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Introduction: Gestational diabetes mellitus (GDM) is a form of gestational

diabetes mellitus characterized by insulin resistance and abnormal function of

pancreatic beta cells. In recent years, genomic association studies have revealed

risk and susceptibility genes associated with genetic susceptibility to GDM.

However, genetic predisposition cannot explain the rising global incidence of

GDM, which may be related to the increased influence of environmental factors,

especially the gut microbiome. Studies have shown that gut microbiota is closely

related to the occurrence and development of GDM. This paper reviews the

relationship between gut microbiota and the pathological mechanism of GDM, in

order to better understand the role of gut microbiota in GDM, and to provide a

theoretical basis for clinical application of gut microbiota in the treatment of

related diseases.

Methods: The current research results on the interaction between GDM and gut

microbiota were collected and analyzed through literature review. Keywords

such as "GDM", "gut microbiota" and "insulin resistance" were used for literature

search, and the methodology, findings and potential impact on the

pathophysiology of GDM were systematically evaluated.

Results: It was found that the composition and diversity of gut microbiota were

significantly associated with the occurrence and development of GDM.

Specifically, the abundance of certain gut bacteria is associated with an

increased risk of GDM, while other changes in the microbiome may be

associated with improved insulin sensitivity. In addition, alterations in the gut

microbiota may affect blood glucose control through a variety of mechanisms,

including the production of short-chain fatty acids, activation of inflammatory

pathways, and metabolism of the B vitamin group.

Discussion: The results of this paper highlight the importance of gut microbiota

in the pathogenesis of GDM. The regulation of the gut microbiota may provide
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new directions for the treatment of GDM, including improving insulin sensitivity

and blood sugar control through the use of probiotics and prebiotics. However,

more research is needed to confirm the generality and exact mechanisms of

these findings and to explore potential clinical applications of the gut microbiota

in the management of gestational diabetes. In addition, future studies should

consider the interaction between environmental and genetic factors and how

together they affect the risk of GDM.
KEYWORDS

gestational diabetes mellitus, gut microbiota, chronic inflammatory state, insulin
resistance, pathogenesis
1 Introduction

GDM is defined as diabetes with normal glucose metabolism or

potentially impaired glucose tolerance before pregnancy that

develops or is diagnosed only during pregnancy (Szmuilowicz

et al., 2019). More than 80% of pregnant women with diabetes

mellitus have GDM. Currently, the incidence of GDM is reported to

be 1% to 14% in countries around the world, and the incidence in

China is 1% to 5%, with a significant increasing trend in recent years

(Practice Bulletin No, 2018; He et al., 2019). The clinical

development of GDM is complex and is a specific physiologic

process in which a state of physiologic insulin resistance exists.

Patients’ glucose metabolism can be normalized after delivery, but

the chance of developing diabetes mellitus in the future is increased;

and those with severe disease or poor glycemic control during the

onset of the disease may have hypertensive disorders of pregnancy,

excessive amniotic fluid, premature rupture of membranes,

postpartum hemorrhage, fetal distress, macrosomia, fetal growth

restriction, hypoglycemia of newborns and other serious harms; and

the mother and child’s near and distant complications are

increased, which should be given high priority (Practice Bulletin

No, 2018). increase and should be given high priority (Practice

Bulletin No, 2018; Szmuilowicz et al., 2019). Gestational diabetes

mellitus is a high-risk pregnancy and it can seriously jeopardize the

health of the mother and child. Before the introduction of insulin

maternal, mortality was 27-30% and fetal perinatal mortality was

greater than 40%. The factors currently thought to be associated

with the development of GDM are autoimmune genetic factors,

insulin resistance, and chronic inflammation (Practice Bulletin No,

2018; Szmuilowicz et al., 2019). In addition, environmental factors

are considered to be another important modulator of GDM (Jo

et al., 2019), yet the exact etiology of GDM remains unclear.

As one of the environmental factors, the influence of the gut

microbiota on the development of disease may be as important as

genetic factors. The intestinal microbiota is not only an extremely

complex and diverse microbial community, but it is also an

important component of the human body and is essential for the

maintenance of the body’s dynamic physiological balance. There are
02
billions of bacteria living in the human intestinal tract, which

constitute the largest human microecosystem-intestinal flora. The

gut microbial community is involved in the digestion of food,

synthesis of essential vitamins and amino acids, elimination of

pathogens, and removal of toxins (Adak and Khan, 2019), and

functions as a “microbial organ” through the production of

biologically active metabolites that participate in a range of

metabolic pathways in the human body. Compared with genetic

factors, intestinal flora can be more easily detected and regulated,

and therefore receives more attention as a promising approach to

prevention and treatment. It is a cutting-edge topic in the field of

medicine and life sciences in today’s world. This study will elucidate

the molecular mechanism of intestinal flora involved in the

occurrence and development of GDM, clarify the significance of

interventions such as flora transplantation, probiotics, and dietary

fiber for the prevention and treatment of GDM, and lay the

foundation for the development and use of probiotics for the

prevention and treatment of GDM.
2 Etiology and factors affecting GDM

GDM is a transient form of diabetes mellitus caused by insulin

resistance and pancreatic beta-cell dysfunction during pregnancy

(Alejandro et al., 2020). The main reason why pregnant women

cause diabetes mellitus during pregnancy is because their bodies

undergo certain physiological changes during pregnancy. During

the first trimester of pregnancy, high levels of the human hormones

placental lactogen (HPL) and cortisol reduce maternal glucose

levels. Increased levels of serum estrogen and luteinizing hormone

stimulate additional insulin production and secretion while

increasing insulin sensitivity (Callaway et al., 2019). In mid-

gestation, with increasing levels of estrogen, progesterone, and

placental hormones, pregnant women have increased insulin

resistance, decreased insulin sensitivity, and increased fasting and

postprandial glucose levels (Tsakiridis et al., 2021). The inability of

pregnant women to compensate for the physiologic hormone-

driven increase in insulin resistance along with decreased insulin
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sensitivity results in hyperglycemia, causing the pregnant body to

develop gestational diabetes problems (Wang et al., 2019).

Genetic factors may contribute to insulin resistance, b-cell
dysfunction, neurohormonal dysfunction, inflammation, oxidative

stress, epigenetic modifications, and alterations in the gut

microbiota. They are related to the occurrence of GDM. For

example, several GDM risk genes were found to have functions in

glucose metabolism, insulin synthesis and secretion, and insulin

signaling through family linkage analysis and genome-wide

association studies (Xie et al., 2023). In addition, researchers

explored the susceptibility genes of GDM through case-control

studies and found that genes such as TCF7L2, VDR, and IGF2BP2

serve multiple functions such as b-cell function, insulin secretion,

peripheral insulin resistance, glucose metabolism, and oxidative

stress, conferring genetic susceptibility to GDM (Wei et al., 2021). A

family history of T2DM is an important risk factor for the

development of GDM. Mothers with first- or second-degree

relatives with diabetes have a higher unfavorable risk of BMI and

impaired insulin sensitivity (Monod et al., 2023).

Environmental factors are considered to be another important

modulator of GDM. Environmental exposures to perfluoroalkyl

substances, phthalates, poly-fluoroalkyl substances, polychlorinated

biphenyls, and polybrominated diphenyl ethers can hurt glucose

levels in pregnant women, especially those of normal weight (Yu

et al., 2021; Yao et al., 2023). In addition, prolonged exposure to

nitrogen dioxide(NO 2) and carbon monoxide (CO) before

pregnancy was significantly associated with an increased risk of

GDM (Hehua et al., 2021). Studies have found that higher plasma

manganese levels in early pregnancy may also be a potentially

important risk factor for GDM (Li Q. et al., 2022). Decreased

monocyte counts during pregnancy have been strongly associated

with the development of GDM, the development of macrosomia,

and the chronic inflammatory state of GDM (Huang et al., 2022).

Seasonal variations are significantly and positively associated with

the prevalence of GDM (Khoshhali et al., 2021).

High-quality diets before and during pregnancy reduce the risk

of developing gestational diabetes, whereas poorer diet quality

increases the risk of developing gestational diabetes (Gao et al.,

2023). Vitamin B12 deficiency is associated with an increased risk of

developing GDM, and attention needs to be paid to the balance of

vitamin B12 and folate (He et al., 2020). Some beneficial and

commensal gut microorganisms are negatively associated with the

development of GDM, while opportunistic pathogenic members are

associated with a higher risk of developing GDM (Cortez et al.,

2019). Higher thiamine and riboflavin intake during pregnancy is

associated with a lower incidence of GDM (Ge et al., 2023). Studies

have shown that a variety of non-genetic regulatory factors (such as

chemistry, environment, diet, intestinal microorganisms, and

drugs) play a key role in the pathogenesis of GDM. Therefore,

correction of insulin resistance through non-genetic factors is

essential for the quality of life and prognosis of GDM patients.

A growing number of studies have found that gut microbiota is

closely associated with the development of GDM (Kijmanawat et al.,

2019; Wang et al., 2020; Chen et al., 2021). For example, Rold et al.

(2022) found significant differences in the gut microbiota between
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GDM and non-GDM women in a systematic review. In a case-

control study, Liu et al (Liu et al., 2020) collected feces from 45

patients with GDM and 45 healthy controls during early and mid-

pregnancy to explore their intestinal flora profile. By using genome

sequencing technologies, they found that women with GDM had

reduced intestinal flora abundance, particularly a decrease in

Anaplasma and Akkermansia. There was a significant negative

correlation between the number of Akkermansia and glucose levels,

while the relative number of Faecalibacterium was positively

correlated with the levels of inflammatory mediators. In addition,

the researchers transplanted gut microbes from gestational and non-

pregnant diabetic patients into GF mice. The results showed that the

mice developed symptoms of hyperglycemia. These results suggest

that the pattern of changes in the gut microbiota of GDM patients is

related to the pathogenesis of the disease.
3 Gut microbiota

In recent years, the gut microbiota has been one of the research

hotspots in the field of biomedicine. All microorganisms presented

on the mucosal surface of the human gastrointestinal tract are

collectively referred to as intestinal microbiota. The intestinal flora

of the human body is very large, and it contains 100 trillion

microflora, equivalent to ten times that of the human body. The

bacterium weighs 1.5 kilograms and contains more than 3.3 million

genes, more than 150 times the genetic number of the human body

(Pitocco et al., 2020), suggesting that genetic modification could

play an important role in our bodies. There are over 3,500 known

strains of human gut flora. Currently, nine flora have been identified

at the taxonomic phylum level. The main dominant groups are

Firmicutes and Bacteroidetes, which account for about 98% of the

flora. They are followed by Actinobacteria and Proteobacteria, with

minimal amounts of Verrucomicrobia, Spirochaete, Fusobacteria,

and unclassified phyla closer to Cyanobacteria (Eckburg et al.,

2005). Firmicutes of gut microbiota have abundance values of up

to 50-60% and include a total of about 200 genera. Bacteroidetes is

numerically second only to Firmicutes, accounting for 10-48% of

the total flora, containing about 20 genera, and is the second most

dominant group in gut microbiota. Bacteroidetes are divided into

three main groups: Prevotellaceae, and Porphyromonas (Hou et al.,

2022b). Prevotellaceae is less abundant in the human gut, the

proportion is often less than 1%, and most of them are

pathogenic. Actinobacteriota is not numerically dominant in the

human gut. Bifidobacterium is one of the common probiotic

bacteria. Gut microbiota plays an important role in human

health, including the ability to regulate intestinal mucosal

permeability, produce antimicrobial substances, participate in the

synthesis of nutrients such as bile acids and fats and drug

metabolism, and stimulate the development of the immune

system, etc; whereas enterotoxins produced by pathogenic

bacteria induce elevated inflammatory factors, which in turn lead

to infections and an imbalance of the intestinal flora. Several studies

have confirmed that intestinal flora is closely related to the

pathogenesis of a variety of metabolic disease.
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4 Changes in gut microbiota during
the development of GDM

4.1 Significantly increased intestinal flora
species in pregnant women with GDM

Numerous longitudinal and cross-sectional human case-control

studies as well as animal experiments have revealed changes in the

gut microbiota of patients with GDM. Bacteroidetes were

significantly increased in GDM patients, with an increased

abundance of Bacteroides, and Citrobacter Desulfovibrio (Su et al.,

2021). Sun and colleagues conducted a longitudinal case-control

study to explore the dynamics of gut microbiota during pregnancy

and its relationship to glucose metabolism during pregnancy. They

found that Bacteroides massiliensis was associated with GDM status,

andMycobacterium and Anaerostipes hadrons were associated with

impaired glucose tolerance (Sun et al., 2023). Similar results were

obtained in animal experiments. Liu et al. investigated the causal

effect of gut microbiota from GDM patients on glucose metabolism

in germ-free (GF) mice. They implanted stool samples from donors

with gestational diabetes and non-gestational diabetes into GF mice.

The results showed that the content of Bacteroidetes increased

significantly in patients with gestational diabetes (Liu et al., 2019).

In addition to Bacteroidetes, Fugmann et al. (2015) found an

increased proportion of Prevotella in GDM. In addition, a study

on pregnant women with GDM in Japan found an increased

abundance of Romboutsia. Romboutsia plays an important role in

insulin resistance disorders associated with pregnancy (Cortez

et al., 2019).
4.2 Gut microbiota species significantly
reduced in pregnant women with GDM

Pregnant women with GDM had a decreased abundance of

Romboutsia, Firmicutes, Actinobacteria, Verrucomicrobia,

Ruminococcaceae, Ackermannia, Escherichia-Shigel la ,

Bifidobacterium, Clostridia, rothia, and Corynebacterium (Hu

et al., 2021; Zhang et al., 2021). This finding has been confirmed

in several human trials. For example, Wang et al. (2020) observed

reduced levels of Enterobacteria and Rumenococcaceae in GDM

compared to healthy participants. Hu et al. (2021) found a

s ignificant decrease in Croat ia , Act inobacter ia , and

Bifidobacterium in GDM patients. Furthermore, in a study by Su

et al., the degree of decrease in the abundance of Clostridia,

Corynebacterium, and this was shown to be positively correlated

with fasting blood glucose, and blood glucose levels at 1 hour and 2

hours postprandial. And the abundance of Ackermannia was also

shown to be negatively correlated with 1 h blood glucose and

positively correlated with insulin sensitivity (Su et al., 2021). In

particular, the abundance of Ackermannia is susceptible to dietary

influences, and an increase in the intake of foods rich in crude

dietary fiber in the patient’s diet is associated with a significant

increase in the abundance of Ackermannia in the intestinal flora

(Tanaka et al., 2022) (Table 1).
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5 The role of gut microbiota in the
pathogenesis of gestational
diabetes mellitus

GM maintains a constant dynamic and homeostatic state.

However, at the same time, it can be affected by a variety of

factors: diet, antibiotic use, medications, and even the pH of

drinking water. Consequences of a high-fat diet include an

imbalance of intestinal flora, intestinal dysfunction, increased

intestinal permeability, and the escape of toxic substances into the

bloodstream, which in turn induces diabetes (Malesza et al., 2021;

Ye et al., 2022). In diabetic mice, broad-spectrum antibiotic use

exacerbates glucose tolerance and increases insulin secretion. The

use of antibiotics further alters the microbial community by

decreasing the number of Firmicutes, which in turn leads to

disturbed glucose metabolism (Han et al., 2019). It has been

found that widespread antibiotic use may promote autoimmunity

through gut dysbiosis (Vangoitsenhoven and Cresci, 2020).

Yang et al. (2023) induced pancreatic inflammation, b-cell
destruction, and insulin-dependent diabetes mellitus in antibiotic-

treated wild-type mice, and the results suggest that chemically

enriched pathogenic bacteria in gut dysbiosis is sufficient to

induce insulin-dependent diabetes after pancreatic translocation.

Proton pump inhibitors (PPI) are mainly used to inhibit gastric acid

production and to treat peptic ulcers. Treatment with PPI reduces

gut microbial diversity (Weersma et al., 2020). The pH of drinking

water also affects the composition and diversity of gut bacteria. In

summary, multiple factors can influence the gut microbiota.

Dysbiosis of gut microbiota is strongly associated with the

development of gestational diabetes (Koren et al., 2012; Lin and

Zhang, 2017; Fenneman et al., 2020; Doroszkiewicz et al., 2021).

Studies have shown that in GDM, intestinal flora participates in

insulin resistance, induces chronic inflammation, and affects energy

balance and blood glucose metabolism (Lau et al., 2021; Ye et al.,

2022; Liu et al., 2023; Wu et al., 2023). This paper reviews the above

mechanisms to provide new ideas for the occurrence of gestational

diabetes mellitus.

Generally, GDM is a chronic metabolic disease characterized by

impaired b-cell function and insulin resistance (Alejandro et al.,

2020). Many studies have shown that insulin resistance is closely

related to a chronic inflammatory response (Yang et al., 2021).

Disturbances in the structure of gut microbiota cause an increase in

the number of pathogenic bacteria, resulting in an increase in

lipopolysaccharides (LPS) produced by gram-negative bacteria

and the activation of toll-like receptor 4 (TLR4) and its

downstream factors, which increases intestinal permeability and

the amount of endotoxin entering the circulation, as well as the up-

regulation of adipose tissue pro-inflammatory cytokine and

chemokine expression, which causes the onset of chronic

inflammation (Cani et al., 2007). High-fat diets are associated

with elevated circulating LPS levels. Liu et al. (2023) found that

after 8 weeks of high-fat diet feeding, high-fat diet mice had altered

gut microbiota, impaired intestinal barrier function, increased

endotoxin release into the bloodstream, increased expression of

hepatic inflammatory factors (TNF-a, IL-1b, and IL-6), and
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exacerbated insulin resistance. Huang et al. (2023) found in animal

experiments that highly fermentable dietary fiber (HFDF) increased

the abundance of butyrate, reduced placenta-derived inflammation

by enhancing the intestinal barrier and inhibiting the transfer of

bacterial-derived LPS, and ultimately resisted high-fat diet-induced

insulin resistance, suggesting a role for LPS signaling in the

development of GDM.

Studies have shown that intestinal flora has an important effect

on the normal physiological function of the body (Figure 1). Short-

chain fatty acids (SCFAs) including acetic, propionic, and butyric

acids are produced by gut microbiota fermenting oligosaccharides,

polysaccharides, peptides, proteins, and glycoproteins. These

SCFAs have a variety of beneficial effects on energy metabolism

in mammals (Topping and Clifton, 2001; Zheng et al., 2020). Recent

studies have found that SCFAs are strongly associated with GDM

and that abnormal gut microbiota in patients with GDM leads to

abnormal SCFAs production (Cortez et al., 2019; Dualib et al.,

2021). SCFAs can regulate intestinal mucosal microecology, control

the growth of harmful bacteria, maintain the balance between water

and electrolytes prevent intestinal mucosal damage, and so on. In

addition, SCFAs can also reduce intestinal inflammatory response

by inhibiting the secretion of inflammatory cells and promoting the
Frontiers in Cellular and Infection Microbiology 05
recovery of intestinal inflammatory injury (Ziętek et al., 2021). In

the intestines, SCFAs increase the secretion of glucagon-like

peptide-1 (GLP-1) mainly by stimulating the signaling pathway of

G-protein coupled receptor 41 (GPR41) and GPR43 to achieve the

effects of appetite suppression, regulation of intestinal peristalsis

and thereby affecting the metabolic absorption of electrolytes and

nutrients (Chang et al., 2014; He et al., 2020; Canfora et al., 2022;

Liu et al., 2023). Studies have shown that the disorder of intestinal

flora can cause the decrease of SCFA production (Qin et al., 2012)

and the activity of SCFA receptors, and then cause the disorder of

glucose and lipid metabolism and induce GDM (Mokkala

et al., 2017).

In addition to SCFAs, we also found that intestinal flora can also

participate in the occurrence and development of GDM by

regulating cholic acid. Primary bile acids are synthesized in the

liver and then circulated to the gut where they are broken down into

secondary bile acids by gut microbiota (Liu et al., 2016). Secondary

cholic acid can bind to the G protein-coupled receptor TGR5 on the

surface of intestinal secretory 1-cells, thus increasing the synthesis

of glucagon-like peptide-1 (GLP1) and enhancing insulin sensitivity

(Sayin et al., 2013). A study found that bile acid can activate 5-

hydroxytryptamine in intestinal chromaffin cells under the
TABLE 1 Gut microbiota and related metabolic changes during GDM.

Author, year Study
Design

Group
Setting

Time Measurements GDM associated gut microbiota

Wang, 2020(Wang
et al., 2020)

Case-
control
study

59 GDM and
48 non-GDM

24-28 weeks
of gestation

16S rRNA
gene sequencing

Enterobacteria and Rumenococcaceae were reduced in GDM women

Su, 2021(Su
et al., 2021)

Case-
control
study

21 GDM and
32 non-GDM

24-28 weeks
of gestation

16S rRNA
gene sequencing

the phylum Bacteroidetes increased in GDM and increased
Bacteroides, Incertae, Sedis, Citrobacter, Parabacteroides, and
Fusicatenibacter genus.

Sun, 2023(Sun
et al., 2023)

Prospective
cohort
study

120 GDM and
120
non-GDM

during
three
trimesters

16S rRNA
gene sequencing

Bacteroides massiliensis, Mycobacterium and Anaerostipes hadrons
were increased in GDM women

Liu, 2020(Liu
et al., 2020)

Case-
control
study

45 GDM and
45 non-GDM

24-28 weeks
of gestation

16S rRNA
gene sequencing

women with GDM had reduced intestinal flora abundance,
particularly a decrease in Anaplasma and Akkermansia

Fugmann, 2015
(Fugmann
et al., 2015)

Prospective
cohort
study

42 GDM and
35 non-GDM

3 to 16
months
after delivery

16S rRNA
gene sequencing

Bacteroidetes and Prevotella were increased in GDM women

Cortez, 2019
(Cortez
et al., 2019)

cross-
sectional
study

26 GDM and
42 non-GDM

28-36 weeks
of gestation

16S rRNA
gene sequencing

Romboutsia was increased in GDM women

Hu, 2021(Hu
et al., 2021)

Case-
control
study

201 GDM and
201
non-GDM

6-15 weeks
of gestation

16S rRNA
gene sequencing

Croatia, Actinobacteria and Bifidobacterium were reduced in
GDM women

Zhang, 2021
(Zhang
et al., 2021)

Prospective
cohort
study

128 GDM and
709
non-GDM

22-24 weeks
of gestation

16S rRNA
gene sequencing

Woman who later progressed to GDM showed decreased
Enterobacteria and Rumenococcaceae

Tanaka, 2022
(Tanaka
et al., 2022)

Case-
control
study

20 GDM and
16 non-GDM

35-37 weeks
of gestation

16S rRNA
gene sequencing

Ackermannia was increased in GDM women

Huang, 2023
(Huang
et al., 2023)

Case-
control
study

21 GDM and
42 non-GDM

12-28 weeks
of gestation

16S rRNA
gene sequencing

Woman who progressed to GDM showed increased butyrate
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condition of intestinal flora disorder, thus reducing the release of

insulin and promoting the production of high glucagon (Martin

et al., 2019). Mouse experiments show that differences in bacterial

composition and metabolism in the gut and bile modulate intestinal

Farnesoid X receptor (FXR) signaling, and that elevated

concentrations of FXR excitatory factors increase the incidence of

metabolic diseases (Sun et al., 2021). Eight metabolites associated

with GDM include bile acids, taurocholic acid, glycocholic acid,

glycochenodeoxycholic acid, deoxycholic acid, lithocholic acid,

ursodeoxycholic acid and taurocholic acid (Wu et al., 2023).

Among them, multivariate analysis showed that TCA and LCA

were linearly positively and negatively correlated with the risk of

GDM respectively. In addition, elevated serum total bile acid

concentration was positively associated with the risk of GDM and

increased the risk of adverse pregnancy outcomes such as delivery

of macrosomic babies and premature rupture of membranes.

Therefore, high levels of total bile acid are also considered a risk

factor for GDM (Maghsoodi et al., 2019).

Branched-chain amino acids (BCAAs) are hydrolyzed by

proteolytic enzymes produced by the intestinal microflora. They

contain mainly leucine, valine, and isoleucine. It has been found

that diabetic patients have significantly higher serum levels of

BCAAs compared to the healthy population (Sun et al., 2021).

Phosphorylation of protein kinase B (Ser473 and Ser474) was

found in mice fed with BCAAs, which can block normal insulin

signaling and cause insulin resistance (Zhang et al., 2022). White

et al. (2021) found that lowering plasma BCAAs levels by drugs

can improve insulin resistance. The effects of diet, medications,

and other factors on gut flora can lead to changes in the levels of

BCAAs, which in turn have a regulatory effect on blood glucose

and lead to insulin resistance. A small cohort study of Chinese

women found that elevated levels of isoleucine in early pregnancy

were significantly associated with the development of subsequent

GDM (Jiang et al., 2020). Li et al (Li N. et al., 2022). also

demonstrated that BCAAs in pregnancy are strongly associated
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with the pathogenesis of GDM and that increases in leucine and

isoleucine can lead to GDM.
6 Intervention of gut microbiota aids
in the treatment of GDM

Regulation of intestinal flora is an effective way to prevent and

treat diseases caused by the imbalance of intestinal flora. The

structural changes of intestinal flora in patients with gestational

diabetes mellitus (GDM) are an important basis for the treatment of

GDM. Approaches to modulating the balance of gut microbiota

include the use of FMT, probiotics, and prebiotics. Here, we will

briefly review the advances and challenges of improving gestational

diabetes by regulating intestinal flora.

Fecal bacteria transplantation (FMT) refers to the prevention and

treatment of parenteral diseases by implanting beneficial bacteria

such as probiotics in healthy people into the intestines of patients to

reshape new flora (Mahmoudi andHossainpour, 2023). FMT therapy

for CDI has promising clinical applications (Khoruts et al., 2010).

Inspired by FMT therapy, the researchers explored the effect of FMT

on diabetes (Hanssen et al., 2021; Ng et al., 2022; Zhang et al., 2022).

In a study, a high-fat diet combined with streptozotocin (100 mg/kg)

was used to construct an animal model of type 2 diabetes, and FMT

was used to repair the intestinal microecology. The results showed

that FMT significantly reduced the insulin sensitivity of pancreatic

islets, attenuated apoptosis of pancreatic islet b-cells, and increased

the colonization of beneficial microorganisms in the intestinal tract

(Wang et al., 2020). In a non-blind, single-arm intervention trial of

FMT involving 17 patients with type 2 diabetes, 20 healthy people

served as a control group. The study showed that the intestinal flora

of type 2 diabetic patients was altered after the FMT intervention and

correlated with an increase in intestinal mucus Rikenellaceae and

Anaerotruncus (Ding et al., 2022). FMT can inhibit the progression of

diabetes in several ways, thus delaying the onset of GDM. However,
FIGURE 1

Beneficial and harmful bacteria in the gut during pregnancy.
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due to the lack of studies in GDM, the efficacy and safety of FMT in

GDM are still unclear.

Probiotics are active microorganisms that are beneficial to the

host, and they not only promote the growth of beneficial bacteria

but also inhibit harmful bacteria (Yoshimoto et al., 2013). Many

studies have shown that probiotics can be an effective means of

regulating gut microbiota, controlling local and systemic

inflammation by increasing intestinal permeability and

modulating the secretion of pro-inflammatory mediators, thereby

decreasing intestinal permeability and enhancing the immune

system, which in turn improves and prevents the onset and

progression of GDM (Homayouni et al., 2020). A meta-analysis

found that probiotic or commensal microorganism-based

nutritional supplements during pregnancy can increase levels of

glycolipid metabolism in GDM, suppress inflammatory responses,

and reduce high cholesterol levels in infants (Zhou et al., 2021).

Probiotic supplements during pregnancy have an impact and effect

on weight gain during pregnancy and the prevention of GDM.

Some studies have been done in clinical trials. Kijmanawat et al.

(2019) treated GDM patients with probiotics supplemented with

Bifidobacterium and Lactobacillus, or a placebo during 24-28 weeks

of gestation, and found a decrease in fasting glycemia and an

increase in insulin sensitivity with the addition of probiotics to

the gut.

However, Callaway et al (Diabetes mellitus in overweight and

obese women: findings from the SPRING double-blind randomized

controlled trial, 2019). found that probiotics taken in the middle of

pregnancy in overweight and obese women did not prevent GDM

after 28 weeks of gestation. Meanwhile, in a parallel double-blind,

randomized, and placebo-controlled clinical trial, Shahriari et al.

(2021) concluded that probiotic supplementation of pregnant

women did not seem to reduce the risk of GDM or improve

another neonatal and maternal prognosis. In addition to this, the

study by Pellonperä et al. (2021) also found that interventions with

probiotics during pregnancy appeared to be both safe and well-

tolerated, but did not have any benefit in reducing the risk of GDM

or improving glucose metabolism in overweight women. It was

concluded that differences existed due to factors such as probiotic

type, dosage, and timing of addition (Hou et al., 2022a). Therefore,

more research is needed in the future to better control the dosage

and timing of intestinal flora for the management of gestational

diabetes. A series of randomized controlled trials on probiotics for

the prevention of GDM are continuously being studied (Davidson

et al., 2021) and will also provide more data regarding probiotics for

the prevention of GDM.

As the largest exogenous determinant of gut microbiota, dietary

patterns, and structure can be used as a therapeutic pathway to re-

establish healthy microbiota. Studies have demonstrated that

consuming foods higher in dietary fiber reduces the risk of

inflammation and mortality, especially in diabetic patients.

Dietary fiber helps to remodel the gut microbial ecology,

ameliorate ecological dysbiosis, and promote the expansion of

SCFAs-producing Prevotella and Bifidobacterium bacteria, which

in turn increase fecal and systemic SCFAs concentrations and

improve glucose homeostasis (Li et al., 2020; Blaak et al., 2020).

Large prospective cohort studies have consistently shown that high
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dietary fiber intake (25 g/day for women and 38 g/day for men) is

associated with a 20-30% lower risk of developing T2DM after

correcting for confounders (Weickert and Pfeiffer, 2018). Dietary

fiber fermentation contributes to the effect of gut microbiota on

glucose regulation during pregnancy (Weersma et al., 2020). A

meta-analysis showed that dietary fiber supplementation

significantly improved glucolipid metabolism and pregnancy

outcomes in patients with GDM. Dietary fiber can be used as

adjunctive therapy for GDM, and additional insoluble dietary fiber

supplementation is recommended for those patients with poor

fasting glucose (Sun et al., 2022).
7 Discussion

The large number of bacteria in the human intestinal tract

constitutes an extremely complex microecological system, which is

of great significance to the normal physiological function of the

body (Hou et al., 2022a). Recent studies have shown that gut

microbiota is closely associated with the onset of GDM (Song

et al., 2022). Studies have shown that intestinal flora has multiple

regulatory effects on GDM. Here, we review the current evidence

that the gut microbiota and the metabolites it produces may drive

insulin resistance in GDM by initiating an inflammatory response.

Its mechanisms of action are described below (Figure 2).

First of all, in GDM, gut microbes may play a role by

modulating LPS-induced inflammatory responses. Chronic

inflammation is a key feature of GDM. Various inflammatory

factors are involved in the development of GDM (Pinto et al.,

2023). Disturbed gut microbiota produces large amounts of LPS,

which leads to a variety of different biological activities. For

example, Liang et al. (2023) found that oral administration of

probiotics significantly reduced Gram-negative bacterial counts,

lowered inflammatory factor levels, and prevented GDM.

Prebiotics such as isomaltodextrin have beneficial effects on

chronic inflammation-associated insulin resistance by restoring

the intestinal barrier and reducing circulating endotoxin levels

(Hann et al., 2019). Unhealthy diet promotes the growth of

lipopolysaccharide-producing bacteria such as Enterobacteriaceae,

leading to the translocation of LPS through the compromised

intestinal barrier, which in turn induces dyslipidemia, insulin

resistance, systemic inflammation and immune responses (Sáez-

Lara et al., 2016; Ferrarese et al., 2018).

Secondly, the intestinal flora may affect GDM by regulating the

flora. Recent studies have shown that microbial metabolites are key

factors in the regulation of intracellular glucose metabolism. SCFAs

are associated with a number of metabolic processes, including

induction of appetite regulation (Byrne et al., 2015; Chambers

et al., 2015) and amelioration of insulin resistance in muscle and

adipose tissue (Gao et al., 2009; Canfora et al., 2015; den Besten et al.,

2015). For example, butyrate inhibits the epigenetic regulator histone

deacetylases (HDACs), thereby inducing an anti-inflammatory

response, particularly in enterocytes (Lin et al., 2015; Freedman

et al., 2018). Propionate and butyrate significantly reduce the

inflammation-inducing expression of pro-inflammatory mediators

in the placental and adipose tissue of pregnant women. Propionate
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and butyrate also significantly restored inflammation-induced

impaired insulin signaling pathways and insulin-mediated glucose

uptake in skeletal muscle in pregnant women (Maghsoodi et al.,

2019). High dietary fiber has been reported to reverse insulin

resistance, high fasting, and postprandial glucose through microbial

fermentation and subsequent production of SCFA, thereby

improving glucose and lipid parameters in individuals with diseases

associated with metabolic dysfunction (Cronin et al., 2021). SCFAs

are key molecules in the regulation of intestinal flora and play an

important role in maintaining acid balance, protecting the structure

of intestinal epithelial cells, and maintaining the normal physiological

function of the body. Thus, SCFAs have become an important target

for the prevention and treatment of GDM.

Another major mechanism is bile acid metabolism. Bile acids

not only promote lipid transport and intestinal absorption, but also

act as inflammatory factors and signaling molecules that can

regulate signaling pathways controlling a broad and complex

network of costimulatory metabolism, including glucose, lipid,

steroid, xenobiotic metabolism as well as regulating energy,

through the activation of different bile acid receptors, such as

farnesoid X receptor (FXR) and transmembrane G-protein-

coupled receptor 5, and the regulation of energy homeostasis,

thereby profoundly affecting the metabolic and immune functions

(Li and Chiang, 2014; Kiriyama and Nochi, 2019). For example,

galacto-oligosaccharides can inhibit the progression of obesity and

insulin resistance in mice by increasing the expression of intestinal

glucagon-like peptide 1 (GLP1) and decreasing fecal bile acid

excretion (Mistry et al., 2020). Long-chain polyphosphate from

Lactobacillus brevis improves intestinal inflammation and intestinal

barrier function through activation of the extracellular regulatory

protein kinase (ERK) signaling pathway (Isozaki et al., 2021). Cholic

acid is a new approach with the function of regulating glucose

metabolism, which has been widely used in clinics. Therefore,
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maintaining a balanced intestinal flora is crucial for balancing bile

acid metabolism, which is essential for improving GDM.

Finally, gut microbiota can influence GDM by modulating

branched-chain amino acid metabolism. BCAAs are important

nutrient metabolism signaling scores in the body. Many studies

have shown that alterations in the gut microbiota can regulate the

metabolism of BCAAs, thereby promoting the development of

diabetes. For example, Pedersen et al. (2016) found that

Prevotellaceae and Bacaeroides were the main species driving the

association between BCAAs biosynthesis and insulin resistance. In

mouse experiments, they demonstrated that Prevotellaceae induced

insulin resistance, exacerbated glucose intolerance, and increased

circulating levels of BCAAs.
8 Conclusion and future perspectives

Intestinal flora is considered to be an important regulator of GDM

susceptibility and plays an important role in patients with gestational

diabetes mellitus, both compositionally and functionally. In patients

with GDM, an increase in the number of Bacteroidetes, as well as a

decrease in Firmicutes, Proteobacteria, and Actinobacteria are

common, which may be the main cause of GDM. Several factors

associated with gut flora in GDM have been elucidated, including LPS,

SCFAs, Bile acids, and BCAAs. The intestinal flora may not only be

used as a diagnostic biomarker, but also a potential therapeutic target

for GDM. However, the exact driver bacteria and flora are unknown.

Therefore, multicenter studies are needed. In addition, multi-omics has

been widely used in gut microbiology studies, such as metagenomics

and metabolomics, to explore the role of gut flora in GDM. Elucidating

the exact role and mechanisms of gut flora in GDM will provide new

insights for developing individualized treatments for patients

with GDM.
FIGURE 2

Effects of dietary components on gut microbiota, lipid metabolism, and insulin sensitivity: a visual model of the pathogenesis of gestational
diabetes mellitus.
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