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Early immune response to
Toxoplasma gondii lineage III
isolates of different
virulence phenotype
Aleksandra Uzelac*, Ivana Klun and Olgica Djurković-Djaković

Institute for Medical Research, University of Belgrade, Belgrade, Serbia
Introduction: Toxoplasma gondii is an intracellular parasite of importance to

human and veterinary health. The structure and diversity of the genotype

population of T. gondii varies considerably with respect to geography, but three

lineages, type I, II and III, are distributed globally. Lineage III genotypes are the least

well characterized in terms of biology, host immunity and virulence. Once a host is

infected with T.gondii, innate immune mechanisms are engaged to reduce the

parasite burden in tissues and create a pro-inflammatory environment in which the

TH1 response develops to ensure survival. This study investigated the early cellular

immune response of Swiss-Webster mice post intraperitoneal infection with 10

tachyzoites of four distinct non-clonal genotypes of lineage III and a local isolate of

ToxoDB#1. The virulence phenotype, cumulative mortality (CM) and allele profiles

of ROP5, ROP16, ROP18 and GRA15 were published previously.

Methods: Parasite dissemination in different tissues was analyzed by real-time

PCR and relative expression levels of IFNg, IL12-p40, IL-10 and TBX21 in the

cervical lymph nodes (CLN), brain and spleen were calculated using the DDCt
method. Stage conversion was determined by detection of the BAG1 transcript in

the brain.

Results: Tissue dissemination depends on the virulence phenotype but not CM,

while the TBX21 and cytokine levels and kinetics correlate better with CM than

virulence phenotype. The earliest detection of BAG1 was seven days post infection.

Only infection with the genotype of high CM (69.4%) was associated with high T-

bet levels in the CLN 24 h and high systemic IFNg expression which was sustained

over the first week, while infection with genotypes of lower CM (38.8%, 10.7% and

6.8%) is characterized by down-regulation and/or low systemic levels of IFNg. The
response intensity, as assessed by cytokine levels, to the genotype of high CM

wanes over time, while it increases gradually to genotypes of lower CM.

Discussion: The results point to the conclusion that the immune response is not

correlated with the virulence phenotype and/or allele profile, but an early onset,

intense pro-inflammatory response is characteristic of genotypes with high CM.

Additionally, high IFNg level in the brain may hamper stage conversion.
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1 Introduction

Toxoplasma gondii is a generalist zoonotic protozoan parasite

with a complex life cycle involving a large number of mammal and

bird species as intermediate hosts and only the Felidae as definitive

hosts. T. gondii is transmitted by food and water and is capable of

surviving in the environment under various conditions. Several

hundred genotypes of T. gondii have been identified and population

genetics revealed a structure of six clades made up of a number of

lineages and fifteen defined haplogroups (Shwab et al., 2014). Of the

genotypes, only three are known as the archetypes, the clonal

genotypes ToxoDB#10 (type I), ToxoDB#1 (type II) and

ToxoDB#2 (type III), which represent the three globally

distributed lineages. The archetypes differ by virulence phenotype

and frequency of occurrence. As they were among the first to be

isolated and cultivated in the laboratory, they have become the

model parasites. Natural infection with T. gondii primarily occurs

through ingestion of food and/or water in which tissue cysts which

contain dormant bradyzoites or oocysts which contain sporozoites,

a developmental stage which occurs after sexual reproduction of the

parasite in definitive hosts, are present. Although less frequent,

vertical transmission of the free-living stage (tachyzoites) from a

gravid host to the offspring is also possible (Tenter et al., 2000; Hill

and Dubey, 2002). Once the host becomes infected, the immune

system is permanently activated, since the parasites are never

eliminated, partly due to intracellular encystation preferentially in

neurons (Ferguson and Hutchison, 1987; Fischer et al., 1997; Cabral

et al., 2016). Generally, immunocompetent individuals may be

asymptomatic or have only mild symptoms during acute infection

and remain without clinical manifestation for life without any

medical treatment. Direct interactions between the parasite and

host immune cells occur primarily during early infection, during the

parasite’s tachyzoite stage. As tachyzoites invade and kill infected

cells and/or are digested, parasite proteins are secreted along with

immunostimulatory molecules and various biological debris which

act as antigen and/or ligands. Upon stage conversion into

bradyzoites, the repertoire of available proteins changes.

Remarkably, this occurs apparently within three to five days post

inoculation, as evident through observation of tissue cysts in the

brain of experimentally infected laboratory mice (Dubey et al.,

1998). Along with responses in the brain, those mediated by cervical

lymph nodes (CLN) and the spleen are important in the context of

early T. gondii infection (Glatman Zaretsky et al., 2012; Lee et al.,

2019; Pereira et al., 2019; Kovacs et al., 2022). Experimental

infection models with archetypal strains using laboratory mice

showed that the immune response varies by parasite genotype,

while survival is determined by its virulence phenotype (Sibley and

Boothroyd, 1992; Zhang et al., 2018). Most mouse strains have a 1%

chance of survival when infected by acutely virulent genotypes such

as ToxoDB#10 and up to 70% with genotypes of low virulence, such

as ToxoDB#2, while survival chances after infection with

intermediately virulent genotypes (ToxoDB#1) are somewhere in

between (Sibley and Boothroyd, 1992). Immunity is mediated

through the development of the CD4+ T helper cell type 1

response (TH1), which depends on early secretion of pro

inflammatory cytokines, most importantly IFNg by group 1
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innate lymphoid (ILC1) cells, which is critical for host survival

(Suzuki et al., 1988; Denkers et al., 2004; Goldszmid et al., 2012;

López-Yglesias et al., 2018). IFNg production is induced by IL-12,

secreted primarily by dendritic cells (DC), specifically cDC1 in mice

(Sher et al., 2017). As overproduction of IFNg and other pro

inflammatory cytokines can lead to immunopathology, the

intensity of the TH1 response must be efficiently controlled (Yap

and Sher, 1999; Sasai and Yamamoto, 2019; Khan and Moretto,

2022). A key cytokine which dampens the pro inflammatory

response in T. gondii infection is IL-10, secreted early on by

macrophages and later by lymphocytes. Macrophage interaction

with T. gondii tachyzoites, immune responses and activation

phenotype (classical, M1 or alternative, M2), have been shown to

be related to the virulence of the infecting genotype (Jensen et al.,

2011; Zhao et al., 2014; Hassan et al., 2015). The transcription factor

TBX21, or T-bet, is a lineage-determining factor for multiple

immune cell types (CD4, CD8, NKT, NK and B cells), induced by

inflammatory signals to coordinate different transcriptional

programs for effective innate and adaptive immunity to

intracellular pathogens (Kallies and Good-Jacobson, 2017;

Pritchard et al., 2019; Hertweck et al., 2022). Although the

significance of T-bet in facilitating polarization of CD4+ to the

TH1 phenotype through activation of IFNg and other pro

inflammatory cytokines was established long ago (Lighvani et al.,

2001; Denkers et al., 2004), it has been recently demonstrated to be

critical for the maintenance of DCs during early T. gondii infection

(Mashayekhi et al., 2011; López-Yglesias et al., 2018). Early cellular

immune response to T. gondii tachyzoites is initiated in part

through the effects exerted by intra-and extracellularly secreted

parasite ‘effectors’, rhoptry proteins (ROP) and dense granules

(GRA), some of which have been identified as virulence factors,

such as ROP5, ROP16, ROP18 and GRA12 and GRA15 (Su et al.,

2002; Saeij et al., 2006; Young et al., 2019; Lockyer et al., 2023).

Some, like GRA12, appear to be ‘universal’ virulence factors,

mediating virulence independently of the murine host genetics,

while others manifest virulence only in a specific genetic context. In

general, virulence factors promote parasite survival through

blocking, activating and/or interfering with host cell protein

binding, signaling and/or transcription. Sequence and functional

analyses of these virulence factors in the archetypes revealed the

existence of different alleles (I, II, III) associated with specific host

immune responses. For instance, ROP18 I and II phosphorylate

IRG proteins and prevent GTPase function, thus protecting the

parasitophorous vacuole from destruction, while ROP18 III is not

expressed. The activity of ROP18 is modulated by the pseudokinase

ROP5, with archetypes I (ToxoDB#10) and III (ToxoDB#2) having

similar ROP5 allele clusters, different from archetype II

(ToxoDB#1), but each archetype has a different locus structure

(Reese et al., 2011; Behnke et al., 2012). ROP16 I and III, but not

ROP16 II, constitutively activate STAT3/6 in immune cells, thereby

decreasing IL-12 production by macrophages, inducing arginase

(ARG1) and shutting down nitric oxide synthase (NOS2)

production. This leads to the polarization of macrophages to the

alternatively activated (M2) phenotype, associated with wound

healing and tolerance instead of microbicidal activity (Butcher

et al., 2011; Jensen et al., 2011). GRA15 II, but not the other two
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alleles, induces NF-kB translocation, which results in the

production of pro- and anti-inflammatory cytokines, including

IL-12. While the archetypes have been instrumental in elucidating

cellular immunity to T. gondii, a far greater diversity of mechanisms

and responses are to be expected with non-clonal genotypes. As a

number of non-clonal genotypes are virulent in mice, and natural

infection with non-clonal genotypes is more common than

previously assumed, understanding immunity to non-clonal

genotypes is important (Marković et al., 2014; Pomares et al.,

2018; Hamilton et al., 2019; Pardini et al., 2019; Schumacher

et al., 2021; Castillo-Cuenca et al., 2023). In this study, the early

immune response to infection with four distinct non-clonal lineage

III genotypes of different virulence phenotypes was investigated

through the relative expression of IFNg, IL12-p40, IL-10 and T-bet

in the CLN, brain and spleen of Swiss Webster (SW) mice, along

with parasite tissue distribution and stage conversion.
2 Materials and methods

2.1 Mice

SW female mice weighing between 20 - 25g were purchased

from the Military Medical Academy in Belgrade and transferred to

the Animal Research Facility at the Institute for Medical Research

(IMR). The mice were acclimated in communal cages (10 per cage)

for 7 – 10 days prior to infection with T. gondii tachyzoites and

subsequently transferred to smaller cages (5 per cage) for the

duration of the experimental infection period. Mice were given

water and food (pellets) ad libitum and were kept at a natural

daylight cycle. The cages were cleaned and fresh bedding, water and

food were provided twice per week. Animals with injuries and/or

those which displayed aggressive behavior were excluded prior to

infection, while the onset and severity of any clinical symptoms was

monitored and assessed daily during the infection period. Animal

experiments were approved by the Ethics Council of the Ministry of

Agriculture, Forestry and Water Management of Serbia Veterinary

Directorate (Decision no. 323–07-05567/2019–05 of 10 July 2019).
2.2 Parasite strains

The genotypes used in this study were all previously described

(Uzelac et al., 2020). T. gondii genotypes G13 (Marković et al.,

2014), EQ39 (ToxoDB#54), EQ 40 (Klun et al., 2017) and K1 were

isolated from animal hearts and are of lineage III. BGD18

(ToxoDB#1) was isolated from a patient (Uzelac et al., 2020). The

isolation protocol is described in Djurković-Djaković et al. (2005).

All isolates except G13 were maintained in vivo for a brief period

after isolation by serial, oral passage of tissue cysts in SW mice (five

passages at an interval of 6 months) before conversion into

tachyzoites and freezing for long term storage. G13 was passaged

15 times. Each isolate was briefly propagated in VERO cells in vitro

(4–6 days), to obtain tachyzoites suitable for experimental

infections described herein. The conversion protocol from tissue

cysts (bradyzoites) to tachyzoites and in vitro propagation are
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described in detail in Uzelac et al. (2020). The CM of SW mice

induced by intermediately virulent genotypes EQ40 and K1 were

69.4% and 38.8%, with (LD50) of 10
2 and 104, respectively (Uzelac

et al., 2020). The CM of the low virulence genotypes G13 and EQ39

(ToxoDB#54) were 10.7% and 6.8%, respectively. The low virulence

phenotype of isolate BGD18 (ToxoDB#1) was experimentally

confirmed. Proliferation rate, lytic capacity as well as ENO2

expression were shown to be higher in isolates of intermediate

virulence (Uzelac et al., 2020).
2.3 Infection protocol

Infections were performed by intraperitoneal inoculation of 500

µL of a suspension containing 10 tachyzoites of each isolate and

gentamicin (1.6 mg/kg) in sterile saline (Hemofarm, Vrsǎc, Serbia)

into each mouse (n=17 per isolate) using an insulin syringe and 18

G needle.
2.4 Organ extraction and homogenization

Per each time point (24h, 3d, 7d and 10 d), 3–5 SW mice

infected with each isolate were sacrificed by cervical dislocation.

Cervical lymph nodes (CLN), the thymus along with mediastinal

lymph nodes (ThyMLN), brains (B) and spleens (S) were extracted

using sterile surgical instruments. The organs were rinsed with

saline (Hemofarm, Vrsǎc, Serbia) and transferred into 2 ml screw-

cap tubes containing sterile 1.4 mm ceramic beads (Omni

International, Kennesaw, GA, USA) and 1 ml of Trizol reagent

(Invitrogen, Carlsbad, CA). Mechanical homogenization was

performed in a Bead Ruptor instrument (Omni International,

Kennesaw, GA, USA) using the maximum setting for 30 sec. The

homogenates were frozen at -20°C for short term, or -70°C for long

term storage until nucleic acid extraction.
2.5 Extraction of nucleic acids and
cDNA synthesis

The extraction of gDNA and total mRNA from whole organ

suspensions using the Trizol reagent were performed according to

the manufacturer’s instructions. The gDNA was resuspended in 300

µL of 0.8 mM NaOH solution, while the mRNA pellet was

resuspended in 200 µL of nuclease free water and the

concentration was estimated using the Qubit 2.0 fluorimeter

(Invitrogen, Carlsbad, CA) according to the manufacturer’s

instructions. Extractions were run in batches of 23 samples, while

one extraction control was included in each run (organ homogenate

from uninfected mouse used as calibrator). 0.5–2 µg of total RNA

was used for conversion into first strand cDNA using the Revert Aid

First Strand cDNA synthesis kit (Thermo Fisher Scientific,

Waltham, MA, USA) according to the manufacturer ’s

instructions. To capture mRNA, the random hexamer oligo was

replaced with OligoDT (Thermo Fisher Scientific, Waltham,

MA, USA).
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2.6 Detection of parasite gDNA

Detection of T. gondii gDNA in organ homogenates targeted the

529bp repetitive element (RE) (AF146527). Each PCR reaction

consisted of 10 mL TaqMan Universal PCR Mastermix (Applied

Biosystems, Foster City, CA, USA), 0.25 mM forward (F) and

reverse (R) primers 5′-AGA GAC ACC GGA ATG CGA TCT-3′;
3’-CCC TCT TCT CCA CTC TTC AAT TCT-5′), 0.10 mM of the

specific TaqMan probe FAM-ACG CTT TCC TCG TGG TGA

TGG CG-TAMRA (Invitrogen, Life Technologies, Carlsbad, CA,

USA) and 3 ml of extracted gDNA (Lélu et al., 2011). An exogenous

internal reaction control was added to each reaction (Thermo

Fisher Scientific, Waltham, MA, USA). The final reaction volume

was 20 ml. The thermal cycling program consisted of the following

steps: 5 min at 95 °C for initial denaturation, followed by 45 cycles

of 15 s at 95 °C for denaturation and 60 s at 60 °C for annealing/

extension. Detection occurred at the end of the 60 °C annealing/

extension step. Amplification and detection were performed in a

StepOnePlus Real Time PCR System (Applied Biosystems, Foster

City, CA, USA). Each sample was run in triplicate and evaluated as

+/- (presence/absence) of T. gondii gDNA. The final result

represents the decision call when 2/3 results matched. Samples

were run in batches on plates, with each plate also containing

several positive (T. gondii gDNA isolated from pure tachyzoites)

and negative control reactions (nuclease-free water).
2.7 Relative quantitation of
gene expression

Expression primers were designed using published sequences

(Table 1), annealing temperatures were adjusted to 55°C. The

relative expression levels of murine IL-10, IL-12p40 and IFN-g
were normalized to b-actin while cDNA synthesized from organs of

uninfected SW mice (n=5) was used for calibration. Relative

quantity was calculated based on the DDCt method with kinetic

PCR efficiency correction. Each PCR reaction contained 10 µl of

PowerUp SYBR Green Mastermix (Applied Biosystems, Foster City,

CA, USA), 20 pmol of each F and R primer (sequences are shown in

table below) 2 µl of cDNA template and RNAse and DNAse free

water in a final volume of 20 µl. The thermal profile consisted of an

initial holding step, 2 min at 50°C to activate UDG, followed by
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polymerase activation for 2 min at 95°C and 40 cycles of three step

PCR: 15 sec at 95°C, 15 sec at 55°C, 60 sec at 72°C. Data collection

was performed during the extension step. Melting curves were

generated after each run using a default thermal dissociation

profile in the StepOnePlus instrument (Applied Biosystems,

Foster City, CA, USA) software. Each reaction was run in

triplicate. SAG1 and BAG1 mRNA were amplified using the same

protocol, but relative expression was not evaluated, instead data

were evaluated as presence or absence of transcript. The positive

control for SAG1 expression were tachyzoites of the RH strain

(ToxoDB#10), while the positive control for BAG1 expression were

tissue cysts of the Me49 strain purified from chronically infected

SW mice. Melting curves were analyzed to verify the presence of

specific peaks (≥80°C) for the analyzed transcripts.
2.8 Statistical analyses

Statistical analyses and graphical representation of the relative

expression data were performed using GraphPad Prism 8. Error

bars represent the standard error of the mean (SEM) derived from

analyzing 3–5 mice. The expression was analyzed using one-way

ANOVA and the Bonferroni post test was applied. The differences

were considered significant when p < 0.05 (*).
3 Results

3.1 Dissemination kinetics

T. gondii gDNA was detected in the least number of tissue

samples (39%) 24 h post- infection (p.i.) and in the greatest

number of samples on day 7 (65%) and day 10 (64%) (Table 2).

Differences between genotypes of low virulence, BGD18 (ToxoDB#1),

G13 and EQ39 (ToxoDB#54) and intermediate virulence, K1 and

EQ40, were detected at all time points after infection. At the earliest

time point, parasite gDNA was detected in 30% versus 50% of tissues

of animals infected with genotypes of low and intermediate virulence,

respectively. At 3 days and 7 days after infection, T. gondii gDNAwas

detected in a greater number of tissues (61% and 71% respectively) of

animals infected with genotypes of low virulence as opposed to

animals infected with intermediately virulent ones (50% and 52%
TABLE 1 Primer sequences used in this study.

Target Forward primer (3`→ 5`) Reverse primer (3`→ 5`)

b-actin CACCACAGCTGAGAGGGAAATC GTTTCATGGATGCCACAGGATTCC

IL-10 CTGTCATCGATTTCTCCCCTGTG GACTCAATACACACTGCAGGTG

IL-12p40 GTATTCAGTGTCCTGCCAGGAG GTCTGGTTTGATGATGTCCCTG

IFN-g GAAAGACAATCAGGCCATCAGC CGGATGAGCTCATTGAATGC

TBX21 (T-bet) CAACAACCCCTTTGCCAAAG GGAACTCCGCTTCATAACTGTG

TgBAG1 GGAGCCATCGTTATCAAAGGAG GATTCCGTCGGGCTTGTAATTAC

TgSAG1 CTTGCGATGTGGCGTTAT GCTTCAGGAATCAAGGAGCTC
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TABLE 2 Distribution kinetics of T. gondii 24h, 3d, 7d and 10d post infection in cervical lymph nodes (CLN), thymus and mediastinal lymph nodes (Thy/MLN), spleen (S) and brain (B).

T. gondii genotypes

EQ39 (ToxoDB#54) K1 EQ40

– – + + + + + + –

– + – + – + – – –

+ na – + + – + – –

– + – – – + + – +

+ + – + + – + + +

+ – – + – – – – –

– – – + – – – – –

+ + + + + + + + –

– + – + + + + + +

– – + – – – – na –

+ + + – – + + + +

+ + + – – – + – +

+ + – + na + + + †

– – – + + – – – †

– – – + + – + – †

+ + + + – + + + †

no detection. No amplification (designated as na in the table) of the internal control was considered a failed reaction. † indicates gDNA was not
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Time
point

Tissue
BGD18 (ToxoDB#1) G13

24 h

CLN + † + – – +

Thy/MLN – † – – + –

S + † – – – –

B – † – + – –

3 d

CLN † – – – – +

Thy/MLN † – + + + na

S † + – + + –

B † + + + + +

7 d

CLN + – + + + +

Thy/MLN + – na – – –

S + + na + + +

B + + + + + +

10 d

CLN + + + – + –

Thy/MLN + + + – – –

S + + + – + +

B + + + + + +

Each column represents one individual mouse, + represents tissues in which T. gondii gDNA was detected and - represent
detected in any of the investigated tissues.
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respectively). At the final time point, T. gondii gDNAwas present in a

greater number of tissues in animals infected with intermediately

virulent genotypes (68% versus 46%). The tissues of two animals

infected with BGD18 were found to be free of parasites 24 h (mouse

2) and 3 days (mouse 1) p.i., however, as only four tissues were

examined, these animals were not omitted from the data analysis.

Tissues of one animal (mouse 3 infected with EQ40) were found to be

free of parasite gDNA 10 days post infection, and as this is a late time

point, at which tissue cysts should be present in the brain, this most

likely indicates that it may not have been infected, and it was

therefore excluded from the data analysis and interpretation.
3.2 Stage conversion

Detection of BAG1 transcripts in brain homogenates was done

at all time points p.i., however the first time it was detected in any of

the mice was at day 7. Detection was overall more successful 10 days

p.i. than 7 days p.i. (Table 3). The expression of SAG1, which was

performed as a control, was not detected before day 7, then

sporadically 7 days p.i. and more consistently 10 days p.i.

(Table 2). BAG1 was successfully detected in 2/3 the brain

homogenates of mice infected with BGD18 (ToxoDB#1) and in 1/

3 infected with EQ39 (ToxoDB#54) 7 days p.i. At 10 days p.i., BAG1

was detected in all three mice infected with BGD18 (ToxoDB#1)

and 2/3 mice infected with K1.
3.3 Kinetics of cytokine expression

The results of the experiments described in sections (b) and (c)

are based on the dissemination results (Table 2).

3.3.1 In cervical lymph nodes
At the earliest time point (24 h) p.i., an up-regulation of the

expression levels of IL12-p40 and IL-10 was detected in the CLN of

the majority of the mice (Figure 1), while IFNg was up-regulated

only in the mice infected with EQ40, K1 and BGD18 (ToxoDB#1)

and down-regulated in the mice infected with G13 and EQ39

(ToxoDB#54). While the levels varied considerably, none of the

differences in cytokine expression were statistically significant at

24 h and 3 days p.i. At 24 h p.i. the highest level of IFNg was

detected in mice infected with EQ40, while the highest level of IL12-

p40 was detected in the mice infected with BGD18 (ToxoDB#1) and
Frontiers in Cellular and Infection Microbiology 06
of IL-10 in mice infected with EQ39 (ToxoDB#54). Three days p.i.,

the expression of all three cytokines in the CLN of mice infected

with EQ40 decreased as compared to the 24 h time point, most

notably of IL-10. IFNg was at this time point still down-regulated in

the mice infected with G13 and EQ39 (ToxoDB#54) while IL-10

increased as compared to the 24 h time point. The differences in

expression of IL12-p40 between mice infected with different

genotypes reached statistical significance only 7 days p.i. The

highest level was present in the mice infected with EQ40. At the

same time point, the level of IFNg was up-regulated for the first time

in the CLN of mice infected with EQ39 (ToxoDB#54), while the

level of IFNg was still down-regulated in the mice infected with G13.

There was an increase in the level of IL-10 in the CLN of all mice

except for those infected with G13 as compared to the previous time

point, with the highest level present in the mice infected with EQ39

(ToxoDB#54). At the final time point, day 10 p.i., there was a

marked increase in expression of all three cytokines in the mice

infected with BGD18 (ToxoDB#1) and K1, while a notable increase

in the level of IL-10 was detected in the CLN of mice infected with

G13, although the differences were not statistically significant due to

considerable heterogeneity among the mice.

3.3.2 In brain and spleen 7 days post infection
The expression at the 7 day time point p.i. was selected based on

the dissemination results. The highest level of IFN was detected in

brain tissues and spleens of the mice infected with EQ40, but

reached statistical significance only in the spleens (Figure 2).

IFN-g was down-regulated in the brain tissues and spleens of the

mice infected with K1 and G13, and also in the spleens of the mice

infected with EQ39 (ToxoDB#54). The IL12-p40 level was

statistically significantly higher in the brain tissues of the mice

infected with EQ40, and down-regulated with K1 and EQ39

(ToxoDB#54), while IL-10 was down-regulated by all genotypes.

IL12-p40 was statistically significantly higher only in the spleens of

the mice infected with BGD18 (ToxoDB#1), but the level was much

lower than in the brain tissues. IL-10 was down-regulated in the

brain tissues of the mice infected with EQ40, K1 and G13 while low

levels were detected in the brain tissues of the mice infected with

BGD18 (ToxoDB#1) and EQ39 (ToxoDB#54).

3.3.3 Kinetics of T-bet expression in cervical
lymph nodes

The kinetics of T-bet expression were analyzed only in the CLN,

due to the very early (24 h p.i.) presence of tachyzoites in this tissue
TABLE 3 SAG1 and BAG1 mRNA presence in brain homogenates in which T. gondii gDNA was detected, 7d and 10d post infection.

T. gondii genotypes

BGD18 (ToxoDB#1) G13 EQ39 (ToxoDB#54) K1 EQ40

7d SAG
+BAG-

SAG-
BAG+

SAG-
BAG+

SAG-
BAG-

SAG-
BAG-

SAG-
BAG-

SAG-
BAG-

SAG
+BAG+

SAG-
BAG-

– – –
SAG-
BAG-

–
SAG-
BAG-

10d
SAG

+BAG+
SAG

+BAG+
SAG

+BAG+
SAG
+BAG-

SAG
+BAG-

SAG-
BAG-

SAG-
BAG-

SAG-
BAG-

SAG-
BAG-

SAG
+BAG+

–
SAG

+BAG+
SAG-
BAG-

SAG-
BAG-

–
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in most of the infected mice. T-bet was analyzed only in the mice

infected with the lineage III genotypes (Figure 3). The results

indicate that T-bet is up-regulated immediately after infection

and remains up-regulated until 10 days p.i. At the 24 h time

point, the highest level of T-bet expression was detected in the

mice infected with EQ40. Overall, the levels were higher in both

intermediately virulent genotypes as compared to the genotypes of

low virulence. At three days p.i., the levels of T-bet in the CLN of

mice infected with the genotypes of low virulence had increased,

while there was a decrease in the CLN of mice infected with the

intermediately virulent genotypes. At the final time point, 10 days

p.i., the levels were similar.
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4 Discussion

In this study, the early immune response elicited by four non-

clonal genotypes of T. gondii lineage III was investigated through

the relative expression of key cytokines (IFNg, IL12-p40 and IL-10)

and the transcription factor, T-bet. Dissemination of tachyzoites

was analyzed by detection of parasite gDNA in different tissues,

while the presence of BAG1 transcript, the canonical marker for

tachyzoite to bradyzoite conversion, was analyzed in the brain as the

preferred site of cyst formation/localization. As the genotypes used

herein all have identical alleles of ROP5 (III), ROP18 (III), ROP16

(I/III) and GRA15 (I), as reported earlier, a low passage isolate of
FIGURE 1

Relative expression levels of IFNg, IL12-p40 and IL-10 in CLN 24 h and 3, 7 and 10 days post infection. Bars from left to right correspond to: EQ40,
K1, BGD18 (ToxoDB#1), G13, EQ39 (ToxoDB#54). The error bars represent SEM, results were analyzed by one-way ANOVA with Bonferroni post-hoc
test (*p < 0.05). P values are shown on the respective graphs, fold change is indicated above bars.
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ToxoDB#1 (BGD18) with allele II at all loci, was used for

comparison (Uzelac et al., 2020). We here used a low dose

infection model (10 tachyzoites/mouse), which is not common,

but was necessary due to the low LD50 of EQ40 (102) in order to

avoid overt clinical symptoms and high inflammation, especially as

intraperitoneal infection has been shown to mediate a more intense

inflammatory response than oral infection (French et al., 2022).

Lymphadenomegaly and/or splenomegaly, which are common even

at early time points in infected mice, were not observed consistently

at any time point after infection, nor could a correlation be made

with the T. gondii genotype and/or virulence phenotype. This is in

contrast with the results of Zhang et al. (2018), who observed

consistent splenomegaly seven and nine days p.i. with RH

(ToxoDB#10) and Me49 (ToxoDB#1). The most likely

explanation is the difference in the inoculum size, as Zhang et al.

(2018) used 100 parasites versus the 10 parasites used in this study.

Predictably, there was a marked increase in our ability to detect

parasite DNA as the infection progressed, due to proliferation and
Frontiers in Cellular and Infection Microbiology 08
accumulation of tachyzoites in host tissues over time (Table 2).

When analyzing the numbers of samples with detectable parasite

DNA by time point, the results indicate that dissemination of

tachyzoites of intermediately virulent genotypes, EQ40 and K1,

peaks very early (24 h) p.i. and remains fairly constant throughout

the observed time period, whereas dissemination of tachyzoites of

low virulence shows an increasing trend, peaking seven days p.i. and

decreasing thereafter. Interestingly, the tissues in which parasite

gDNA was detected most frequently 24 h p.i. were the CLN, three

days p.i. it was the brain, while seven and ten days p.i., the CLN and

the brain had equalized. Parasite gDNA was consistently detected in

the spleens of the majority of infected animals only at the later time

points, seven and ten days p.i., while the detection in the Thy/MLN

was sporadic at all time points. Although different genotypes,

infection models and experimental approaches have been used

here and in Chiebao et al. (2021), the combined results indicate

that more virulent non-archetypal genotypes may disseminate more

rapidly as compared to those of low virulence, which has been
FIGURE 2

Relative expression levels of IL12-p40, IFNg and IL10 in brain and spleen 7 days post infection. Bars from left to right correspond to: EQ40, K1,
BGD18 (ToxoDB#1), G13, EQ39 (ToxoDB#54). The error bars represent SEM, results were analyzed by one-way ANOVA with Bonferroni post-hoc
test (*p < 0.05). P values are shown on the respective graphs, fold change is indicated above bars.
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postulated by a number of earlier studies using archetypes

(Barragan and Sibley, 2002; Saeij et al., 2005; Djurković-Djaković

et al., 2012). Differences in dissemination kinetics may in part be

due to different underlying mechanisms. It has been shown that

archetype I (ToxoDB#10) disseminates as ‘free tachyzoites’, while
Frontiers in Cellular and Infection Microbiology 09
archetypes II (ToxoDB#1) and III (ToxoDB#2) are shuttled by

leukocytes (Lambert and Barragan, 2010; Delgado Betancourt et al.,

2019). Dissemination as ‘free tachyzoites’ may be facilitated by the

high lytic capacity of the acutely virulent ToxoDB#10, which causes

rapid egress of tachyzoites from infected host cells. Since it was
FIGURE 3

Relative expression levels of T-bet in CLN 3 and 10 days p.i. Bars from left to right correspond to: EQ40, K1, BGD18 (ToxoDB#1), G13, EQ39
(ToxoDB#54). The error bars represent SEM, results were analyzed by one-way ANOVA with Bonferroni post-hoc test. Fold change is indicated
above bars.
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shown that EQ40 and K1 do have a higher lytic capacity as

compared to BGD18 (ToxoDB#1), G13 and EQ39 (ToxoDB#54)

(Uzelac et al., 2020), albeit much lower than that of RH

(ToxoDB#10), a greater number of EQ40 and K1 tachyzoites may

disseminate as ‘free tachyzoites’. However, given the low dose

inoculum and that the peritoneal cavity consists of B-1 cells, large

peritoneal macrophages (LPM), small peritoneal macrophages

(SPM), B-2 cells, T cells, NK cells, DCs and granulocytes

(Cassado Ados et al., 2015), dissemination of all genotypes was

likely facilitated primarily by immune cells. As it was previously

shown that some 60% of infected cells post intraperitoneal

inoculation of T. gondii tachyzoites are macrophages and given

that macrophages make up nearly 30% of the cells in the peritoneal

cavity, macrophages may have played a significant role in

dissemination (Jensen et al., 2011; Cassado Ados et al., 2015).

Another possibility which may explain the dissemination kinetics

and cannot be ruled out is that virulent genotypes overcome the

limits of detection by PCR and other methods more rapidly as

compared to those of low virulence, due to different proliferation

rates. It would thus appear that tachyzoites of more virulent

genotypes are detected at earlier time points in different tissues as

compared to tachyzoites of low virulence (Djurković-Djaković et al.,

2012). Indeed, the lineage III genotypes examined here have vastly

different proliferation rates (Uzelac et al., 2020) and it has been

demonstrated previously that tachyzoites of virulent genotypes

proliferate faster as compared to those of low virulence (Kaufman

et al., 1959; Radke et al., 2001). In light of that, definitive

conclusions regarding dissemination capacity need to be made

with caution.

At 24 h p.i., differential induction of cytokine expression in the

examined tissues (Figure 1) was concordant with the dissemination

results (Table 2). Although the cytokine levels secreted by immune

cells in the tested tissues were not evaluated, the expression data

indicate that transcriptional activation of immune cells occurs

rapidly p.i. To check which is the earliest time point p.i. for

detection of T-bet, 24 h and three days p.i. were analyzed first.

The last time point, 10 days p.i. was analyzed to ascertain the trend

of intensity of the immune response. The highest levels of all three

cytokines and T-bet were detected in the CLN of mice infected with

the genotype with the highest CM, EQ40. The differences were not

statistically significant, due to high variability of expression levels

between individual mice, which is expected in outbred strains

(Figures 1, 3). The results indicate that immune cells are strongly

activated rapidly after infection with this genotype. Surprisingly, the

same is not evident in the mice infected with the other

intermediately virulent genotype, K1, save for somewhat higher

T-bet levels in comparison to those detected in the CLN of mice

infected with the genotypes of low virulence. In fact, based on the

levels of IFNg and IL12-p40 expression elicited by K1, it appears

that a stronger activation has occurred in the mice infected with

BGD18 (ToxoDB#1) at 24 h post inoculation. Early secretion of

pro- and anti-inflammatory cytokines in vitro (Saeij et al., 2007) and

in mouse sera in vivo (Djurković-Djaković et al., 2006) has been

reported before for ToxoDB#1 and may in part be mechanistically

explained by the type II allele at the ROP16 and GRA15 loci
Frontiers in Cellular and Infection Microbiology 10
(Rosowski et al., 2011). As both IFNg and IL12-p40 are required

early for initiating cellular immunity and controlling tachyzoite

proliferation to ensure host survival, the immune response induced

by BGD18 (ToxoDB#1) provides the host with an advantage over

the parasite, which may also explain the low virulence in mice. The

expression results suggest that EQ40, just like BGD18 (ToxoDB#1),

elicits a host protective response early on, but of far greater

intensity. As EQ40 (and all other genotypes analyzed in this

study) carries a type I allele at both loci, yet induces significant

expression of pro-inflammatory cytokines and IL-10, other

mechanisms which regulate gene expression must be in place.

Interestingly, the kinetics of expression of the three cytokines and

T-bet in the CLN indicate that the intensity of the response to EQ40

wanes over time, while it becomes amplified for BGD18

(ToxoDB#1) and K1, the other intermediately virulent genotype

of lower CM than EQ40. In fact, a spike in cytokine levels is evident

between day seven and day ten in the CLN of the mice infected with

BGD18 (ToxoDB#1) and K1. A trend is difficult to discern for G13

and EQ39 (ToxoDB#54) but with IFNg down regulated until day

seven and low expression of IL12-p40 throughout the time course

with comparatively much higher levels of IL-10, the immune

response is milder, which is consistent with the low virulence and

low CM phenotype.

Relative cytokine expression was analyzed in infection (with

tachyzoites of low virulence) as of the first time point, but as

parasites are infrequently detected in the brain and spleen 24 h

and three days p.i., induction of expression could not be detected in

the majority of the mice at these time points (data not shown). Since

the dissemination peak for tachyzoites of low virulence occurred

seven days p.i., the cytokine expression profile at this time point is

presented. The highest levels of IFNg and IL12-p40 were detected in
the brain homogenates of the mice infected with EQ40, while IL-10

was down-regulated in all infected mice. At the same time point,

BAG1 transcripts could not be detected in any of the mice infected

with EQ40, despite the presence of parasite gDNA in the brain,

while interestingly, BAG1 was detected in the brain of 2/3 mice

infected with BGD18 (ToxoDB#1) and 1/3 mice infected with EQ39

(ToxoDB#54) (Table 3). Although the presence of tissue cysts has

not been confirmed visually in this study (and can hardly be

expected to using conventional microscopy), detection of the

BAG1 transcript indicates that stage conversion has happened

and/or is underway. Interestingly, the presence of BAG1 best

correlates with the absence and/or low levels of IFNg expression.

Recently it was shown that in vitro certain subsets of murine and

human neurons can kill intracellular parasites in response to IFNg
stimulation prior to infection (Chandrasekaran et al., 2022). The

implication of this finding in vivo may be that conversion and

encystation must happen early after infection to avoid high IFNg
conditions which favor clearance. Thus genotypes which induce

copious amounts of IFNg in the brain early, such as EQ40, may

undergo stage conversion and complete encystation at a later time

point, once the level drops. Unfortunately, as BAG1 and even SAG1

transcripts could not be consistently detected at the investigated

time points, delayed encystation by EQ40 could not be conclusively

ascertained. As in the brain, the highest level of IFNg was detected
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in the spleens of mice infected with EQ40, while IL12-p40 was

down-regulated. Indeed, IL12-p40 was only up-regulated in the

spleens of the mice infected with BGD18 (ToxoDB#1), while IL-10

was up-regulated in the spleens of mice infected with BGD18

(ToxoDB#1) and G13 (Figure 2).

The combined gene expression results from the CLN, brain and

spleen indicate that infection by EQ40 tachyzoites is characterized

by high IFNg expression, which together with high T-bet

expression, points to a strong systemic inflammatory reaction,

possibly resulting in immunopathology (Yap and Sher, 1999).

Unlike in the CLN, IL-10 is down-regulated in both brain and

spleen of the mice 7 days post infection, suggesting a possible

absence of a balancing regulatory response in these tissues and

increasing the likelihood for the development of a certain degree of

pathology. Disease manifestations such as colitis and/or

encephalitis have been observed even after infection with

ToxoDB#1 in different mouse strains (Liesenfeld, 2002;

Djurković-Djaković et al., 2006), suggesting that even genotypes

of low virulence and low CM can cause immunopathology. As

histopathology was not performed in this study, it is unclear

whether even a low dose infection with EQ40 results in tissue

damage. However, as previous experiments showed that all mice

survive well into chronic infection when infected with 10

tachyzoites, even if there is any tissue damage, this will not be

devastating for the host (Uzelac, 2021 dissertation). Interestingly, in

both the brain and spleens of the mice infected with K1, the other

intermediately virulent genotype, the expression of all three

cytokines was down regulated, suggesting that immunopathology

does not contribute to its virulence. It was shown previously that

when using higher doses of tachyzoites for infection, 76.1% of the

mice infected with K1 die up to day 15, as compared to 88% with

EQ40 (Uzelac et al., 2020). The low level of IFNg seen early in

infection with K1 may promote early conversion and encystation in

the brain, but it is unclear whether the low levels observed prior to

day 10 in the CLN and on day 7 in the spleen are sufficient to

establish control over proliferation in these tissues, thus perhaps

tipping the balance in favor of the parasite. The cytokine expression

spike evident in the CLN of the mice infected with K1 at day ten,

thus acts like an immunity boost to offset the imbalance and rescue

the host. As there is no spike in cytokine expression evident in the

mice infected with EQ40, the conditions likely favor tissue recovery

from inflammation but may promote tachyzoite proliferation. The

non-clonal lineage III genotypes used in this study have the same

allele profile at some of the key virulence loci, but induce different

immune responses, which are not in clear correlation with the

virulence phenotype. The presented results suggest that some

genotypes of T. gondii have the capacity to strongly stimulate the

cellular immune response almost immediately after infection, while

others do so gradually. As 4/5 genotypes investigated here exhibit a

gradually amplifying cellular immune response, it stands to reason

that this is a common trend, while an intense early response seems

to be characteristic only for genotypes of high CM, like EQ40. To

conclude, this study showed that there is a high diversity among

lineage III genotypes in terms of virulence phenotype, CM and

induced immune response.
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