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Şırnak University, Türkiye
Danielle Rutkowski,
University of California, Davis, United States

*CORRESPONDENCE

Nuttapol Noirungsee

nuttapol.n@cmu.ac.th

Terd Disayathanoowat

terd.dis@cmu.ac.th

RECEIVED 08 January 2024
ACCEPTED 07 February 2024

PUBLISHED 26 February 2024

CITATION

Castillo DC, Sinpoo C, Phokasem P,
Yongsawas R, Sansupa C, Attasopa K,
Suwannarach N, Inwongwan S, Noirungsee N
and Disayathanoowat T (2024) Distinct fungal
microbiomes of two Thai commercial
stingless bee species, Lepidotrigona terminata
and Tetragonula pagdeni suggest a possible
niche separation in a shared habitat.
Front. Cell. Infect. Microbiol. 14:1367010.
doi: 10.3389/fcimb.2024.1367010

COPYRIGHT

© 2024 Castillo, Sinpoo, Phokasem,
Yongsawas, Sansupa, Attasopa, Suwannarach,
Inwongwan, Noirungsee and Disayathanoowat.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 26 February 2024

DOI 10.3389/fcimb.2024.1367010
Distinct fungal microbiomes of
two Thai commercial stingless
bee species, Lepidotrigona
terminata and Tetragonula
pagdeni suggest a possible niche
separation in a shared habitat
Diana C. Castillo1,2,3, Chainarong Sinpoo1,3,4,
Patcharin Phokasem1,3,4, Rujipas Yongsawas1,3,
Chakriya Sansupa1, Korrawat Attasopa3,5,6,
Nakarin Suwannarach3,4,6, Sahutchai Inwongwan1,3,6,
Nuttapol Noirungsee1,3,6* and Terd Disayathanoowat1,3,6*

1Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 2Department
of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz,
Nueva Ecija, Philippines, 3Research Center of Deep Technology in Beekeeping and Bee Products for
Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand,
4Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand, 5Department of
Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand,
6Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai
University, Chiang Mai, Thailand
Stingless bees, a social corbiculate bee member, play a crucial role in providing

pollination services. Despite their importance, the structure of their microbiome,

particularly the fungal communities, remains poorly understood. This study

presents an initial characterization of the fungal community associated with

two Thai commercial stingless bee species, Lepidotrigona terminata (Smith) and

Tetragonula pagdeni (Schwarz) from Chiang Mai, Thailand. Utilizing ITS amplicon

sequencing, we identified distinct fungal microbiomes in these two species.

Notably, fungi from the phyla Ascomycota, Basidiomycota, Mucoromycota,

Mortierellomycota, and Rozellomycota were present. The most dominant

genera, which varied significantly between species, included Candida and

Starmerella. Additionally, several key enzymes associated with energy

metabolism, structural strength, and host defense reactions, such as adenosine

triphosphatase, alcohol dehydrogenase, b-glucosidase, chitinase, and

peptidylprolyl isomerase, were predicted. Our findings not only augment the

limited knowledge of the fungal microbiome in Thai commercial stingless bees

but also provide insights for their sustainable management through

understanding their microbiome.
KEYWORDS

fungi, corbiculate bee, next-generation sequencing, stingless bee, Lepidotrigona
terminata, Tetragonula pagdeni
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1 Introduction

Pollination by insects is crucial for the conservation of

ecosystems’ natural balance and maintenance of biodiversity.

Agricultural crops rely on vectors such as insects, wind, and

water for the transmission of their pollen during cross-pollination

(MacInnis and Forrest, 2020; Zeng and Fischer, 2020). It has been

estimated that animals pollinate 87.5% of flowering plant species

(Ollerton et al., 2011). Bees (Apoidea) are considered the most

efficient animal pollinators due to their body composition and

consistent flower-visiting pollination services (Batra, 1995). The

consistent visits and aggregate effects of various bee species

influence both the quality and quantity of crops (Hall et al.,

2020). Further, pollination by multiple species of bees, such as

honeybees, carpenter bees, stingless bees, and bumblebees, results in

better pollination and vegetation processes (Khalifa et al., 2021).

Although regarded as vital pollinators, bee populations are

declining as they face increasing threats from many risk factors

such as pesticides, bee diseases, agricultural intensification, among

others (Potts et al., 2016).

Stingless bees, belonging to the Meliponini Tribe, are eusocial

bees found in tropical and subtropical areas (Leonhardt, 2017;

Gonçalves et al., 2018; Vale et al., 2021). Before the introduction

of honeybees from Europe, stingless bees were the primary

pollinators of plants in the Americas (Toledo-Hernández et al.,

2022). Beekeeping practices with stingless bees have been popular in

tropical regions due to their ease of management. In contrast to

honeybee harvesting, where safety gear is necessary, harvesting

honey, pollen, and propolis from stingless bees is simpler as they

do not sting (Abd Jalil et al., 2017). The honey and geopropolis

produced by stingless bees possess various beneficial properties

such as antimicrobial, anti-inflammatory, wound-healing, and

anticancer effects (Abd Jalil et al., 2017; Seabrooks and Hu, 2017;

Alvarez et al., 2018).

The associations of microbes within insects significantly impact

their health. Various microorganisms and insects engage in

symbiotic relationships that range from mandatory mutualism to

specialized parasitism (Menegatti et al., 2021). For instance, insects

rely on bacteria for the degradation of plant materials, regulation of

pH, and vitamin synthesis (Dillon and Dillon, 2003). Some insects,

such as ants, termites, and beetles, cultivate fungi as their food

source (Beaver, 1989; Mueller et al., 1998; Aanen et al., 2002). Yeasts

like Starmerella bacillaris, St. etchellsii, Candida californica, Pichia

membranifaciens, P. occidentalis, and Zygosaccharomyces bailii have

been identified as beneficial symbionts in Drosophilla melanogaster

microbiome (Dmitrieva et al., 2023). Fall armyworm (Spodoptera

frugiperda) harbors fungal symbionts such as Fusarium oxysporum

and Cladosporium sp (Watson et al., 2023). Like other insects, bees

depend on a symbiotic relationship with microbes, ranging from

pathogenic to mutually beneficial (de Paula et al., 2023; Rutkowski

et al., 2023). Common fungal symbionts include yeasts from the

taxa of Starmerella, Metschnikowia, Zygosaccharomyces, and

Candida, which are found across various tribes and species

(Rutkowski et al., 2023). Wherein these microbes in honeybee

larvae, adults, food, and honeycombs are important for digestion,

pollination, and exerting antagonistic effects on various pathogens.
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Recent research has shown that bee microbiome plays a critical role

in determining the health status of both social and solitary bees

(Lozo et al., 2015; Engel et al., 2016; McFrederick and Rehan, 2016;

Kwong et al., 2017). In addition, the choice of habitat location of

honeybees may affect the core gut microbiome; human pathogens

were detected in the gut of honeybee (Rüstemoğlu, 2023). The

benefits of fungal symbionts in honeybees include aiding in pollen

degradation and assisting in the maturation of royal jelly;

additionally, fungi may also serve as food sources (Yun et al.,

2018; de Paula et al., 2021). Filamentous fungi are also present in

bees, with species such as Aspergillus spp. potentially competing

with other pathogenic and mycotoxigenic strains of Aspergillus

(Bhandari et al., 2020). These species may enhance the honeybee’s

resistance to xenobiotics through detoxification and stabilize pollen

and bee bread by producing vitamins and minerals (Berenbaum and

Johnson, 2015; Kieliszek et al., 2018).

Various researchers have reported mutualism between stingless

bees and fungi. For example, larvae of one species of stingless bee have

been found to depend on fungi for growth (Ravoet et al., 2014;

Maxfield-Taylor et al., 2015; Rutkowski et al., 2023). The yeast

Zygosaccharomyces aids in the development of larvae from several

species, including Scaptotrigona bipuctata, Sc. postica, Sc. tubiba,

Tetragona clavipes, Melipona quadrifasciata, M. fasciculata, M.

bicolor, and Partamona helleri (de Paula et al., 2023). Additionally,

Liu et al. (2023) have found an association between the gut

microbiome composition and the flight traits of stingless bees,

though not a causative one. This association was specifically

observed in bacterial gut communities. In Brazil, species of

Talaromyces and a new species of Penicillium were discovered in M.

scutellaris (Barbosa et al., 2018). A recent study has shown that C.

apicola, Starmerella spp., and Zygosaccharomyces constitute the core

fungal microbiome of M. quadrifasciata gut (Haag et al., 2023). This

evidence strongly indicates that the fungal microbiome significantly

influences the health of stingless bees, offering potential contributions

to the sustainable management of these vital pollinators. However,

investigations into fungal microbiomes associated with Thai

commercial stingless bees, particularly those in Northern Thailand,

are scarce. In this study, we examined the fungal microbiome of two

species of stingless bees found in Northern Thailand: Lepidotrigona

terminata and Tetragonula pagdeni. Increasing our understanding of

the fungal microbiome in these stingless bee species could pave the way

for innovative strategies to fortify their health and, in turn, enhance

their crucial role in pollination services and ecosystem sustainability.
2 Materials and methods

2.1 Stingless bee species and sampling

Tetragonula pagdeni is a common species found throughout

Southeast Asia (Wongsa et al., 2023). The average body length

ranges from 3.4 mm to 3.9 mm, and the body color varies from

black to blackish brown (Sakagami, 1978; Vijayakumar and

Jeyaraaj, 2020). The nest are typically situated in tree crevices,

exhibiting colors from black to blackish brown, with a texture that is

reminiscent of waxy material and resin (Supplementary Figure 1A).
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Lepidotrigona terminata is an abundant species distributed

across Southeast Asia (Attasopa et al., 2020). The body is

brownish in color and ranges in size from 4.0 mm to 5.5 mm.

Nest entrance tubes are softer and exhibit a paler texture,

resembling thin-walled, cylindrical funnels. Their color ranges

from light yellow to dark brown (Supplementary Figure 1B) (Li

et al., 2021).

Insect specimens were collected from a total of eighteen wild

hive colonies, comprising nine colonies each of two stingless bee

species, L. terminata and T. pagdeni. These colonies were nested in

tree trunks within 3-5 km geographical radius on the campus of

Chiang Mai University in Northern Thailand. Collections took

place from January to April 2023, during the time of the day

when the temperature was around 25°C. Simultaneously, all nine

colonies of each species were collected at the same time on the

same day.

Specimen collection was carried out with the method described

by (Leonhardt and Kaltenpoth, 2014). We placed 50 mL sterilized

centrifuged tubes at the hive entrance to catch the worker stingless

bees, as illustrated in Supplementary Figures 1C, D, to collect

twenty live adult stingless bees from each colony. The specimens

were then transported to the SMART Bee Research Center

Laboratory at the Faculty of Science, Chiang Mai University, for

further processing. The taxonomic status of the colony of each

species was principally based on hive–building characteristics

(entrance of the hives), notably to separate the two species with

their colony identity. Consequently, we further preferred to identify

the two species by their morphological characteristics using the

dichotomous keys from (Schwarz, 1939) and (Sakagami, 1978).
2.2 Stingless bee processing and
DNA extraction

In a sterile environment, stingless bee samples were surfaced-

sterilized following the method of (Pakwan et al., 2018), with some

modifications. The samples were immersed in 7% (v/v) sodium

hypochlorite for 1 min and 70% (v/v) ethanol for 3 min, then rinsed

three times in sterile distilled water and dried on sterile paper

towels. The sterilized samples were then placed in bead-beating

tubes and lysed for 20 minutes. For DNA extraction, we prepared 18

separate samples in total, with each sample consisting of ten

individual stingless bees. Nine samples contained stingless bees

from L. terminata and another nine from T. pagdeni. Total genomic

DNA was extracted from each of these samples by the

manufacturer’s protocol provided with the ZymoBIOMICS DNA

Miniprep Kit (ZYMO Research, Germany). The DNA

concentration was determined using a NanoDrop UV–

vis spectrophotometer.
2.3 ITS amplicon sequencing
and processing

The ITS region was amplified using the forward primer

(CTTGGTCATTTAGAGGAAGTA) and reverse primer
Frontiers in Cellular and Infection Microbiology 03
(GCTGCGTTCTTCATCGATGC). The resulting DNA was

sequenced on an Illumina MiSeq platform with paired-end reads.

These reads were then imported into QIIME2 version 2019.10 for

processing (Bolyen et al., 2019). The primer sequences were trimmed

from the reads. The reads underwent quality filtering, truncating at

positions where the Phred score fell below 30 (Supplementary

Figure 2). Quality filtering and denoising were performed using

DADA2 (Callahan et al., 2016). Then the singletons were removed

(Unterseher et al., 2011). After generating rarefaction curves to assess

the appropriate depth, the datasets were rarefied to a consistent depth

of 2801 sequences per sample (Mbareche et al., 2020). Taxonomic

classification was carried out using the UNITE (version 8.3) database

(Abarenkov, et al., 2020), employing a Naive-Bayes classifier to assign

taxonomy to the ITS sequences.
2.4 Data analyses

Diversity of fungal microbiome was determined with ‘vegan’

package in R. Alpha diversity was assessed using indices including

Shannon (Shannon, 1948), Simpson (Simpson, 1949) and Chao-1

(Chao and Chiu, 2016). A Mann Whitney U Test was computed to

compare the alpha diversity of the two species of stingless bee. The

fungal community composition between the two species of stingless

bees was compared using the Bray-Curtis dissimilarity (Jones et al.,

2018). The differences were assessed using analysis of group

similarities (ANOSIM) and visualized through a non-metric

multidimensional scaling (NMDS) using PAST software version

4.03 (Hammer et al., 2001). Fungal taxa correlations were assessed

using Spearman’s correlation via the ‘Hmisc’ package in R. Only

significant correlations (p < 0.05) and those with strong coefficients

(p > 0.7) were imported into Gephi 0.9.2 (Bastian et al., 2009) and

visualized in Fruchterman-Reingold layout. Functional pathways were

predicted using the ENZYME nomenclature database (Bairoch, 2000)

PICRUSt2 software (Douglas et al., 2020). A heatmap was produced to

visualize the hierarchal clustering of each predicted gene using R

through RStudio (Allaire, 2011; Wickham et al., 2019).
3 Results

3.1 Sequence processing and amplicon
sequence variants inference

A pooled sample of whole stingless bees, comprising 10

individuals (~0.1 gram) from each colony of each species, was

used to sequence the ITS region using the Illumina MiSeq platform.

This process resulted in 817,614 raw reads with median depth of

44,523.5 (Supplementary Table S1). After the quality filtering,

denoising, and removal of chimeric sequences, we obtained

730,651 amplicons (Supplementary Table S2). Subsequently, after

removing singletons and rarefying, the datasets contained 547

unique Amplicon Sequence Variants (ASVs), with a total count of

50,418 ASVs (Supplementary Table S2). Alpha rarefaction curves

plateaued and reached saturation, indicating comprehensive

diversity capture (Supplementary Figure S3).
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3.2 Fungal community

The rarefied datasets were classified into 137 different genera

across 5 phyla, 18 classes, 42 orders, and 80 families. The phylum

Ascomycota was the most dominant, representing 94.35% of ASVs. In

L. terminata, the most abundant genus was Candida (Supplementary

Table S3), comprising 38.09% of the community, followed by

Moniliella (6.54%), Cladosporium (4.35%), and Starmerella (3.25%).

Conversely, in T. pagdeni, Starmerella was the most abundant genus,

accounting for 87.86% of the community, with the next most abundant

being Cladosporium, Cutaneotrichosporon, and Candida. Genera such

as Acremonium, Agaricus, Aspergillus, Clitopilus, Coprinellus,

Gymnopus, Hymenochaete, Hypoxylon, Malassezia, Nigrospora,

Penicillium, Phlebiopsis, Pseudozyma, Pyrrhoderma, Strelitziana,

Vishniacozyma, and Wickerhamiella were common to both species.

Shannon, Simpson, and Chao-1 indices were used to determine

the alpha diversity at the genus level of fungal microbiomes of L.

terminata and T. pagdeni. Mann Whitney U Test of Shannon

Diversity (p = 0.001) and Simpson Diversity (p = 0.002) showed

that the fungal community of the two species of stingless bees

differed significantly. However, Chao – 1 was not statistically

significant (p = 0.136). In addition, alpha diversity was illustrated

using a boxplot (Figure 1). The relative abundance of fungal

community members at the genus level in each species of

stingless bees is depicted in Figure 2.

Similarly, we analyzed for beta diversity by comparing the fungal

community of the two stingless bees. Results showed that there were

overall differences (p = 0.001, R = 0.969) as the output of one-way

ANOSIM at the permutation of 999 based on Bray – Curtis similarity

matrix. As such, we visualized the data through Non-metric Multi-

Dimensional Scaling (NMDS) with a stress value of 0.07 (Figure 3).
3.3 Network analysis

In Figure 4, the fungal communities’ correlation network is

displayed. The fungal microbiome of L. terminata is represented

with 106 nodes and 397 edges. Each fungal genus exhibits distinct

interactions. Negative interactions were found among the genera.

For instance, negative interactions occur between Candida and

Tinctoporellus, as well as, between Candida and Marasmius.

Conversely, the fungal microbiome in T. pagdeni is depicted as an
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undirected graph with 56 nodes and 371 edges. Within this

network, Starmerella shows negative interactions with

Acremonium, Candida, Cladosporium, Cutaneotrichosporon,

Penicillium, and Wickerhamiella. Notably, a positive interaction

exists between Penicillium and Cladosporium.
3.4 Predicted functional pathways

The fungal genera were used to predict their respective functional

pathways, which were generated based on the ENZYME

nomenclature database through PICRUSt2 (Supplementary

Figure 4). A total of 425 functional pathways were identified within

the fungal microbiome. Several key enzymes were detected, including

glucose-6-phosphatase, alcohol dehydrogenase, beta-glucosidase,

chitinase, and peptidylprolyl isomerase. These enzymes are

associated with flight behaviors/muscle function, metabolism,

energy sources, structural integrity, and host defense mechanisms.

Additionally, the majority of the indicated functional enzymes

prominent in bee-associated microbiomes were related to

carbohydrate metabolisms, specifically to the import of sugars.
4 Discussion

Our study revealed that the fungal microbiomes of L. terminata

and T. pagdeni have radically distinct structures and interactions

despite being collected in a similar geographical radius with

identical conditions and weather parameters. However, studies

have shown an increase in distance decreases the gut microbial

community similarity in stingless bees due to its dispersion

limitation (Soininen et al., 2007; Liu et al., 2023). On the other

hand, Kwong et al. (2017) suggest that the host species has a

significantly greater influence on the gut microbial populations

than geographic factors. Thus, this study found several distinct

genera including Acremonium, Agaricus, Aspergillus, Clitopilus,

Coprinellus, Gymnopus, Hymenochaete, Hypoxylon, Malassezia,

Nigrospora, Penicillium, Phlebiopsis, Pseudozyma, Pyrrhoderma,

Strelitziana, Vishniacozyma, and Wickerhamiella. Ascomycota

was the most dominant phylum among the identified species.

Similarly, Liu et al. (2023) identified Ascomycota and

Basidiomycota as the most dominant phyla, along with
FIGURE 1

Alpha diversity plots. Boxplot corresponding to Simpson diversity index, Shannon diversity index and Chao -1. Asterisks (*) indicate significant
differences (p < 0.05, Mann Whitney U test).
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Chytridiomycota and Mucoromycota, in Australian stingless bees

(Tetragonula carbonaria and Austroplebeia australis). Further,

Candida and Starmerella were also determined as the dominant

fungal genera in L. terminata and T. pagdeni, respectively. Such

genera were also observed in the larval food of Brazilian native

stingless bees (Santos et al., 2023) since Candida and Starmerella

were usually isolated from stingless bees (de Paula et al., 2021),

along with Saccharomyces.

Generally, gut communities differ among host species despite the

closest kinship of T. pagdeni with Lepidotrigona species, wherein the
Frontiers in Cellular and Infection Microbiology 05
main differentiators of these species were the abundance of Candida

in L. terminata and Starmerella in T. pagdeni. Kwong et al. (2017)

have also reported the ability of the microbiota of social bees to evolve

and undergo alteration dynamically thus the variation in microbial

composition. Further, these variations may also have an

environmental origin, whether from hive materials or foraging,

which may lead to different fungal microbiomes among the two

stingless bee species. For instance, Keller et al. (2021) reported a

shared microbiome between bees and flowers, wherein the floral

visitation shapes bee microbiome assembly given that majority of bee

species mostly obtain their nourishment from floral resources

(Rutkowski et al., 2023). Rothman et al. (2018) discovered that

additional floral resources can influence the gut microbiota of A.

mellifera. Therefore, floral visitation, through the collection of nectar

and pollen from various plants, may be a significant factor in the

differences observed in the fungal microbiome between the two

species of stingless bees. Similarly, each species of stingless bee

exhibits unique foraging habits based on their dietary requirements

(Salatnaya et al., 2023). However, it remains unclear whether

preferences for specific floral resources contribute to the distinct

microbiomes of each species. Sawatthum and Kumlert (2015) found

that both species of stingless bees, L. terminata and T. pagdeni,

preferred to visit plants belonging to the families Leguminosae,

Poaceae and Amaranthaceae. Consistent with the findings of

Rutkowski et al. (2023), other fungal genera found in both species,

including Candida and Starmerella, as well as Aspergillus,

Cladosporium, Penicillium, Wickerhamiella, and others, were also

found in floral nectar and pollen. Our results highlight an intriguing

observation th nesting in the same geographic location, the two

species exhibit distinct fungal microbiomes. Nevertheless, the

relationship between floral resources and the bee microbiome

requires further elucidation. This suggests that the foraging food

sources may marginally overlap, indicating a separation of niches.

However, this requires further behavioral studies to pinpoint the

cause of this distinction in bees. Thus, the exploration of fungal

microbiome patterns within Thai commercial stingless bees offers a

valuable initial understanding of their host ecology. However, the

current study’s scope does not allow for conclusive determinations

regarding the consistent association of these two stingless bee species

with the identified fungal community. Further investigations

encompassing a broader environmental spectrum and longitudinal

studies are necessary to better comprehend potential fluctuations in

fungal community abundance attributed to environmental factors.

Conversely, body size is another factor to consider regarding

microbiome composition. We found that L. terminata fungal

microbiome was more diverse than T. pagdeni. L. terminata has a

larger body size compared to T. pagdeni, which contrasts with the

findings of Kueneman et al. (2023), who reported a negative

correlation between bee body size, tongue length, and microbial

richness. However, Liu et al. (2023) stated that bees with larger

wings tend to have larger bodies, potentially providing a large area for

bacteria colonization. Although these findings pertain to bacterial

colonization, we may speculate that a similar mechanism applies to

fungal colonization. In bees, larger individuals forage

disproportionately farther than smaller ones, according to a power

function with b > 1 (Greenleaf et al., 2007). Layek et al. (2021) also
FIGURE 2

Fungal communities in the microbiome of two species of stingless
bees (LFTC-1 to LFTC-9: Lepidotrigona terminata; ST01 to ST09:
Tetragonula pagdeni. Percentage abundance was shown. Features
was clustered and organized (colored taxa bar plots) based on
genus with <1% percentage abundance is clustered into “Others”.
FIGURE 3

Beta diversity corresponding to the Non-metric Multidimensional
Scaling (NMDS) of the fungal community of L. terminata and
T. pagdeni through Bray – Curtis similarity matrix.
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stated that the flight distance and behavior of the stingless bee

T. iridipennis periodically change based on available resources.

During foraging trips, they collect plant materials such as nectar,

pollen, resin, and fungal spores (Sakagami, 1982; Roubik, 1989; Eltz

et al., 2002). For example, the pollen transport activity of L. terminata

typically begins between 9:00 and 10:00 and remain active through

mid-day until the afternoon before gradually decreasing (Wicaksono

et al., 2020). In contrast, T. pagdeni pollen foragers start their

activities between 10:00 to 11:00 and 13:00 to 14:00, with foraging

activity significantly declining by 17:00 (Basanna and Rajanand,

2021). This pattern suggests that L. terminata engages in more

extensive foraging compared to T. pagdeni, which may indicate a

higher abundance of pollen resources and, consequently, a more

diverse microbiome. Taken together, our results advocate for further

investigations into the stingless bee microbiome in relation to body

size, flight activity, and foraging resources.

Following the notable results, we determined the functional

pathways to ascertain whether the differing fungal microbiomes

correspond to alterations in functionally predicted genes, as

analyzed through PICRUSt2. We identified 425 functionally

predicted genes (Supplementary Figure 4) related to metabolism,

energy source, and host-defense mechanism. Kwong and Moran

(2016) noted that the microbiota of bees undergoes a metabolic

transition resulting in the production of honey from nectar,

primarily composed of sucrose, glucose, and fructose. Yun et al.

(2018) reported that foraging bees (honeybees) consuming more

nectar and honey (carbohydrate sources) than bee bread (a protein

source) expose their gut microbiota to comparatively fewer amino
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acids than nurse bees. The presence of sugar or carbohydrates leads to

fermentation. For example, our results showed an abundance of yeasts

over filamentous fungi. Clementino et al. (2015) suggested that yeasts

are extensively involved in biosurfactant and antibiotic synthesis, and

alcoholic fermentation.

Additionally, yeasts related to insects, such as Saccharomyces

and Candida, are implicated in substrate digestion through secreted

enzymes like b-glucosidases, xylases, and cellulases, and in the

detoxification of harmful plant compounds within the insect host

(Vega and Dowd, 2005). On the other hand, several vital enzymes

were predicted in the study. These enzymes are associated with

energy metabolism, structural strength, and host defense reactions.

For instance, adenosine triphosphatase increases the wingbeat of

honeybees (Liao et al., 2019), while b-glucosidase breaks down

oligosaccharides, particularly cello-oligosaccharides and cellobiose

to glucose (Terra and Ferreira, 1994; Mostafa et al., 2014). Further,

chitinase can affect the chitin-based wall of fungi, particularly

N. apis (Hamid et al., 2013). For any organism to sustain its

regular activity, energy metabolism is one of the most crucial

processes (Kong et al., 2023). Most predicted functional enzymes

correspond to oxidative phosphorylation: glutamate synthase

(NADPH), NADPH dehydrogenase, adenosine kinase, adenosine

phosphorylase, and others. Energy metabolism involves oxidative

phosphorylation mediated by enzymes, including NADH

dehydrogenase (Christen, 2023). While these mechanisms were

not the primary focus of our investigation, they underscore the

importance of further studies on the relationship between

functionally predicted genes and bee health.
A B

DC

FIGURE 4

Interaction network of microbiome found in Lepidotrigona terminata (A) and Tetragonula pagdeni (B) at genus level. In the investigated L. terminata
and T. pagdeni different line color and degree pattern identify as negative interaction. For instance, between Candida and Tinctoporellus (C) and
between Starmerella and Hypoxylon; Starmerella and Candida; Cladosporium and Wickerhamiella; Wickerhamiella and Acremonium (D). Additionally,
positive interaction between each genus has same line and degree color pattern.
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Our study uncovered anotable negative correlation between

Starmerella and other fungal members of the community

(Figure 4D). This phenomenon may be attributed to the antifungal

properties of sophorolipids, which are known to decrease surface

tension, destabilizing and rupturing microbial membranes, thereby

increasing (Valotteau et al., 2017). Such actions can induce high levels

of oxidative stress, leading to necrosis and apoptosis (Haque et al.,

2019). Starmerella, a yeast associated with bees, produces

sophorolipids that can inhibit the growth of various bacteria and

fungi, particularly those associated with floral resources and bee hives

(Hipólito et al., 2020; De Clercq et al., 2021; Alfian et al., 2022). For

instance, sophorolipids derived from St. bombicola inhibited all tested

fungi (Hipólito et al., 2020). Similarly, sophorolipids from the newly

identified species St. riodocensis may prevent the growth of C.

albicans hyphae (Alfian et al., 2022). This suggests that these

secondary metabolites function as an antifungal agent and totally

inhibit fungal development (Hipólito et al., 2020). Consequently, we

propose that sophorolipids might account for the observed negative

correlation of Starmerella to other fungal genera, although a more

comprehensive analysis is needed to confirm this relationship.
5 Conclusion

Our study provides the first in-depth investigation into the

fungal microbiome associated with Thai commercial stingless bees

L. terminata and T. pagdeni. The results revealed that the fungal

microbiomes of these two species are significantly distinct despite

sharing a geographical habitat. Specifically, Candida dominates the

microbiome of L. terminata, while Starmerella prevails in that of

T. pagdeni. Although both stingless bee species share some aspects

within their fungal microbiome, the diversity and abundance of

these components markedly differ. Furthermore, the interactions

observed among fungal members within these microbiomes display

unique patterns for each species. These discoveries contribute to our

comprehension of the microbiomes intrinsic to these essential

pollinators, providing insights into the intricate ecology of these

remarkable species.
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