Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa,

and Enterococcus faecalis, have the capacity to form biofilms on

medical instrument surfaces, within hospital environments, and on

human and animal tissues (Mariani and Galvan, 2023; Weber et al.,

2023). Approximately 80% of chronic and recurrent microbial

infections in the human body are attributable to bacterial

biofilms, which demonstrate antibiotic resistance levels that are

10 to 1000 times higher than those of planktonic cells, thereby

substantially contributing to these types of infections (Sharma et al.,

2019). In planktonic cells, A. baumannii exhibit higher

susceptibility to antibiotics (Wences et al., 2022). However, after

the establishment of biofilms on appropriate surfaces, they manifest

resistance to antibiotics (Al-Shamiri et al., 2021). These biofilms

obstruct the ingress of antibiotics into deeper layers, predominantly

characterized by polysaccharide constituents, thereby curtailing

antibiotic access to bacterial cells (Singh et al., 2021). Hence,

there exists a critical imperative to investigate and innovate novel

strategies to address the complexities associated with MDR strains

of A. baumannii.

Bacteriophages have resurfaced as an alternative approach for

combating drug-resistant A. baumannii, offering a promising

avenue for mitigating the challenges posed by antibiotic

resistance. Bacteriophages, commonly referred to as phages, are
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obligate parasitic entities that infects and replicates through either

the lytic cycle or integrates its DNA into the host genome in the

lysogenic cycle, leading to the production of new phages. These

innate bactericidal agents are being revisited to counter bacteria that

have developed resistance to multiple antimicrobial agents

(Wegrzyn, 2022). Notwithstanding its recognized potential as a

substitute for conventional antibiotics, phage therapy encounters

efficacy impediments due to the necessity for tailored strategies and

the formulation of comprehensive cocktails to address bacterial

resistance. The restricted host spectrum and the emergence of

phage-resistant bacterial variants are pivotal factors contributing

to these challenges (Oechslin, 2018; Pirnay and Kutter, 2021). The

coevolution of bacteria and phages drives their selection and

infectivity (Wright et al., 2016). Bacteria develop resistance

through several mechanisms such as blocking phage receptors,

producing extracellular matrices, using CRISPR-Cas and

restriction systems to cleave phage DNA, or employing abortive

infection systems (Ambroa et al., 2022). Phages, in turn, evolve

mutations to counter bacterial defenses. In biofilms, bacteria are

shielded from harsh conditions and phage attacks, but phages can

evolve enzymes like depolymerases to break down biofilm

structures, resulting in a constant arms race between phages and

bacteria as they adapt to each other’s defenses (Pires et al., 2021).

A prevalent resistance mechanism observed in Acinetobacter

entails the secretion of cell-surface capsules, which serve to obscure

the primary receptors, rendering it difficult for phages to adhere to

the bacterial host (Oromi-Bosch et al., 2023). Nevertheless,

researchers have investigated phage-encoded depolymerases

capable of enzymatically degrading bacterial EPS, CPS and

lipopolysaccharide (LPS) materials. In numerous animal infection

models, phage-derived depolymerases are exhibiting therapeutic

promise by selectively targeting bacterial capsules and exhibiting

antibiotic efficacy (Lin et al., 2014; Chen et al., 2018, 2020). In phage

therapy, the efficacy of phages may be compromised due to the

frequent development of bacterial resistance against them.

Conversely, free depolymerases, distinct from intact phage

particles, do not often engender the emergence of resistant

bacterial strains. This phenomenon stems from the fact that

depolymerases do not directly induce bacterial cell death; instead,

they augment bacterial susceptibility to immune responses (Chen

et al., 2022; Guo et al., 2023). Hence, phage-derived depolymerases

have emerged as innovative alternative antimicrobials targeting

MDR bacteria, particularly those harboring polysaccharide

capsules that confer resistance to antibiotics. Numerous phages

are equipped with tail-associated depolymerases capable of

degrading bacterial CPS, EPS, and LPS, thereby uncovering

binding sites for antimicrobial agents. Additionally, they facilitate

phage attachment, enhance innate immune responses, and optimize

antibiotic effectiveness, including penetration into biofilms (Hsieh

et al., 2017; Wang et al., 2024a). The aims of this review are to

summarize the state-of-the-art knowledge on the phage derived

depolymerase enzymes that can degrade polysaccharide materials

and their potential role in treating MDR A. baumannii infections.
frontiersin.org
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2 Envelope associated
polysaccharides of A. baumannii and
their impact on pathogenicity

The capsule that surrounds the A. baumannii surface is a crucial

fitness and virulence factor. Capsules facilitate bacteria to adhere to

biotic and abiotic surfaces promoting colonization in diverse niches

and thereby biofilm formation (Kaur and Dey, 2023). Poly-N-acetyl

glucosamine (PNAG), an important polysaccharide, is well described

as a building block of A. baumannii biofilm. In A. baumannii, the

pgaABCD locus is found to be associated with the production of

PNAG. Deletion of the pgaABCD locus led to a reduced biofilm

phenotype, which was restored by complementation, demonstrating

the role of polysaccharides in biofilm formation (Choi et al., 2009).

Composed of repeating polysaccharide units known as K units, this

capsule forms a protective coating around the bacterial cell wall,

shielding it from environmental stresses such as desiccation and

disinfection (Tipton Kyle et al., 2018). The ability of A. baumannii to

survive in the hospital environment is favored by resistance to

disinfectants and desiccation. In A. baumannii, polysaccharide

materials provide a physical barrier that enhances water retention,

allowing the bacteria to survive for long periods of desiccation

(Kaur and Dey, 2023). A study showed that the A. baumannii

strain AB5075 wild-type virulent opaque cells produced a capsule

with a 2-fold increased thickness than avirulent translucent cells.

In desiccation and disinfectants, virulent opaque cells showed higher

survival on dry surfaces compared to avirulent translucent cells

(Chin et al., 2018). Besides, CPS also involves other virulence

factors such as motility, confirming its role as a determinant of

virulence (Rakovitsky et al., 2021).

Additionally, the A. baumannii capsule plays a vital role in

defending against host cell killing and evading activation of the

innate immune response (Akoolo et al., 2022). A capsular mutant,

designated as wza, of A. baumannii exhibited heightened

susceptibility to whole blood, complement, and neutrophil-

mediated killing, underscoring the critical role of the

polysaccharide capsule in immune evasion (Bjanes et al., 2023).

The capsule is also known to play a role in phagocytosis. In hyper

mucoid A. baumannii, the capsule assembly gene gtr6 protects it

from phagocytosis by inhibiting the deposition of complement

component 3 (Talyansky et al., 2021; Gong et al., 2022). In a

study, wild-type mice with Toll-like receptor 4 died from A.

baumannii-induced septic shock, while TLR4-deficient mice

survived despite having a similar bacterial load. The hypervirulent

A. baumannii releases more LPS, which activates TLR4, leading to

lethal sepsis in the host. The LpxC gene, involved in lipid A

biosynthesis, (a component of LPS), is targeted by LpxC inhibitor.

Though the inhibitor did not inhibit bacterial growth, it suppressed

TLR4 activation by A. baumannii. Mice treated with the LpxC

inhibitor showed enhanced opsonophagocytic killing, reduced

serum LPS concentrations and inflammation, and were

completely protected from lethal infection (Lin et al., 2012). The

anti-OmpAmonoclonal antibody enhanced macrophages to kill the
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K1 capsule-negative mutant A. baumannii 307.30, except for those

containing thick capsules, particularly extensively drug-resistant A.

baumannii. The binding affinity of monoclonal antibodies with

drug-resistant clinical isolates of A. baumannii showed weaker

affinity than that between mABs and ATCC19606, possibly due to

capsular polysaccharide blocking MAb access to OmpA (Wang-Lin

Shun et al., 2017).

In addition to protect from host defense system, capsules also

confer resistance to a wide range of antibiotics by limiting the

penetration of antibiotics to the outer membrane where the

antibiotics can access the inner membrane. Geisinger and Isberg

(Geisinger and Isberg, 2015) reported that when A. baumannii is

exposed to sub inhibitory concentrations of chloramphenicol or

erythromycin, it leads to increased production of capsular

polysaccharide. This elevated CPS production is reversible and

non-mutational, and occurs alongside with heightened resistance

to the antibiotic independent of the K locus. Colony phase variation

by A. baumannii responds to differential alterations in tolerance to

antibiotics. Mushtaq et al. (Mushtaq et al., 2024) demonstrated that

in opaque variants of A. baumannii AB5075, extracellular

polysaccharide material plays a role in colistin tolerance at the

single-cell level. At the community level, the opaque variant forms a

mushroom-shaped biofilm. Thus, demonstrating its fitness

advantage over the translucent variants and its ability to

tolerate colistin.
3 Bacteriophage-encoded enzymes
with depolymerizing activity against
bacterial polysaccharides

Phage depolymerases represent enzymatic proteins designed to

dismantle polymers, particularly targeting bacterial outer

membrane polysaccharides essential for bacteriophage adsorption.

These enzymatic entities play a crucial role in facilitating phage

attachment to the bacterial cell surface and subsequent degradation

of the bacterial capsule (Knecht et al., 2019). Tail fibers or tail spikes,

integral components of bacteriophage structure, serve as anchoring

points for depolymerases, which are linked to the base plate of the

phage, with a few exceptions found on the neck (Lai et al., 2016;

Pires et al., 2016; Blundell-Hunter et al., 2021) (Figure 1A).

Biochemically, depolymerases are dichotomized into two distinct

types: lyases and hydrolases (Cai et al., 2023; Magill and Skvortsov,

2023). Hydrolases break glycosidic bonds by reacting with water,

disrupting the glycosyl-oxygen bond. Lyases, on the other hand,

cleave glycosidic bonds through b-elimination, creating a new

double bond without the need for water (Li et al., 2022)

(Figure 1B). Predominantly harbored in receptor binding proteins

(RBPs), depolymerases are crucial for triggering phage infection

through the targeting and enzymatic disassembly of bacterial

capsules at the onset (Latka et al., 2019). Receptor binding

proteins (RBPs) possessing depolymerase activity exhibit a

modular architecture comprising three distinct domains: An N-
frontiersin.org
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terminal domain responsible for tethering to the phage tail, a central

b-helical domain facilitating enzymatic function, and a C-terminal

domain associated with receptor binding and potential chaperone

activity (Li et al., 2022; Guo et al., 2023; Klumpp et al., 2023;

Maciejewska et al., 2023) (Figure 2). The modular configuration of

RBPs enables expedited alterations in host specificity, accomplished

via horizontal gene transfer such as transduction, which mediates

the interchange of host-specific central domains, and vertical gene

transfer, a process marked by the accrual of mutations within

polysaccharide-depolymerizing domains (Matilla and Salmond,

2014; Latka et al., 2017, 2019; Pas et al., 2023). Two variants of

phage depolymerases are discernible: one bound within phage

particles and the other existing as soluble proteins following host

cell lysis (Drulis-Kawa et al., 2015; Wang et al., 2019). Ultimately,

the structural diversity and modular nature of phage depolymerases

are fundamental to their abil ity to degrade bacterial
Frontiers in Cellular and Infection Microbiology 04
polysaccharides, thereby promoting efficient phage-host

interactions and successful infection.
4 Bacteriophage-mediated
depolymerases combating
A. baumannii

Capsular polysaccharide and biofilm of A. baumannii are

virulence determinants that play a major role in resistance to

antimicrobial agents, evasion of host immune responses and

adaptation to other stresses (Geisinger and Isberg, 2015; Mendes

et al., 2023). These structural components act as protective barriers,

hindering the access of various antimicrobial agents to their

respective binding sites (Roy et al., 2022). Biofilms are complex
FIGURE 2

Illustration is the trimeric crystal structure of the tail spike protein. (A) gp49 tail spike protein (PDB ID: 6C72) derived from A. baumannii
bacteriophage Fri1, a capsular polysaccharide depolymerase (Hydrolase). (B) Gp54 tail spike (PDB ID: 4Y9V) of A baumannii bacteriophage AP22
polysaccharide degrading lyase. Three monomers are marked by different colors. Created with BioRender.com.
FIGURE 1

Structure and mechanisms of action of bacteriophage depolymerases: (A) Distribution of depolymerase within the structure of bacteriophages
(B) The overarching mechanisms by which depolymerases catalyze polysaccharide degradation involve two fundamental processes: hydrolysis and
lysis. During hydrolysis, depolymerases enzymatically cleave the glycosidic bonds between sugar monomers, resulting in the fragmentation of
polysaccharides into smaller sugar units. In the lysis process, these enzymes compromise the structural integrity of the polysaccharide matrix.
Created with BioRender.com.
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assemblies of bacteria adhering to surfaces and enclosed within a

matrix composed of extracellular polymeric substances, comprising

proteins, lipids, nucleic acids, polysaccharides, and other

constituents. In response to the challenge of biofilm resistance,

alternative approaches such as the utilization of phage

depolymerases have been explored. Encouragingly, phages

carrying depolymerases possess the capacity to degrade the

polysaccharide constituents of both capsules and biofilms

(Figure 3). The polysaccharide components present on the outer

surface of A. baumannii cells are the primary targets for

bacteriophages harboring specific structural depolymerases. These

depolymerases are crucial for mediating the initial interaction

between the phage and the host bacterium (Drobiazko et al.,

2022). A solitary phage depolymerase possesses the capacity to

address bacterial surface polysaccharides and biofilms. EPSs are

crucial for the attachment of bacterial cells together and forming

multicellular consortia in biofilms. They are vital for the structural

stability, functionality, and virulence of bacterial biofilms

(Karygianni et al., 2020). The dense EPS matrix has a high

binding affinity to antimicrobial agents, creating a barrier that

hinders antibiotic diffusion into biofilm layers (Sharma et al.,

2023). Phage-encoded depolymerase enzymes target EPS by

recognizing, binding to, and degrading the polysaccharide matrix

of bacterial cell walls. This enzymatic action disrupts biofilm

structure, reducing bacterial virulence and increasing

susceptibility to the host immune system (Tian et al., 2021).

Depolymerases degrade polysaccharides like capsular CPSs, LOSs,

O-polysaccharides, and EPSs in biofilms. Hydrolase break down a-
Frontiers in Cellular and Infection Microbiology 05
1,4-glycosidic bonds in polysaccharides to produce oligosaccharides

through hydrolysis (Wang et al., 2024b). Lyases, on the other hand,

cleave anionic polyuronides by a b-elimination reaction. This

process involves removing a proton from the C5 position of the

uronide ring and breaking the ether linkage at the C4 position with

the help of a general acid-base catalyst, resulting in an unsaturated

product (Pandey et al., 2023).

However, achieving comprehensive eradication of these

virulence determinants may necessitate the utilization of

combinations of phage depolymerase cocktails or their concurrent

administration with antibiotics, or they may serve as adjuncts.

Hence, the utilization of phage depolymerases emerges as a

prospective tactic for addressing A. baumannii infections, offering

potential as standalone interventions or in tandem with antibiotic

therapies. This underscores the promising trajectory of phage-

derived depolymerases in the realm of antimicrobial strategies

against this resilient pathogen.
4.1 Employing a singular phage-derived
depolymerase for mitigating the virulence
of pathogenic A. baumannii

A single phage depolymerase can efficiently target and disperse the

biofilm matrix of Acinetobacter. By degrading the extracellular

polymeric substances that shield and reinforce the biofilm, this

enzyme disrupts its structure, rendering the bacterial cells more

susceptible to treatment (Figure 3A). This enzymatic action aids in
FIGURE 3

The illustration delineates the anti-biofilm mechanisms of phage-encoded depolymerases: (A) Phage-encoded depolymerases impede biofilm
formation by degrading the extracellular polysaccharides that protect the bacterial cells within the biofilm. (B) The synergistic application of phage-
encoded depolymerases and antibiotics enhances the bactericidal efficacy against A. baumannii biofilms. The depolymerases degrade the
extracellular polysaccharide, rendering the bacteria more susceptible to antibiotic treatment. (C) A consortium of phage-encoded depolymerases
can effectively dismantle biofilms by degrading the polysaccharide matrix. (D) Phage-encoded depolymerases sensitize bacteria to the host immune
response by degrading the protective polysaccharide matrix of biofilms. Created with BioRender.com.
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facilitating the phage’s DNA injection into the bacterial host. Unlike

certain other phage-encoded enzymes, depolymerases do not induce

direct bacterial cell lysis. Rather, they degrade bacterial CPS, rendering

them vulnerable to host immune responses and antibacterial

treatments (Dicks and Vermeulen, 2024). Hydrolases are enzymatic

catalysts that cleave glycosidic bonds by disrupting the glycosyl-oxygen

bond. Within this category, various subclasses exist, including

sialidases, levanases, xylosidases, dextranases and rhamnosidases.

Conversely, lyases function by catalyzing the separation of the

glycosidic link between monosaccharides and the C4 position in

uronic acid molecules. This process involves the creation of a double

bond via the b-elimination mechanism between the C4 and C5

positions in nonreducing uronic acid molecules. Examples of lyases

include hyaluronidases, alginate lyases, and pectin/pectate lyases (Cai

et al., 2023). The utilization of depolymerases for antibacterial purposes

can occur through two approaches: as enzymes expressed by

bacteriophages and as recombinant protein; and both strategies can

be used in combination with antibiotics to broaden their effectiveness

against a wider range of hosts (Wang et al., 2024a). These

bacteriophages possess inherent mechanisms for recognizing specific

bacterial strains, facilitating targeted interventions (Hibstu et al., 2022).

Moreover, their capacity to deliver depolymerases directly to infection

sites and penetrate biofilms presents advantages over conventional

antibiotics (Jo et al., 2023). Recombinant protein synthesis enables

standardized, large-scale production of depolymerases with

stringent quality control measures, ensuring uniform potency and

reliability. Furthermore, genetic engineering methodologies

offer avenues for refining recombinant depolymerases to augment

their stability, enzymatic activity, or specificity towards various

polysaccharide targets (Drulis-Kawa et al., 2015; Hassan et al., 2021;

Noreika et al., 2023).

PghP is a bacteriophage-encoded peptidase that specifically

hydrolyzes g-polyglutamic acid (g-PGA), a polymeric extracellular

barrier produced by certain bacterial species. This enzymatic activity

is critical for bacteriophage entry, as PghP degrades the g-PGAmatrix

surrounding the bacteria. PghP catalyzes the cleavage of g-PGA into

smaller oligo-g-glutamates, further processing these into tri-, tetra-,

and penta-g-glutamate units (Kimura and Itoh, 2003). Sialidases, also

referred to as neuraminidases, are enzymes that catalyze the cleavage

of the a-linkage of terminal sialic acid residues in glycoconjugates

(Keil et al., 2022). Pathogenic bacteria, including Escherichia coli K1,

Acinetobacter baumannii, Haemophilus influenzae, and Neisseria

spp., exploit sialic acid to evade host immune defenses by

incorporating it into their surface structures or utilizing it as a

metabolic nutrient source (Ko et al., 2018; Jennings et al., 2022).

Furthermore, numerous bacterial species produce sialidases to

enhance their survival within mucosal environments and facilitate

interactions with other microorganisms, thereby contributing to their

pathogenic potential (Lewis and Lewis, 2012; Tailford et al., 2015).

Bacteriophages encode endosialidases that degrade capsular

polysaccharides, rendering bacteria more vulnerable to host

immune responses. Studies have demonstrated that phage-derived

endosialidases can sensitize Escherichia coli to immune defenses,

promoting phagocytosis and offering protection against systemic

infection in murine models (Mushtaq et al., 2004). Levanases (EC

3.2.1.65) are enzymes present in microorganisms such as Bacillus and
Frontiers in Cellular and Infection Microbiology 06
Pseudomonas, which catalyze the hydrolysis of the b-2,6-linked
chains of levan, a fructan polymer (Murakami et al., 1992).

Bacteriophage fNIT1 possesses the pghP gene, encoding a g-PGA
hydrolase that enables the phage to overcome the host cell’s defense

mechanisms. Additionally, fNIT1 contains a gene encoding LevP, an
active levan hydrolase classified as an endo-levanase, which

cleaves levan, an exopolysaccharide produced by Bacillus subtilis

(Ozaki et al., 2017). Xylosidases (EC 3.2.1.37), dextranases (EC

3.2.1.11), lipases (EC 3.1.1.3), and rhamnosidases (EC 3.2.1.40)

represent enzyme classes that are among the least frequently

identified depolymerase domains in bacteriophages. These enzymes

are involved in the hydrolytic degradation of specific substrates:

xylan, dextran, triacylglycerols, and rhamnogalacturonan,

respectively. Hyaluronate lyases (EC 4.2.99.1) and hyaluronidases

(EC 4.2.2.1) are enzymes responsible for the degradation of

hyaluronate. Phage-encoded hyaluronidases, such as those

identified in Streptococcus pyogenes bacteriophages, specifically

target hyaluronan, aiding in the degradation of the bacterial

hyaluronan capsule (Baker et al., 2002). Alginate lyases (EC 4.2.2)

are enzymes that catalyze the degradation of alginic acids, found in

organisms such as Pseudomonas aeruginosa and Azotobacter

vinelandii phages. These enzymes, including mannuronate lyase

(EC 4.2.2.3) and guluronate lyase (EC 4.2.2.11), specifically target

alginates, which serve as structural components in brown algae and

bacterial extracellular polysaccharides (EPS) (Kim et al., 2011).

Pectin, a polysaccharide with ana-1,4-linked D-galacturonic acid
backbone and a-1,2-l-rhamnose units, is catalyzed by pectin/pectate

lyase, which cleaves the a-1,4 bonds of polygalacturonic acid is

catalyzed by pectate lyase, which cleaves the a-1,4 bonds of

polygalacturonic acid (Latka et al., 2017; Minzanova et al., 2018),

are typically present in the cell wall or capsule of A. baumannii.

DpoMK34, a pectate lyase, derived from the A. baumannii MK34

phage, demonstrates considerable efficacy even at low concentrations,

falling within sub-micromolar ranges. Its activity is not limited to A.

baumannii MK34 but also extends to strain CIP110467, which

possesses a K2 capsular serotype, suggesting its potential for broad-

spectrum effectiveness (Abdelkader et al., 2022). A study revealed the

presence of 12 podoviruses featuring depolymerases equipped with a

pectate lyase domain, facilitating the breakdown of capsules within

the Acinetobacter baumannii-Acinetobacter calcoaceticus complex.

This observation implies that these podoviruses may have

undergone evolutionary refinement through the acquisition of

specialized pectate lyase coding regions, thereby enhancing their

infectivity and viability within this bacterial cohort (Oliveira et al.,

2017). Dpo48, recognized as a capsule depolymerase, displays a broad

activity spectrum, and maintains effectiveness across varied pH and

temperature conditions. Its capacity to efficiently strip capsules from

A. baumannii, even at elevated concentrations, facilitates bacterial

eradication by serum complement in vitro (Liu et al., 2019). The

Acinetobacter baumannii phage Bf-R2096, sourced from sewage

water, exhibits robust bacteriolytic activity and generates distinct

circular plaques surrounded by halos, indicative of the potential

presence of phage-derived depolymerases. In vivo investigations

utilizing Galleria mellonella larvae and mice infected with

carbapenem-resistant A. baumannii (CRAB) reveal that Bf-R2096
significantly enhances survival rates and mitigates histologic lung
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damage in infected hosts, with no reported mortality or adverse

effects (Jeon et al., 2019).

A study by Hernandez-Morales et al. (Hernandez-Morales et al.,

2018) investigated the bacteriophage Petty, which harbors the

depolymerase gene Dpo1, capable of degrading exopolysaccharides

and infecting both A. nosocomialis and A. baumannii. In vitro

assessments revealed that Dpo1 effectively reduced the viscosity of

EPS and partially disrupted biofilms formed by the tested

Acinetobacter strains, resulting in a modest reduction of

approximately 20%. Although complete eradication of the biofilms

was not achieved, Dpo1 likely attenuated the virulence of the

examined strains by degrading EPS components. Notably, plaques

formed by Petty exhibited halos, indicative of depolymerase activity

targeting capsular exopolysaccharides. Additionally, gene 39,

encoding a putative tail fiber, displayed depolymerase activity,

suggesting its potential application in diagnostics and therapeutics

against drug-resistant Acinetobacter strains through biofilm

disruption. Another investigation revealed that depolymerases

sourced from bacteriophages AM24, BS46, and APK09 possess the

capability to degrade the K9 CPS of the antibiotic-resistant A.

baumannii GC1(ST1IP) isolate SGH0807. Upon exposure to the

K70 CPS from SGH0807, these depolymerases induced the cleavage

of monomers and dimers at the K-unit linkage, resulting in the

generation of oligosaccharide fragments. This finding underscores the

potential of these depolymerases as a targeted strategy against

the antibiotic-resistant strain by degrading its K70 CPS. Moreover,

the observed specificity of these phages’ depolymerases for distinct

CPS types suggests their potential efficacy in infecting and eradicating

the SGH0807 K70 isolate (Kasimova et al., 2023).

Timoshina et al. (Timoshina et al., 2023) made an intriguing

discovery of seven novel Friunaviruses and proceeded to dissect

their functionalities and mechanisms in the degradation of CPS.

Recombinant depolymerases were expressed in Escherichia coli

B834 (APK09_gp48, APK14_gp49, APK16_gp47, APK86_gp49,

APK127v_gp47, APK128_gp45, and APK37.1_gp49) generated,

demonstrating effective degradation of the CPS of A. baumannii

under laboratory conditions. Remarkably, recombinant

depolymerase APK09_gp48 exhibited significant efficacy in

reducing mortality rates among Galleria mellonella larvae infected

with A. baumannii of K9 capsular type. Moreover, when

administered independently, TSD APK09_gp48 did not result in

larval mortality, underscoring its safety. These outcomes highlight

the potential therapeutic utility of depolymerase APK09_gp48 in

combating A. baumannii infections. Eight bacteriophages were

identified, each carrying depolymerase genes. These genes were

cloned, expressed, and the resulting enzymes were purified. The

enzymes broke down the capsular polysaccharides (CPSs) of their

A. baumannii hosts into monomers or dimers of CPS repeats (K

units) through a hydrolytic process. Specific depolymerases, such as

APK2_gp43, APK32_gp46, APK37_gp44, APK44_gp44,

APK48_gp43, APK87_gp48, APK89_gp46, and APK116_gp43,

were found to be glycosidases. Notably, APK2_gp43 could

interact with both K2 and K93 CPSs because of their similar K

unit structures and identical linkages, enabling the enzyme to break

down both types effectively (Popova et al., 2021). The recombinant

depolymerase derived from the tail spike protein (TSP) of the
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bacteriophage jAB6 exhibits proficient degradation of A.

baumannii biofilms in vitro. It effectively impedes biofilm

formation and dismantles pre-existing biofilms. Even at minimal

concentrations, TSP significantly hampers biofilm formation and

adhesion on Foley catheter surfaces. Furthermore, it induces

bacterial cell death and augments survival rates in zebrafish,

suggesting its potential as a novel antibiotic against MDR A.

baumannii and as a biocontrol agent for preventing biofilm

formation on medical devices (Shahed-Al-Mahmud et al., 2021).

Depolymerases used in therapeutic applications are typically

prepared as liquid formulations for parenteral injections, aerosols

for inhalations and topical delivery methods also in use

(Maciejewska et al., 2018). The enzyme production requires a

comprehensive protein purification process to remove bacterial

endotoxins. The delivery of enzymes through aerosolization and

topical application allows for targeted drug accumulation at the

infection site while minimizing systemic exposure (Ryan et al.,

2011). Specific pH and buffers are required for long-term storage or

to ensure delivery to the reaction site. Chen et al. (Chen et al., 2022)

found that storing Dpo71 in phosphate-buffered saline at 4°C

maintained its stability for up to six months without significant

loss of activity. Another study showed that KP32gp37 enzyme was

resistant to SDS detergent and trypsin protease, while KP32gp38

was not (Majkowska-Skrobek et al., 2018). These findings provide

safe formulation strategies for depolymerases for therapeutic use to

prevent denaturation by body fluids.

In general, the mechanism of action for phage depolymerases

involves the cleavage of glycosidic bonds present within bacterial

polysaccharides, leading to the formation of oligosaccharide

products either through hydrolysis or lysis. The EPS found in A.

baumannii biofilms exhibit three distinct bond types: b-1,6-
glycosidic, b-1,3-glycosidic and b-2,6-glycosidic bond (Lee et al.,

2017). Each phage depolymerase possesses the ability to hydrolyze

at least one of these bond types (Guo et al., 2023). Hence, employing

a combination of phage depolymerases in a cocktail may present a

promising approach for the comprehensive eradication of A.

baumannii biofilms.
4.2 Combining phage depolymerase with
antibiotics has shown synergistic effects
against A. baumannii

Integrating antibiotics with phage-derived depolymerases offers

a potent approach to addressing MDR bacterial infections.

Depolymerases alone might be less effective due to biofilm

variability; however, their combination with antibiotics increases

bacterial susceptibility by breaking down protective polysaccharide

matrices. This combined mechanism enhances antibiotic

penetration, making the treatment more effective in eradicating

infections, particularly those caused by resistant bacteria (Topka-

Bielecka et al., 2021) (Figure 3B).

Colistin is considered a last-resort antibiotic used to treat

infections caused by MDR A. baumannii. However, there have

been reports of A. baumannii strains developing resistance to

colistin (Elham and Fawzia, 2019; Seleim et al., 2022).
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Combining phage depolymerases with colistin could help to address

this issue. The synergistic use of colistin and phage depolymerases,

such as Dpo71, could effectively counter MDR A. baumannii.

Dpo71, a phage-derived enzyme, boosts bacterial susceptibility to

immune system attacks and enhances colistin’s antimicrobial

activity (Chen et al., 2022). It helps to clears bacteria by human

serum, degrades biofilms, and improves survival outcomes in

infection models. The strain-specific action of Dpo71

demonstrates its potential as a complementary therapy to

antibiotics against resistant bacterial infections (Chen et al.,

2022). Phage vWU2001, which was isolated from treated

wastewater, produced large plaques with halo zones, suggesting

the presence of a phage-encoded depolymerase. When combined

with colistin, phage vWU2001 significantly inhibited the growth

and viability of carbapenem-resistant A. baumanniimore effectively

than either treatment alone. This combination also improved the

survival of G. mellonella and enhanced bacterial clearance,

indicating a synergistic effect (Wintachai et al., 2022). Here, phage

depolymerases might act as an adjuvant that could help prevent the

emergence of resistant cells through synergistic interactions.
4.3 Employing a phage depolymerase
cocktails strategy

Single-phage depolymerase therapy exhibits dose-dependent

repression of bacterial proliferation, albeit encountering

impediments such as the emergence of phage-resistant bacterial

strains, particularly a problem in the case of A. baumannii. To

mitigate this challenge, the utilization of cocktails comprising

multiple phages encoding depolymerases exhibiting diverse host

specificities could demonstrate heightened effectiveness by

broadening the host range and mitigating resistance occurrences

(Figure 3C). Additionally, the incorporation of multiple

depolymerases within these cocktails addresses the inherent

limitations in the specificity of individual depolymerases for

eradicating bacterial biofilms. In sum, the employment of phage

depolymerase cocktails augments therapeutic efficacy by targeting a

wider array of bacterial strains, potentially delaying the onset of phage

resistance, bolstering antimicrobial effectiveness (Chang et al., 2022;

Tan et al., 2022). For instance, the co-administration of Ab105-

2phiDCI404ad with phage vB_AbaP_B3, known for their

depolymerase expression, synergistically enhanced the antimicrobial

efficacy against diverse strains of A. baumannii, encompassing both

clinical and reference strains (Blasco et al., 2022).

Phage cocktails are recognized for their ability to enhance

antibacterial activity against biofilms. Yet, there is a lack of

research focusing on the potential use of various phage

depolymerases within these cocktails to target bacterial capsules,

especially in the context of A. baumannii infections. Bacteriophage

cocktails have been tested to treat septicemia (Patel et al., 2021),

wound infections (Ilomuanya et al., 2022), nasal infections (Cha

et al., 2018), and pneumonia (Li et al., 2024) caused by A.

baumannii in animal models. In addition, phage cocktails have

been effectively used in clinical settings to treat human urinary tract

infections (Grygorcewicz et al., 2021), necrotizing pancreatitis
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(Schooley et al., 2017), and post-operative cerebritis (Lavergne

et al., 2018) caused by MDR A. baumannii. Further research is

needed to investigate the efficacy and safety of phage depolymerase

cocktails in treating A. baumannii infections.
4.4 Phage depolymerases sensitize
bacterial pathogens to serum killing for
enhanced innate immune activity

Polysaccharide components are crucial for shielding bacteria

from immune assaults and adverse environmental conditions,

including phage infection. Notably, the application of

depolymerases in conjunction with human serum or immune

cells has significantly augmented antibacterial efficacy

(Figure 3D). Phage depolymerases render bacteria more

susceptible to human serum, resulting in heightened bacterial

eradication. This approach represents a promising strategy for

combating infections and surmounting bacterial defenses

(Maciejewska et al., 2018). Hugo Oliveira et al. (Oliveira et al.,

2019) reported that the recently discoveredmyovirus vB_AbaM_B9,

along with its depolymerase B9gp69, effectively dismantles

exopolysaccharides sourced from various strains of A. baumannii.

This functionality increases susceptibility to serum-mediated

bacterial elimination while simultaneously reducing the likelihood

of bacterial resistance development. Specifically engineered to target

the virulent K45 capsule type, this recombinant depolymerase

demonstrates potential as an antimicrobial supplement, fortifying

the host immune defense against A. baumannii infections. The

analysis of A. baumannii phage IME285 resulted in the detection of

a depolymerase gene, ORF49, following genomic scrutiny.

Subsequent investigation led to the cloning and expression of the

recombinant enzyme, Dp49, originating from this gene, showcasing

substantial depolymerase activity both in murine experimental

models, and in vitro, as evidenced by the formation of translucent

halos surrounding bacterial plaques. Dp49 displayed efficacy against

25 of the 49 A. baumannii strains tested, amplifying the inhibitory

impact of serum on bacterial proliferation in vitro and augmenting

survival rates in A. baumannii-infected mice. These observations

indicate the potential utility of Dp49 as a promising intervention for

managing infections instigated by MDR A. baumannii (Wang et al.,

2020). Therefore, there is a good reason to delve into further

exploration of depolymerases that can effectively target various

bacterial types and their corresponding strains.
5 Prospective avenues for phage
depolymerase-based interventions

Phage-encoded enzymes, such as polysaccharide depolymerases

raised attention as novel antibacterial agents due to their potential

to eradicate biofilms and capsular polysaccharides that hinder

phage adsorption to host bacteria (Bleriot et al., 2024). In contrast

to whole phage particles, bacteria hardly develop resistance against

free depolymerases, making them a promising antibacterial agent

(Chen et al., 2022). Genetically engineering phage depolymerases to
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modify host ranges holds considerable promise for phage

applications (Anyaegbunam et al., 2022). In Gram-negative E.

coli, genetically engineered phage enzymes significantly prevent

biofilm formation (Lu and Collins, 2007). Following this,

engineered depolymerase could be effective in A. baumannii. As

our comprehension of bacteriophage therapy advances, the

engineered phage-depolymerases could become a viable solution

for biofilm management across various settings. By synthesizing

biofilm-degrading enzymes by genetic engineering during the

infection process, these phages can simultaneously target bacterial

cells and the biofilm matrix, resulting in more efficient biofilm

eradication compared to traditional bacteriophage treatments. This

underscores the promise of employing engineered enzymatic

bacteriophages in combating bacterial biofilms, showcasing the

benefits of synthetic biology in addressing both medical and

industrial challenges (Lu and Collins, 2007). Advancements in

DNA sequencing and synthetic biology present promising

avenues for the enhancement of phage-derived enzymes-based

antimicrobials, providing critical solutions to address the

antibiotic crisis. Comprehensive analysis of the uncharacterized

functional proteins in A. baumannii phages, alongside the

development of phage-derived enzyme formulations, can

significantly improve the efficacy and expand the scope of

phage applications.

Despite the promising in vitro capabilities of phage

depolymerases in polysaccharide degradation, clinical trials

assessing their therapeutic effectiveness remain scarce. Further

investigation is essential to thoroughly understand the clinical

utility of phage depolymerases. This includes the development of

robust delivery systems to guarantee the stability of depolymerases

during storage and transport and their precise delivery to targeted

sites while ensuring safety.
6 Conclusion

Phages represent a naturalistic solution in combating MDR

strains, offering a novel approach to addressing antibiotic

resistance. Depolymerases, derived from phages, present a distinct

mechanism for combating antibiotic-resistant pathogens, mitigating

the risk of resistant strain development. These phage-derived

depolymerases exhibit potent antimicrobial properties as alternative

antibiotic, in combination with antibiotic, in phage cocktails and as

adjuvants by targeting bacterial capsular polysaccharide, particularly

effective against biofilm-related infections. This strategy signifies a

significant avenue in the ongoing battle against antibiotic resistance.

A number of depolymerases from several studies have been identified

as promising alternatives to antibiotics against A.baumannii,
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including TSP from the jAB6 phage, Dp49, and Dpo71. However,

further research is warranted to identify and characterize additional

depolymerases capable of targeting a diverse range of bacterial species

and strains comprehensively. Such endeavors hold the potential to

significantly contribute to the development of novel antimicrobial

strategies and enhance our ability to combat infectious diseases

caused by antibiotic-resistant pathogens.
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