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Extracellular vesicles (EVs) are membrane-bound vesicles secreted by all cell types

that play a central role in cell-to-cell communication. Since these vesicles serve as

vehicles of cellular content (nucleic acids, proteins and lipids) with the potential to

cross biological barriers, they represent a novel attractive window into an otherwise

inaccessible organ, such as the brain. The composition of EVs is cell-type specific

and mirrors the physiological condition of the cell-of-origin. Consequently, during

viral infection, EVs undergo significant changes in their content and morphology,

thereby reflecting alterations in the cellular state. Here, we briefly summarize the

potential of brain-derived EVs as a lens into viral infection in the central nervous

system, thereby: 1) uncovering underlying pathophysiological processes at play and

2) serving as liquid biopsies of the brain, representing a non-invasive source of

biomarkers for monitoring disease activity. Although translating the potential of EVs

from research to diagnosis poses complexities, characterizing brain-derived EVs in

the context of viral infections holds promise to enhance diagnostic and therapeutic

strategies, offering new avenues for managing infectious neurological diseases.
KEYWORDS

extracellular vesicles, neurotropic viruses, biomarker, pathogenesis, herpes simplex,
polyomavirus, Zika virus, HIV
1 Introduction

Extracellular vesicles (EVs) are membranous structures that are secreted by all cell types

and that are found in all body fluids, as well as tissue culture supernatants (van Niel et al.,

2018). While the term `extracellular vesicles` is used to annotate all cell-derived

membrane-delimited vesicles, these structures are highly divergent and can be divided
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into two main groups, namely exosomes and microvesicles, that are

characterized based on their biogenesis, content, morphology, and

functional atributes (van Niel et al., 2018). Exosomes, referred to as

small EVs, are the most widely studied and comprise a size

distribution ranging from 30 nm to 150 nm (Johnstone et al.,

1987). Exosomes arise from the inward budding of early endosomes

that enables formation of intraluminal vesicles (ILVs) within

multivesicular endosomes (MVEs) (Harding et al., 1984). MVEs

can fuse with the plasma membrane, releasing the ILVs, now

referred to as exosomes, into the extracellular space (Pan et al.,

1985; Doyle and Wang, 2019). Contrary to exosomes, microvesicles

bud directly from the plasma membrane into the extracellular

environment and have a size distribution ranging from 100 nm to

1000 nm (Tricarico et al., 2017). While, historically characterized as

means of eliminating cellular waste (Johnstone et al., 1987), it is

now established that EVs play a critical role in intercellular

communication, transporting cellular components such as

microRNAs, mRNAs, and DNAs, lipids and proteins, in both

physiological and diseased conditions (Colombo et al., 2014; Lo

Cicero et al., 2015; Yanez-Mo et al., 2015; van Niel et al., 2018). The

transfer of these molecules via EVs can have a range of effects on

recipient cells, including alteration of gene expression, modulation

of signaling pathways, induction of phenotypic changes, and

influence on the cellular behavior (Raposo et al., 1996; Valadi

et al., 2007; van Niel et al., 2018). The composition of EVs is cell

type-specific and determined by the physiological state of the cell,

along with environmental stimuli (Minciacchi et al., 2015). Here, we

compile evidence for the potential of EVs to enhance our

understanding of the brain and its associated disease mechanisms,

particularly in the context of viral infections. Additionally, we

will briefly review the challenging potential of EVs as new

disease biomarkers.
2 EVs from health to infection

2.1 EVs in the brain during
physiological conditions

The central nervous system (CNS), being comprised of highly

divergent populations of neuronal or glial cells generated in a

spatiotemporal manner, stands as one of the most intricate

structures in the body. The importance of EVs in intercellular

communication in the CNS has been extensively characterized

(Fruhbeis et al., 2012; Kramer-Albers and Hill, 2016). EVs might

have a central role in neural development (Edlund and Jessell, 1999;

Bahram Sangani et al., 2021) by harboring neurodevelopmental

signaling proteins with the capacity to induce neural progenitor

proliferation and differentiation as demonstrated in vitro and in

vivo in developing mouse neural models (Sharma et al., 2019).

Moreover, EVs were also found to have neuroprotective function(s)

by assisting in the clearance of b-amyloid from the CNS in vivo

(Yuyama et al., 2014), or to protect human brain endothelial cells

from oxidative stress as shown in vitro (Liu et al., 2017). EVs also

have a role in maintaining and enhancing synaptic plasticity

(Graykowski et al., 2020). Neuron-derived EVs were found to
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contain synaptic proteins and upon internalization by cultured

neurons, promoted dendritic spine formation through BDNF-

TrkB-mediated signaling. Moreover, these neuron-derived EVs

were able to preserve neuronal complexity during nutrient

deprivation (Solana-Balaguer et al., 2023).
2.2 EVs and viral infection

Besides their involvement in normal physiological conditions in

the brain, EVs have also been implicated in mediating a pathological

effect on recipient cells. Indeed, mounting evidence suggests a close

link between EVs and viruses, as viruses often rely on the same

cellular machinery involved in EV biogenesis for their own

replication and release into the extracellular milieu (Bello-Morales

et al., 2020). Viruses may even utilize EVs as a means of propagation

to neighboring cells (Moulin et al., 2023). Viruses typically

categorized as non-enveloped, such as hepatitis A virus (HAV)

(Feng et al., 2013), Coxsackievirus (Robinson et al., 2014), rotavirus

and norovirus (Santiana et al., 2018) have been demonstrated to be

enclosed within membrane vesicles when secreted by cells. The

encapsulation of multiple virions/genomes within a single EV

allows for the delivery of a higher multiplicity of infection,

thereby increasing the possibility of productive infection and

enabling the replacement of faulty proteins or particles (Troyer

and Tilton, 2021). Moreover, the physical encapsulation by EVs also

offers protection against neutralizing antibodies as has been

reported for herpes simplex virus 1 (HSV-1) (Heilingloh et al.,

2015; Bello-Morales et al., 2018), HAV (Feng et al., 2013), Hepatitis

C virus (HCV) (Ramakrishnaiah et al., 2013), and Hepatitis E virus

(HEV) (Nagashima et al., 2014).

On the other hand, EVs play a crucial role in regulating viral

infections by serving as carriers of viral components or

immunomodulatory molecules that can have either a pro- or

anti-viral effect on recipient cells (Perez et al., 2019). For instance,

EVs released by HIV-1 infected primary CD4+ T lymphocytes were

shown to deliver negative factor protein (Nef) to nearby cells,

licensing them for viral infection (Arenaccio et al., 2014).

Conversely, EVs can also serve as carriers of anti-viral mediators

such as human cytidine deaminase APOBEC3G, known for its role

in cellular defense against retrovirus (Khatua et al., 2009) or,

stimulator of interferon genes (STING), which can activate the

innate immune response against viruses like HSV-1, limiting viral

spread (Deschamps and Kalamvoki, 2018). Similarly, EVs

containing viral nucleic acids, such as HCV RNA (Dreux et al.,

2012) or Epstein-Barr virus (EBV) polymerase III-transcribed

noncoding RNAs (EBERs) (Baglio et al., 2016) can induce an

innate immune response in recipient cells.

Understanding how EVs facilitate or hinder viral entry,

replication or spread relies heavily on the precise isolation of

these two populations. However, due to their similar size and

buoyant density, separating EVs from free virions presents a

significant hurdle (Arakelyan et al., 2017; Kutchy et al., 2020).

Techniques for separation include targeting EV specific membrane

proteins (CD63, CD9, CD81) on the surface of EVs (Thery et al.,

2018; Welsh et al., 2024), or exploiting the migration differences
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between EVs and viruses using Iodixanol velocity gradient (Konadu

et al., 2016). Nevertheless, assessing EV purity from virus-infected

cells is challenging as the border between EVs and some enveloped

viruses remains ill-defined (Nolte-’t Hoen et al., 2016). Nonetheless,

new technics such as high-throughput flow cytometry may enable

future discrimination of EV and virus particles (Nolte-’t Hoen et al.,

2012; Arakelyan et al., 2015).
3 Neurotropic viruses and EV
hijacking: example of brain infections

Examining EVs in the context of viral infection might shed light

into disease mechanisms, particularly in inaccessible organs such as

brain. Here, we focus on selected viruses that can invade the CNS

and the role of EVs in their interaction with CNS target cells.
3.1 Flaviviruses

The unique evolutionary advantages offered by EVs have also

been harnessed by neurotrophic viruses belonging to the family of

Flaviviridae. This includes Zika virus (ZIKV), which have received

major attention for its propensity to evoke serious neurological

injury during the early stages of human development (Brasil et al.,

2016). Furthermore, major progress has been achieved using mouse

and non-human primate models, revealing that ZIKV circumvents

host cellular machinery through a mechanism referred to as the

“secretory autophagy” or “exosome pathway” process that may

facilitate viral vertical transmission from trophoblast to fetal cells

during pregnancy (Cugola et al., 2016; Zhang et al., 2017; Wu et al.,

2023). To further elucidate the role of EVs in ZIKV infection within

the developing fetal brain, EVs from cultured ZIKV-infected mouse

neurons were analyzed for viral content and potential to mediate

viral infection to uninfected cortical neurons (Zhou et al., 2019).

EVs from infected cells were shown to comprise ZIKV RNA and

proteins that were highly infectious and resistant to RNase activity

and antibody neutralization treatment. In the same study, ZIKV

was shown to induce both the activity and gene expression of

neutral sphingomyelinase SMPD3 (nSMase2) in cortical neurons.

This induction facilitated infection and transmission of ZIKV

through EVs, potentially leading to severe neuronal death. Such

neuronal damage may result in neurological manifestations, such as

microcephaly, in the developing embryonic brains (Zhou et al.,

2019). Similar observations were done on EVs derived from

Japanese Encephalitis virus (JEV) -infected microglial cells which,

upon internalization by neurons, induced caspase activation and

neuronal injury (Mukherjee et al., 2019).
3.2 Herpesviruses

HSV-1, a prevalent neurotropic virus, typically infects sensory

neurons, traveling to trigeminal ganglia through retrograde axonal

transport (Marcocci et al., 2020; Zhu and Viejo-Borbolla, 2021). In

rare cases, the virus can infect the brain parenchyma, particularly
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the temporal lobes, causing a herpes simplex meningo-encephalitis

(Marcocci et al., 2020). EVs from HSV-1-infected human

oligodendroglial HOG cells were shown to propagate viral

infection to Chinese hamster ovary (CHO) cells, which are

normally resistant to free virions, suggesting a role for EVs in

broadening HSV-1 tropism and viral immune evasion (Bello-

Morales et al., 2018). More recently, EVs from HSV-1-infected

epithelial cells were demonstrated to exhibit an upregulation of

proteins with the capacity to promote neurite outgrowth and

subsequent viral spread to neurons (Sun et al., 2024).
3.3 Human Immunodeficiency Virus (HIV)

EVs might also contribute to the neurotoxicity associated with

cognitive impairment in patients suffering from acquired

immunodeficiency syndrome. In a study investigating the impact

of opiate drug abuse on the progression of HIV-associated

neurocognitive disorder, EVs derived from astrocytes treated with

HIV tat protein and morphine was shown to contain an increased

level of miR-29b. Upon uptake by human neuronal cell lines in

culture, this heightened miR-29b content led to neuronal death

through the targeting and downregulation of platelet-derived

growth factor-B (PDGFB) expression (Hu et al., 2012).

Furthermore, EVs from HIV tat-exposed primary human fetal

astrocytes contained increased levels of miR-7 that induced

synaptic injury through the downregulation of neuronal

neuroligin 2 (NLGN2) in recipient neurons (Hu et al., 2020). In a

separate study, HIV Nef protein was found to associate with

microglia-derived EVs and, using an in vitro model of the blood-

brain barrier (BBB), was shown to compromise the permeability

and integrity of the BBB (Raymond et al., 2016). Moreover, these

Nef-containing EVs triggered the upregulation of Toll-like

receptor-induced cytokines and chemokines, suggesting a role of

Nef-containing vesicles in neuroinflammation and subsequent CNS

injury observed during HIV-associated neurocognitive disorder

(HAND) (Raymond et al., 2016). Additionally, exposure of

neurons to Nef-containing astrocyte EVs resulted in the

suppression of neuronal action potential and induction of

oxidative stress and neurotoxicity (Sami Saribas et al., 2017).
3.4 Polyomaviruses

Recent studies have focused on the involvement of EVs in the

dissemination of JC polyomavirus (JCPyV) in the CNS. JCPyV is the

causative agent of progressive multifocal leukoencephalopathy, a

severe demyelinating disease of the CNS that results in the

formation of lesions across the brain parenchyma (Padgett et al.,

1971; Cortese et al., 2021). We have recently shown that JCPyV alters

the proteomic content of EVs from infected human induced

pluripotent stem-cell derived astrocytes, which resulted in a

signature highly reflective of infected cells, yet starkly different from

that of EVs generated under inflammatory, non-viral, conditions

(Oberholster et al., 2023). The involvement of EVs in the in vitro

propagation of JCPyV has been demonstrated in different cell types,
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suggesting an alternative route of dissemination beyond the

conventional release of free virus particles (Morris-Love et al., 2019;

Morris-Love et al., 2022). Moreover, it was demonstrated that EVs

from JCPyV-infected choroid plexus epithelial cells were able to

transmit viral infection to naïve glial cells that lacked the alleged viral

attachement receptor, namely lactoseries tetrasaccharide c (O’Hara

et al., 2020). These data suggest that JCPyV infection could be, at least

partially, independent of the virus attachment receptor. Furthermore,

JCPyV VP1 capsid protein and genomic DNA of the archetype

sequence was found to associate with plasma derived EVs from HIV

patients, suggesting a potential role for EVs in JCPyV spread in vivo

and entry into the CNS (Scribano et al., 2020). However, due to

limitations in modeling JCPyV infection in the brain, the significance

of EVs in the dissemination of JCPyV within the CNS

remains unclear.

Interestingly, since the contents of EVs from infected or healthy

cells differ profoundly in their composition (Meckes et al., 2013;

Oberholster et al., 2023), EVs offer a promising avenue for

understanding the complex mechanisms at play in the context of

viral infection in the brain. This, in turn, might pave the way toward

the development of innovative diagnostic tools and therapeutic

interventions targeting neurological diseases.
4 EVs as a source of biomarkers for
neurological diseases

Identifying biomarkers for neurological diseases, including those

that result from viral infections, is especially challenging as most

neurodegenerative disorders are confined to 1) an inaccessible organ,

2) a distinct region of the brain and 3) a particular subset of cells.

However, various CNS cell types have been demonstrated to secrete

EVs, including oligodendrocytes, neurons and astrocytes (Bakhti et al.,

2011; Wu et al., 2017), suggesting that brain-derived EVs in body fluids

could offer a non-invasive means of obtaining a representation of the

entire brain and sustain new biomarker characterization.

Indeed, EVs offer multiple advantages as a unique source of new

biomarkers due to their specificity, stability, ability to cross

biological barriers and non-invasive sampling. Because the

contents of EVs are shielded from degradation by DNases,

RNases, and proteases, the characterization of EVs isolated from

any biofluid allows for the identification of robust biomarkers, as

opposed to the analysis of plain blood, urine, or CSF (Boukouris and

Mathivanan, 2015).

The potential of EVs to cross biological barriers, including the

BBB, has opened avenues in which CNS-derived EVs found in the

CSF and in the blood could serve as non-invasive means to gain

valuable insights into the physiological state of the brain (Ramos-

Zaldivar et al., 2022). In patients with Parkinson’s disease (PD),

multiple system atrophy (MSA) or progressive supranuclear palsy

(PSP), plasma levels of oligodendrocyte- and neuron-derived EVs

were shown to be increased compared to disease control group

(Ohmichi et al., 2019). In AD patients, as compared to patients with

frontotemporal dementia, neuron-derived blood exosomes were

found to have higher levels of lysosome-associated membrane

protein 1 (LAMP1) and cathepsin D (Goetzl et al., 2015).
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Another study found that astrocyte-derived EVs contained

elevated levels of classical and alternative complement pathway

proteins in AD patients as compared to matched controls (Goetzl

et al., 2018). Furthermore, the analysis of EVs might enable the

enrichment of low abundant proteins that are normally masked by

high abundant ones, such as albumin, in crude biofluids (Upadhya

et al., 2020). Yet, protein composition within EVs can be influenced

by various factors, such as sample handling and storage conditions,

necessitating standardized isolation and detection methods.

Among other cargos, nucleic acids encapsulated within EVs,

including microRNAs (miRNAs), or messenger RNAs (mRNAs),

and DNA fragments, have been demonstrated to reflect disease-

specific molecular signatures, facilitating early detection and

monitoring of disease progression such as mainly reported in the

context of neurodegeneration (Raghav et al., 2022; Lim et al., 2023)

or primary CNS tumors (Zhang et al., 2023; Hallal et al., 2024).

Despite being an attractive source of EV-associated biomarkers,

accurate EV-RNA/DNA quantitation faces key challenges due to

low yields, influenced by sample source and isolation methods,

further impacting data interpretation (Hill et al., 2013; Saugstad

et al., 2017; Gandham et al., 2020). Overcoming these hurdles will

be essential for reliable EV RNA/DNA characterization, particularly

in disease diagnosis and therapeutic development.

Lipids associated with EVs, even if less studied to date especially

as potential biomarkers, also may play pivotal roles in cellular

signaling and neurotransmission within the CNS. Alterations in

lipid profiles of CNS EVs may signify cellular dysfunction and

disease progression, offering novel avenues for biomarker discovery

such as envisioned in PD or AD (Vanherle et al., 2020). However,

comprehensive lipidomic analysis of EVs requires specialized

equipment and expertise further hindering transfer into routine

laboratory testing as diagnosis or prognostic markers.

Another challenge in approaching CNS specific biomarkers is

establishing tissue-specific EV isolation technics. To isolate brain-

derived EVs from the blood, current strategies are typically based on

immunoprecipitation techniques that utilize antibodies targeting

cell-type specific markers: oligodendrocyte-myelin glycoprotein

(MOG) for oligodendrocytes, neural cell adhesion molecule L1

(L1CAM) for neurons, and glutamate aspartate transport protein

(GLAST) for astrocytes. However, the reliability of these markers

for isolating ‘brain-derived’ EVs has been questioned, as these

markers are also widely expressed by cells outside the CNS

(Kramer-Albers and Hill, 2016). Furthermore, in vitro studies

have suggested that these markers may not consistently be

incorporated into EVs (Norman et al., 2021; You et al., 2022).

Nonetheless, since brain-derived EVs in the periphery might

present a real-time source of information relevant to non-

accessible organ such as the brain, efforts are underway to

identify new brain cell-type specific membrane makers. Research

about EVs as a diagnostic tool for viral infectious diseases is still in

its early stages, yet it holds significant promise. CSF EVs derived

from glial cells, neurons and the choroid plexus of patients with

HIV-associated neurocognitive disorders were shown to comprise

proteins involved in stress responses and immune/inflammatory

responses, suggesting their potential as a source of biomarkers to

neurological disease activity (Guha et al., 2019). In another study,
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plasma neuron-derived EVs from HIV-positive patients with

neurological complications showed an enrichment of

neurofilament-light chain (NFL), high mobility group box 1

(HMGB1) and amyloid beta (Ab) proteins as compared to

controls (Sun et al., 2017). More recently, neuron-derived EVs

isolated from patients experiencing long term effects of coronavirus

disease 2019 (COVID-19) were found to contain elevated levels of

proteins indicative of neuronal damage as compared to pre-

COVID-19 controls (Tang et al., 2024). As such, neuron-derived

EVs might provide a non-invasive source of biomarkers to identify

cognitive impairment related to HIV-infection. Similarly, plasma-

derived EVs expressing the astrocytic marker, glial fibrillary acidic

protein (GFAP), were significantly increased in patients suffering

from HAND as compared to patients with normal cognition,

further supporting the relevance of brain-derived EVs as

indicators of neuronal injury (de Menezes et al., 2022).

Finally, the translation of EV research into clinical applications is

a concern, particularly regarding their potential as a novel source of

biomarkers. Indeed, before EVs can be widely accepted as disease

biomarkers, it is imperative to overcome the technical challenges

posed by their isolation, characterization, methodological
Frontiers in Cellular and Infection Microbiology 05
standardization, and reporting (Van Deun et al., 2017; Roux et al.,

2020; Welsh et al., 2024). The chosen method for isolating EVs

significantly affects both sample yield and purity. Currently, there is

no unified standard for exosome separation and purification. Indeed,

it exists various methods including differential ultracentrifugation

(UC), density gradient ultracentrifugation (DGUC), size exclusion

chromatography (SEC), filtration, precipitation or immune-based

extraction or more recently microfluidic approaches; each of those

have their advantages and limitations (Xu et al., 2016; He et al.,

2022). Technical challenges in isolating EVs consistently, along with

complex analysis techniques, may hinder their use as powerful

biomarkers. Pre- and post-analytical variability can also impact the

presence of non-vesicular particles together with the surface and

content of specific EVs (Clayton et al., 2019; Buzas, 2022; Görgens

et al., 2022). Prioritizing reproducibility and ease-of-use is crucial for

effective biomarker discovery in any diseases. All these challenges are

currently addressed. Guidelines and position papers have been

recently published for blood and CSF (Hendrix, 2021; Lucien

et al., 2023; Sandau et al., 2024). Resolving these challenges is

essential for harnessing the full diagnostic potential of EVs in

clinical settings.
B

C

A

FIGURE 1

Exploring the promise of extracellular vesicles (EVs) in viral infection of the brain. EVs might play a vital role in uncovering the intricate cellular
processes within an inaccessible organ such as the brain, by bridging the gap between laboratory-based discoveries and real-life observations. (A)
The intricate interplay between EVs and viruses in vivo operates on a multifaced level. EVs can serve as a mean of viral propagation or act as carriers
of pro- or anti-viral mediators that might contribute to neurodegeneration or breakdown of the blood-brain-barrier (BBB). (B) Improved in vitro
human models are warranted to delve into the role of EVs in the propagation of neurotropic viruses and to study EV dynamics. Such models might
include organoid cultures or microfluidic systems mimicking the cellular composition and microenvironment of the CNS compared to traditional cell
culture models. (C) The potential of EVs to cross biological barriers provides a mean by which brain-derived EVs in the periphery can be utilized as a
relevant source of information. Indeed, the elucidation of key cellular mechanisms at play in the brain during viral infection could lead to the
identification of robust biomarkers using the protein, nucleic acid, or lipid EV-associated signatures that are unique to viral infections. However,
challenges such as sensitive isolation methods need to be addressed for standardized and efficient disease diagnosis and monitoring, thus ultimately
improving patient care. Illustration created with BioRender.com.
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5 Discussion

The intricate relationship between EVs and viruses operates on

multiple levels. EVs might serve as a vehicle of viral propagation.

Moreover, transported viral or cellular content might evoke distinct

responses in recipient cells (Figure 1A). As per virus point-of view,

these responses can either be advantageous, priming cells for

infection, or detrimental, hindering viral replication. Nevertheless,

our comprehension of the role of EVs in viral infection, especially

those pertaining to the CNS, remains incomplete, primarily because

of the difficulty of isolating single cell specific EVs in vivo. While

significant insights have been gained through cell culture models,

the complexity of the CNS cellular composit ion and

microenvironment is not fully captured yet. Similarly, while

animal models offer valuable insights into EV dynamics in a

physiological context, they may fail to mimic certain

developmental or pathological features that are unique to

humans, including specific human host-pathogen interactions

(Figure 1A) (Bárbara and Sónia, 2017; Swearengen, 2018). To

address these challenges, future research should focus on

developing more physiologically relevant in vitro human models,

such as organoid cultures or microfluidic systems, that better mimic

the complexity of the CNS microenvironment (Figure 1B). The

capacity of EVs to cross biological barriers, including the BBB,

means that brain-derived EVs could be identified in the plasma.

Characterization of brain-derived Evs in the blood might thus be

used for diagnostic and prognostic assessment of various

neurological disorders and real-time monitoring of patient

responses to targeted therapies. However, current techniques for

evaluating brain-derived EVs in CSF and blood face challenges due

to the need for sensitive and specific isolation methods.

Subsequently, there is an urgent need to standardize brain-

derived EV isolation and identification methods to support

efficient disease diagnosis (Figure 1C) (Sandau et al., 2024).

Nevertheless, while research into brain-derived EVs in the context

of virus-induced neurological diseases is still in its infancy, it holds
Frontiers in Cellular and Infection Microbiology 06
significant promise as EVs 1) could serve as valuable sources of

information that can help to elucidate intricate cellular processes

within an inaccessible organ such as the brain and 2) hold promise

for advancing clinical diagnoses.
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