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Monkeypox virus (MPXV) is the etiological agent of monkeypox (mpox), a

zoonotic disease. MPXV is endemic in the forested regions of West and Central

Africa, but the virus has recently spread globally, causing outbreaks in multiple

non-endemic countries. In this paper, we review the characteristics of the virus,

including its ecology, genomics, infection biology, and evolution. We estimate by

phylogenomic molecular clock that the B.1 lineage responsible for the 2022

mpox outbreaks has been in circulation since 2016. We interrogate the host-virus

interactions that modulate the virus infection biology, signal transduction,

pathogenesis, and host immune responses. We highlight the changing

pathophysiology and epidemiology of MPXV and summarize recent advances

in the prevention and treatment of mpox. In addition, this review identifies

knowledge gaps with respect to the virus and the disease, suggests future

research directions to address the knowledge gaps, and proposes a One

Health approach as an effective strategy to prevent current and future

epidemics of mpox.
KEYWORDS

monkeypox, genomics, evolution, antivirals, epidemiology, infection biology, biosafety,
one health
1 Introduction

Monkeypox virus (MPXV) is the etiological agent of a zoonotic disease called monkeypox

(mpox). It is a double-stranded DNA (dsDNA) virus belonging to Orthopoxvirus (OPXV)

genus within the Poxviridae family and Chordopoxvirinae as the subfamily (Alakunle et al.,

2020). Other members of this genus include Variola virus (VARV), Cowpox virus (CPXV),

Vaccinia virus (VACV), Camelpox virus (CMLV), Taterapox virus (TATV) and Ectromelia

virus (ECTV). MPXV is divided into Clade I and Clade II, with Clade II subclassified as Clade

IIa and IIb (Happi et al., 2022). For five decades, MPXV was endemic in West and Central
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Africa (Earl et al., 2012), and exportation of the virus to non-endemic

regions was rare (Alakunle and Okeke, 2022). However, the incidence

(since 2017) of mpox outside endemic regions has increased, and the

epidemiological profile of the disease within endemic regions has

changed (Grothe et al., 2022). This may have led to the MPXV

emergence and re-emergence in endemic countries in 2022 (Alakunle

and Okeke, 2022). This paper will cover the current state of

knowledge on the characteristics of MPXV and mpox, the infection

biology, molecular pathogenesis, and evolution of MPXV as well as

the clinical features, diagnosis, epidemiology, and therapeutic options

against mpox. In addition, the review will critically interrogate and

evaluate the contributions of viral, host, and anthropogenic factors to

the emergence and reemergence of mpox across the globe.

Before 1970, there was no documented report of human MPXV

infection, although the virus had previously caused infections in

monkeys and apes (Arita and Henderson, 1968). Infections in

monkeys were reported in laboratory/captive animals and were

first identified in captive monkeys in Denmark in 1958. The first

human mpox case emerged in a 9-month-old boy in the Democratic

Republic of the Congo (DRC) in August 1970 (Ladnyj et al., 1972).

Subsequently, six additional mpox cases were identified between

September 1970 and April 1971 in Liberia, Sierra Leone and Nigeria

(Lourie et al., 1972). Since then, MPXV has been reported in several

countries and is endemic in Benin, Cameroon, the Central African

Republic, the DRC, Gabon, Ivory Coast, Liberia, Nigeria, the

Republic of the Congo, Sierra Leone, and South Sudan (Bass

et al., 2013; World Health Organization, 2022a).

Figure 1 displays the global mpox outbreak timeline. Between

1970 and 2021, the cases have been sporadic and geographically

limited within endemic regions (Brown and Leggat, 2016; Titanji et al.,

2022). Notably, the DRC is the only country that continuously reports

yearly cases of mpox with tropical rainforest regions accounting for

98.7% of all cases pre-2022 (Brown and Leggat, 2016; Durski et al.,

2018). In Nigeria, sporadic cases were reported in the 1970s; however,
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re-emergence of the disease started in 2017 with an eleven-year-old

boy as the index case in Bayelsa state (Yinka-Ogunleye et al., 2018). At

the end of 2017, Nigeria recorded 88 cases, and during this outbreak,

travel-related cases in non-endemic countries were reported, including

the United Kingdom (UK), the United States of America (USA),

Israel, and Singapore, between 2018 and 2021 (Adegboye et al., 2022).

The first mpox outbreak in a non-endemic country was reported

in 2003 in the USA linked to importation of rodents from Ghana

(Figure 1) (Anderson et al., 2003; Centre for Disease Control, 2003;

Croft et al., 2007). By the end of the outbreak, 47 people had been

infected (10 probable and 37 confirmed cases) (Centre for Disease

Control, 2003; Center for Diseases Control and Prevention (CDC),

2023). There were no other travel-related cases reported until 2018.

Between 2018 to 2021, 11 travel-related mpox cases were recorded in

the UK, Singapore, Israel, and the USA (Figure 1). Of these, four

resulted in secondary cases: one healthcare worker in the UK was

infected by contaminated bedding, an adult and a child from a family

from the UK had a travel history to Nigeria, and one traveler to Israel

who had visited Nigeria in 2018. Between 2019 and 2021, a total of

seven mpox outbreaks occurred outside Africa in Singapore, the UK

and the USA (Figure 1). All travel related cases originated in Nigeria,

with high-throughput sequencing confirming it as Clade II (Vaughan

et al., 2018; Erez et al., 2019; Fang et al., 2020; Hobson et al., 2021;

Bunge et al., 2022). Between 2017 and October 30, 2022, a total of 830

cases were recorded in 33 out of 36 states in Nigeria (Nigeria Centre

for Disease Control (NCDC), 2022).

The current global mpox outbreak started in May 2022

(Alakunle et al., 2020; Adegboye et al., 2022) and was declared a

public health emergency of international concern on July 23, 2022

(Nuzzo et al., 2022). As of August 02, 2023, there were a total of

88,600 laboratory-confirmed cases and 152 deaths (case-fatality

rate, 0.17%) across 113 countries including 106 countries that

have not historically reported mpox (Figures 2A-C) (World

Health Organization, 2022). The Americas recorded the highest
FIGURE 1

Timeline of MPXV emergence and re-emergence in endemic regions and globally. Each event timeline indicates the pre-2022 outbreak in endemic
and non-endemic countries and the 2022 mpox outbreak (Durski et al., 2018; World Health Organization, 2022). Note: Cameroon (CMR), the
Central African Republic (CAR), Cote d’Ivoire (CIV), the Democratic Republic of the Congo (DRC), Gabon (GAB), the United Kingdom (GBR), Liberia
(LBR), Nigeria (NGA), Israel (ISR), Sierra Leone (SLE), Singapore (SGP), the Republic of the Congo (COD), South Sudan (SSD), the United States of
America (USA).
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number of cases during the 2022 mpox outbreak, with the USA (n =

29,513) and Brazil (n = 10,168) accounting for 48.32% of the total

cases (Figure 2C). Other notable affected countries include Spain

(n = 7,408), France (n = 4,110), Colombia (n = 3,880), the UK (n =

3,730), Germany (n = 3,673), Peru (n = 3,561), Mexico (n = 3,455),

and Canada (n = 1,459). In Africa, Nigeria has the highest mpox

cases with 634 cases.
2 Ecology, host range, tissue and
cell tropism

Despite the name, monkeypox, monkeys are not the genuine

reservoir of MPXV. Several animals can naturally or experimentally

be infected with MPXV (Table 1) (Li et al., 2023), but the natural
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host reservoir remains elusive. While specific host-cell receptors are

responsible for cell tropism, the specificity of MPXV is yet to be

determined. Factors like the monkeypox inhibitor of complement

enzymes (MOPICE) and complement control protein (CCP) can

influence the viral cellular and tissue tropism (Hudson et al., 2012).

Nonetheless, a wide spectrum of tissue and host tropism is expected,

which may explain the possibility of MPXV establishing animal

reservoirs in non-endemic regions (Kmiec and Kirchhoff, 2022).

Organs such as ovaries, kidneys, heart, brain, pancreas, liver, and

lung have been identified as some of the tissue tropism for MPXV

(Arthur et al., 2022). However, specific virus ligands remain

unidentified. The inability to identify specific virus ligands and

cognate host receptors for MPXV tropism suggests that the virus

uses many alternative ligands to successfully invade host cells or the

host receptors have functional redundancy to the virus ligand.
A

B C

FIGURE 2

Timeline of MPXV re-emergence and global spread. (A) Global map of 2022 mpox of the geographical distribution of the outbreak as of December
5, 2022 (Durski et al., 2018; World Health Organization, 2022). The names of countries with at least one case pre-2022 are labelled. (B) Global maps
zoom on Europe. (C) Weekly cumulative number of cases reported to World Health Organization (WHO) stacked by WHO region. The line/dot
represents the cumulative number of countries affected. Countries: Cameroon (CMR), the Central African Republic (CAR), Cote d’Ivoire (CIV), the
Democratic Republic of the Congo (DRC), Gabon (GAB), the United Kingdom (GBR), Liberia (LBR), Nigeria (NGA), Israel (ISR), Sierra Leone (SLE),
Singapore (SGP), the Republic of the Congo (COD), South Sudan (SSD), the United States of America (USA).
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Spillover to humans (zoonotic transmission) might arise from the

disruptions of the natural habitats of wild animals (Domán et al.,

2022). This could occur via various routes, including aerosol, direct

contact, and fomite transmission (Walker, 2022). It is believed that

the MPXV outbreaks in Africa prior to 2022 occurred as a result of a

spillover from animals to humans (Faye et al., 2018; Kabuga and El

Zowalaty, 2019; Petersen et al., 2019b; Happi et al., 2022; Riopelle

et al., 2022). Thus, there is a likelihood of MPXV being sustained in

the spillover due to the wide geographical coverage of the MPXV

hosts (Tu, 2015).
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3 Genomics, phylogenomics,
phylodynamics, and evolution

3.1 MPXV genome and gene content

MPXV has a long and complex genome of 196 Kbp - 211 Kbp

with a conserved central region and variable inverted terminal

repeats (ITR) (Figure 3A). Within MPXV clades, Clade I isolates

have more uniform genome length (196 Kbp - 199 Kbp) than Clade

II isolates (196 Kbp - 211 Kbp). The length of MXPV ITR varies
TABLE 1 List of natural MPXV-infected animals and experimental MPXV-infected animals.

MPXV HOST RANGE & RESERVOIR HOSTS

Natural MPXV-Infected Animals References Experimental MPXV-
Infected Animals

References

Sooty mangabey monkey (Cercocebusatys)
(Alakunle et al., 2020) Prairie

Dog (Cynomysludovicianus)
(Parker and Buller, 2013; Domán et al., 2022)

Gambian-pouched rat (Cricetomysgambianus) (Alakunle et al., 2020) Mouse (BALB/c and C57BL/6) (Parker and Buller, 2013; Domán et al., 2022)

Rhesus macaques (Macacamulatta)
(Alakunle et al., 2020) Gambian Pouched

Rat (Cricetomysgambianus)
(Parker and Buller, 2013)

Cynomolgus macaque (Macacafascicularis)
(Alakunle et al., 2020) Crowned monkeys

(Cercopithecus ascanius)
(Parker and Buller, 2013)

Asian Monkeys (M. fascicularis)
(Alakunle et al., 2020) Red-tailed monkeys

(Cercopithecus pogonias)
(Parker and Buller, 2013)

Southern opossum (Didelphis marsupialis)
(Alakunle et al., 2020) White-nosed monkeys

(Cercopithecus petaurista)
(Parker and Buller, 2013)

Sun squirrel (Heliosciurussp.)
(Alakunle et al., 2020) Western colobus monkey

(Colobus badius)
(Parker and Buller, 2013)

African hedgehogs (Atelerixsp.)
(Alakunle et al., 2020) Rhesus

macaque (Macacamulatta)
(Parker and Buller, 2013)

Jerboas (Jaculussp.)
(Alakunle et al., 2020) Cynomolgus

macaque (Macacafascicularis)
(Parker and Buller, 2013)

Woodchucks (Marmota monax)
(Alakunle et al., 2020) Thomas’s rope

squirrel
(Funisciurusanerythrus)

(Parker and Buller, 2013)

Shot-tailed opossum (Monodelphisdomestica)
(Alakunle et al., 2020) Red-legged sun

squirrel
(Heliosciurusrufobrachium)

(Parker and Buller, 2013)

Porcupines (Atherurusafricanus)
(Alakunle et al., 2020) Ribboned rope

squirrel
(Funisciuruslemniscatus)

(Parker and Buller, 2013)

Giant anteaters (Myrmecophagatridactyla)
(Alakunle et al., 2020) Gambian sun

squirrel
(Heliosciurusgambianus)

(Parker and Buller, 2013)

Prairie dogs (Cynomysspp.)
(Alakunle et al., 2020) Eurasia red squirrels

(Sciurus vulgaris)
(Parker and Buller, 2013)

Elephant shrew (Petrodromustetradactylus)
(Alakunle et al., 2020) Thirteen-lined ground

squirrel
(Spermophilustridecemlineatus)

(Parker and Buller, 2013)

Domestic pig (Susscrofa) (Alakunle et al., 2020) Rabbits (Parker and Buller, 2013)

Rope squirrel (Funisciurussp.) (Alakunle et al., 2020) Mouse (CAST/EiJ strain) (Parker and Buller, 2013)

African dormice (Graphiurusspp.) (Alakunle et al., 2020) Cotton rats (Sigmodon sp.) (Parker and Buller, 2013)
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between 6.5 Kbp to 17.5 Kbp (Shchelkunov et al., 2002; Likos et al.,

2005; Nakazawa et al., 2013). Our genomic comparison of MPXV

clades (Clade I, n=23; Clade IIa, n=13 and Clade IIb, n=161)

indicated similar gene synteny (excluding the ITR), but slight

differences in the gene content among the clades due to some

genes that are missing or truncated in either one or two clades. The

results are consistent with a previous study (Forni et al., 2022a)

which indicates that four genes (D14L, D15L, D16L and D17L) are

missing and three genes (D4L, B14L and B15L) are truncated in

Clade II. Furthermore, the homologue of VACV-Cop E5R is only

absent in Clade I and three genes (K1R, homologues of VACV-Cop

A47L and VACV-Cop B11R) are truncated. Another major

difference is the gene content of their left terminal in which Clade

IIa contains four genes (N3R, N2R, N1R and R1R) that are absent in

Clade I and IIb. However, these four genes are present on the right

terminal of all clades. Furthermore, Clade I and IIb have theD2L

gene. Within Clade IIb, gene content of the lineage A and B.1

are similar.
3.2 Phylogenomics and phylodynamics

Our Bayesian phylogenetic (BI) analysis of 62 non-recombinant

conserved genes (Diaz-Cánova et al., 2022a) from 197 MPXV

isolates resolved MPXV into three monophyletic clades, namely

Clade I (Congo Basin Clade), Clade IIa (West Africa Clade) and

Clade IIb consisting majorly of human MPXV (hMPXV) isolated

between 2017-2022 (Figure 3B). Clade IIb was further divided into

lineages: A (n=11), A.1 (n=11), A.2 (n=1), A.3 (n=1), and B.1

(n=135) as assigned by the GISAID (Global Initiative on Sharing All

Influenza Data) (https://gisaid.org/). MPXV tree topology reported

here is similar to that of the trees reported previously (Gigante et al.,

2022; Isidro et al., 2022; Luna et al., 2022; Wang et al., 2022). Isidro

et al. reported that the transition from A.1/A.1.1 to B.1 is

characterized by a long, divergent branch (Isidro et al., 2022)

which suggests accelerated microevolution. The findings of this

current study (Figure 3B) agree with the suggestion.

Lineage A (hMPXV-1A) corresponds to the 2017–2019

outbreak, although it contains strains isolated after this time

frame (Figure 3B) and this observation has been reported by

others (Gigante et al., 2022). A recent study showed that new

Nigerian hMPXV genomes isolated in 2019-2020 were identified as

belonging to the lineage A (Ndodo et al., 2023). Lineage B.1

contains most hMPXV genomes from 2022 (Figure 3B). It is

poorly resolved, and its sub-lineages cannot be unequivocally

assigned (Figure 3B). The low clade supports are probably due to

very low genetic variability among isolates (Scarpa et al., 2022).

Polytomy within lineage B.1 could be an indication of uncertainty in

the relatedness of isolates or the belief that those isolates evolved

independently from a single origin (Slowinski, 2001; Phylogenetic

pitchforks - Understanding Evolution, 2023), although

recombination cannot be excluded (Yeh et al., 2022).

Furthermore, molecular dating analysis was carried out on the

62 non-recombinant conserved genes of 197 MPXV isolates to

estimate the evolutionary rate and the time of the Most Recent

Ancestor (tMRCA) (Figure 3C). TempEst analysis showed temporal
Frontiers in Cellular and Infection Microbiology 05
signal in the dataset (R=0.65). Maximum Clade Credibility (MCC)

tree (Figure 3C) demonstrated that MPXV emerged at 1730 (95%

high posterior density interval (HPD), 1663 – 1790) with a mean

evolutionary rate estimated to be 5.68 × 10−6 (subs/site/year), with

95% HPD of 4.53 × 10−6 − 6.86 × 10−6 subs/site/year. A recent

publication estimated the substitution rate to be 5 x 10-6 (Dumonteil

et al., 2023) which is in agreement with our result, but previous

estimations of the substitution rates of Clades I and IIa were smaller

(Gigante et al., 2022). Clades I, IIa, and IIb were estimated to have

emerged in 1956, 1928, and 1938, respectively which is earlier by 33,

47, and 97 years as estimated by Forni et al. (Forni et al., 2022b).

Lineage A and B.1 were estimated to have a tMRCA of 1998 (95%

HPD, 1990 - 2006) and 2016 (95% HPD, 2014 – 2018), respectively.

Our dating analysis put the emergence of the B.1 lineage six years

earlier than that estimated by Luna et al. (Luna et al., 2022) and

Nextclade (https://clades.nextstrain.org/). This discrepancy may be

explained by molecular dating methods used (ML-TSP versus BI-

MCC). We hypothesize that the emergence of lineage A about 1998

allowed enough time for lineage A evolution and that may explain

the long divergent branch length from lineage A to B.1. Similarly,

the emergence of lineage B.1 in 2016 in tandem with clustering of

some 2022 isolates within the lineage A (2017-2019) support cryptic

transmission of the B.1 viruses prior to the current 2022 outbreak in

multiple non-endemic countries (Alakunle and Okeke, 2022;

Dumonteil et al., 2023). A recent molecular clock analysis based

on accumulation of APOBEC3 (apolipoprotein B mRNA editing

enzyme, catalytic polypetide 3)-type mutations inferred that MPXV

with APOBEC3 editing has been in circulation since at least 2016

(O’Toole et al., 2023), and this is in agreement with our molecular

dating reported herein although their interpretation differs from

ours. While we infer that B.1 lineage emerged in 2016, O`Toole et al.

concluded that APOBEC3-type mutations, a predictor of human-

to-human transmission emerged in 2016. The close phylogenetic

relationship between A.1 isolates from Nigeria (in particular

EPI_ISL_15370077) with B.1 suggests a single origin for lineage B.1.
3.3 Mutational analysis and recombination

Our mutational analysis revealed that lineage B.1 has 66-86

nucleotide substitutions (60 consensus) and 28-39 amino acid

substitutions (26 consensus) compared to reference genome

NC_063383.1, MPXV from 2018 (Figures 3D, E). Consensus

substitutions predominantly affect genes responsible for host/

immune modulation and viral replication/transcription

(Figure 3E). B21R (OPG210) codes for a T cell suppressor; our

analysis demonstrated that this open reading frame (ORF)

contained three consensus amino acid substitutions (D209N,

P722S, and M1741I). A18R (OPG145) contained three

substitutions (E62K, R243Q, and E435K). Excluding G8R

(OPG093) with two substitutions, all the other affected ORFs

contained one consensus amino acid substitution each

(Figure 3E). The impact of these substitutions on the

pathogenicity, transmissibility, immune evasion, and host

specificity of MPXV remains unknown. The E353K substitution

within F13L (OPG057) affects the target for the antiviral agent,
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FIGURE 3

Genome annotation, phylogenomic tree, maximum clade credibility tree, and mutation map of MPXV. (A) Schematic presentation of MPXV genome. Annotation
ORFs is given by the direction of arrow heads. ORFs are named according to the nomenclature of orthopoxvirus genes (example: OPG001) (Senkevich et al., 20
genome consists of a conserved central region (OPG048 to OPG151) flanked by variable terminal regions, which contain inverted terminal repeats (ITR) (Shchelk
encodes genes for genome replication, essential enzymes, and structural proteins. Conversely, the variable terminal regions contain mainly virulence and host-ra
>190 nonoverlapping open reading frames (ORFs) (Shchelkunov et al., 2001; Hendrickson et al., 2010; Shen-Gunther et al., 2023) and at least 4 ORFs are located
2013). ORFs are colored based on their function. (B) Bayesian Inference phylogenetic tree of concatenated 62 non-recombinant conserved genes from 197 MP
detection program 4 (RDP4) (Martin et al., 2015) was used to detect recombination in the 62 conserved genes (Diaz-Cánova et al., 2022a) and the phylogenetic
as previously published (Diaz-Cánova et al., 2022a). Black squares at the nodes indicate posterior probabilities ≥ 0.95. The scale bar represents expected substitu
of concatenated 62 non-recombinant conserved genes from 197 MPXV strains. The presence of a temporal signal within the dataset was examined by regressio
sampling date using TempEst v.1.5.3 (Rambaut et al., 2016). The Maximum likelihood tree of 62 non-recombinant conserved genes built as described previously
clade-credibility (MCC) tree was generated using BEAST 1.10.4 (Suchard et al., 2018), using a log-normal strict clock, constant population size, and HKY substitut
reaching convergence. The convergence of MCMC chains was checked by the effective sample size (ESS) values >200 for each parameter (after burn-in) using
(MCC) tree was generated using TreeAnnotator v1.10.4. Black circles at the nodes indicate posterior probabilities ≥ 0.9. The scale bar represents expected substi
substitutions. 51 of the 60 consensus nucleotide substitutions possessing APOBEC3 like pattern of mutation (GA > AA, GG > AG, and TC > TT). Twenty-eight of
mutational pattern is a product of APOBEC3G), twenty-one were TC > TT, and the remaining nine substitutions were not typical of APOBEC3 editing. (E) Synon
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tecovirimat; however, functional studies have not revealed any effect

on the efficacy of the drug (Gigante et al., 2022). Wang et al. also

reported three mutations in OPG210 protein in MPXV 2022

outbreak strains (Wang et al., 2022). Additionally, they showed

that this protein together with other nine proteins (D2L‐like,

OPG023, OPG047, OPG071, OPG105, OPG109, A27L‐like,

OPG153, and OPG188 proteins) have more mutations compared

to the other MPXV proteins (Wang et al., 2022).

In contrast to our study, previous mutational studies have

reported fewer consensus substitutions (Isidro et al., 2022; Wang

et al., 2022; Wassenaar et al., 2022). They reported 46 shared

mutations in MPXV genomes from 2022 outbreak compared with

NC_063383 (Chen et al., 2005; Isidro et al., 2022). However the

number of mutations identified here and in other studies is higher

than one would expect for MPXV (Chen et al., 2005; Isidro et al.,

2022; Ndodo et al., 2023), based on the low substitution rate of OPXV

(Firth et al., 2010). The accelerated evolution of MPXV has been

attributed to the human APOBEC3 (Isidro et al., 2022; O’Toole and

Rambaut, 2022; Wang et al., 2022). Since most mutations identified

here (Figure 3D) and elsewhere were GA>AA and TC>TTmutations,

which are compatible with APOBEC3 activity. APOBEC3 is a

cytidine deaminase known to play important functions in innate

anti-viral immunity (Harris and Dudley, 2015; Salter et al., 2016).

Evidence for the accumulation of APOBEC3 enriched substitutions

inMPXV isolates has been reported since 2017, which corresponds to

the detection of lineage A (Gigante et al., 2022). Ever since, every year,

there has been an increase in APOBEC3-like mutations in MPXV

(Ndodo et al., 2023). This mutational pattern has become more

pronounced as suggested from more recent isolates (B.1) (Gigante

et al., 2022; Ndodo et al., 2023), (Figure 3D). The recent pattern of

upsurge of APOBEC3 derived mutations may be an indication of a

change in virus-host interaction such as sustained human-human

transmission (Ndodo et al., 2023) or a new route of infection (Gigante

et al., 2022). Gigante et al. (Gigante et al., 2022) suggested the

possibility of recombination in MPXV following observation of

three sequences that showed a chimeric pattern in their genomes,

although assembly errors could be a plausible explanation. Recently,

tandem repeats and linkage disequilibrium analysis provided

evidence of natural recombination in lineage B.1 (Yeh et al., 2022).
4 Infection biology
and pathophysiology

4.1 Virus morphogenesis, pathogenesis
and pathophysiology

Poxvirus mature particles are ovoid or brick-shaped with

surface tubules and have a characteristic dumbbell-shaped

nucleoprotein core containing the viral genome (Shchelkunov

et al., 2001). MPXV virions are ~200 nm in diameter and ~300

nm in length (Wenner et al., 1968). Like other OPXVs, MPXV

forms three distinct infectious virus particles: intracellular mature

virus (IMV), cell associated enveloped virus (CEV) and extracellular

enveloped virus (EEV) although CEV and EEV are morphologically
Frontiers in Cellular and Infection Microbiology 07
and structurally indistinguishable. Morphogenesis and

transmission of IMV, CEV, and EEV are described in Figure 4A.

Observations of cynomolgus monkeys infected with MPXV

gave the first indications of the pathogenic role of this virus with

intramuscular injection of the virus leading to an intense

inflammatory immune response (Wenner et al., 1968, 1969). The

pathogenesis of MPXV has also been studied in other animals,

including rabbits, rodents and prairie dogs (Hutson et al., 2009;

Bunge et al., 2022). Studies in monkeys, mice, and prairie dogs

demonstrated that Clade I viruses are more virulent than Clade II

strains, which reflects the situation in humans (Saijo et al., 2009;

Hutson et al., 2010; Bunge et al., 2022; Americo et al., 2023;

Falendysz et al., 2023). Except for disease severity, the clinical

features of the two clades are similar (Kipkorir et al., 2022).

MPXV infection has an incubation period of 5–21 days and the

most common symptoms for the 2022 human mpox outbreak in

non-endemic regions based on 48,622 patients were skin lesions

(95%), fever (58%), lymphadenopathy (53%), fatigue/asthenia

(39%), myalgia (31%), and headache (30%) (Liu et al., 2023).

Regarding skin lesions, anogenital lesions were most frequent

(66%), followed by lesions on the trunk/torso (48%), face/head

(39%), and extremities (~30%) (Liu et al., 2023). This is in contrast

with previous human mpox outbreaks from 1980-2022 where skin

lesions were most common on the face and extremities (Pourriyahi

et al., 2023). Lymphadenopathy, which typically occurs 1-2 days

before rash, is a distinct feature of MPXV which is used to

distinguish it from smallpox and chickenpox (Altindis et al.,

2022; McCarthy, 2022). The morphological progression of the

rash is macular, popular, vesicular, and pustular lesions. The crust

formed by pustules desquamate after 1-2 weeks (Altindis et al.,

2022; McCarthy, 2022; Nakhaie et al., 2022). In the current

outbreak, inguinal lymphadenopathy was more frequent than

cervical and axillary lymphadenopathy (Liu et al., 2023), whereas

in previous outbreaks in endemic countries submandibular, cervical

and axillary lymphadenopathy were more frequent (Damon, 2011).

The differences in clinical symptoms between human mpox

infections before 2022 and the current outbreak are probably the

result of different virus strain (Clade I versus Clade II, respectively)

and patient group (both female and male youngsters versus mainly

adult men having sex with men). In men having sex with men

(MSM), atypical clinical symptoms such as genital lesions and anal

ulcers were observed (Mitjà et al., 2022; Bragazzi et al., 2023).

MPXV can enter the host via the oral/respiratory tract, infecting

the oral and respiratory tract mucosae, with the upper, middle and

lower airway epithelium as main targets for primary infection (Giulio

and Eckburg, 2004; Damon, 2011; Kipkorir et al., 2022; Mitjà et al.,

2022). MPXV can directly infect damaged skin, and replicate in

keratinocytes, fibroblasts, and endothelial cells (Mitjà et al., 2022).

From the initial infection sites, virus can spread to draining lymph

nodes, where the virus can replicate. MPXV can subsequently reach

the tonsils, the spleen, and the liver. Replication in these organs

results in a second viraemia wave, enabling the virus to access distant

organs such as the lung, kidneys, intestines, and skin and causing

recognizable clinical manifestation (Giulio and Eckburg, 2004;

Damon, 2011; Kipkorir et al., 2022; Mitjà et al., 2022).
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MPXV morphogenesis, signaling and immune evasion strategies. (A) The MPXV replication cycle. After attachment of the virion to the host cell membrane
duplication of the viral genome. Translation and subsequent assembly results in IMV. MPXV virions can exist as intracellular mature virus (IMV), cell associat
the cytoplasm and consists of a core particle wrapped in a membrane. IMV particles egress from the infected cells by lysis, whereas some IMVs are transp
produce an intracellular enveloped virus (IEV), which can further fuse with the cell membrane and be released to form EEV (Schmidt and Mercer, 2012; Si
surface (CEV) and are responsible for cell-to-cell spread, whereas EEV that detaches from the infected cells play a role in long-range dissemination within
responsible for inter-host viral transmission. In contrast, EEV are known to be important for intra-host viral dissemination (Payne, 1980). (B)MPXV strategie
activation of the cytoplasmic p65/p50 dimer, which is anchored into the cytoplasm through its interaction with IKa. The trimer IKKa/IKKb/IKKg will upon a
proteasomal degradation. This results in release of p65/p50, which translocate to the nucleus and can induce transcription of NFkB target genes. Several
consist of the tyrosine kinases JAK that phosphorylate and activate the transcription factor STAT. The MPXV proteins encoded by the genes H1L and D11L
virus-infection cells by cytotoxic CD8+T cells. Infected host cells will present viral peptide fragments by MHC-I molecules. These will be recognized by T
and the NKG2D receptor on the CD8+ T cell is required. MPXV will prevent the latter interaction by expressing soluble NKG2D. Moreover, the cytokine g
proteins that will bind these cytokines such as TNFa, IL-1b.
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Comparison of the Clade I and II strains has provided an

indication which viral gene products may be responsible for

their difference in virulence. The D14L gene which encodes

valosin-containing protein (VCP)-MPXV, also known as CCP

or MOPICE, is the orthologue of VACV secreted complement

C3b/C4b-binding protein VACV-Cop C3L (Chen et al., 2005).

This protein is known to inhibit the complement and to contribute

to virulence (Kotwal et al., 1990; Isaacs et al., 1992). Compared to

the VACV protein, VCP-MPXV/MOPICE is truncated due to a

single nucleotide deletion in the D14L gene leading to a stop

codon (Uvarova and Shchelkunov, 2001). The gene is absent from

Clade II strains due to ~10 kbp deletion (Likos et al., 2005).

Deletion of the C3L gene caused VACV attenuation in infected

animal models (Isaacs et al., 1992; DeHaven et al., 2010; Girgis

et al., 2011). Studies with Clade I MPXV with deleted D14L

showed that intranasal infection of prairie dogs resulted in

decreased morbidity and mortality. However, ablation of D14L

did not significantly affect virus replication compared to animals

infected with control Clade I virus. On the other hand, Clade II

virus with inserted D14L gene did not have virulence compared to

Clade I virus and no apparent effect on disease-associated

mortality compared to control Clade II virus was observed

(Hudson et al., 2012). So, other factors besides VCP-MPXV/

MOPICE are necessary to explain the difference in virulence

between Clade I and II MPXV.

Other candidate virulence genes include BR-203, BR-209, and

the OPXV major histocompatibility complex class I–like protein

orthologue (OMCP or N3R) (Chen et al., 2005; Likos et al., 2005).

BR-203 protein is an orthologue to the myxoma virus M-T4, which

plays a role in avoiding apoptosis of infected lymphocytes, hence

promoting viral spread within the host (Barry et al., 1997; Weaver

and Isaacs, 2008). Myxoma virus expressing C-terminal truncated

M-T4 caused increased inflammatory response compared to rabbits

infected with wildtype virus, whereas challenging with virus lacking

M-T4 resulted in disease attenuation (Barry et al., 1997; Hnatiuk

et al., 1999). Thus, BR-203 may have a dual function in protecting

infected lymphocytes from apoptosis and in modulating the

inflammatory response to virus infection.

The BR-209 gene encodes a 326 aa interleukin-1b (IL-1b) binding
protein, which prevents IL-1b from interacting with the IL-1 receptor.

Mice intranasally infected with VACV lacking IL-1b binding protein

developed a more severe illness than wildtype virus (Alcami and Smith,

1992). Perturbing the IL-1 signaling pathway dampens the innate and

acquired immunity, explaining the virulent action of the IL-1b binding

protein (Dinarello, 2018). Interestingly, the BR-209 gene of Clade I

strains has two ORFs that can encode a putative N-terminal protein

fragment of 210 aa and a C-terminal protein fragment of 126 aa,

whereas the Clade II strains encode a putative N-terminal 163 aa

polypeptide and a C-terminal 132 aa fragment (Weaver and Isaacs,

2008). It is unknown if any of the fragments function in a way similar

to the full-length protein, nor if the differences in the length of the N-

terminal fragments of Clade I versus Clade II strains of MPXV

contribute to the differences in virulence (Weaver and Isaacs, 2008).

TheOMCP gene (N3R) from Clade I strains isolated in the DRC

carries a 628 bp deletion, which removes the 5’region of the N3R

gene (which encodes the OMCP) and the N2R gene (encoding a 73
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aa polypeptide with unknown function) (Kugelman et al., 2014).

OMPC functions as soluble natural killer group 2, member D

receptor (NKG2D) ligand, possibly representing a strategy to

avoid NK-cell-mediated killing (Campbell et al., 2007; Lazear

et al., 2013). Based on the clinical metadata, it was suggested that

the deletion is associated with increased human-to-human

transmission and pathogenicity compared to Clade IIa and Clade

IIb isolates (Forni et al., 2022a).

The Clade I strain also contains truncated orthologues of

VACV-Cop E3L and VACV-Cop K3L, two proteins that function

in interferon (IFN) resistance (Weaver and Isaacs, 2008). Clade I

and Clade II genomes differ also in VACV-CopH5R (the VACV

orthologue encodes a late transcription factor, which plays a role in

viral replication, transcription and morphogenesis (Van Vliet et al.,

2009), VACV-Cop A9L (VACV orthologue encodes a

morphogenesis factor) (Van Vliet et al., 2009), VACV-Cop A50R

(VACV orthologue encodes a DNA ligase) (Van Vliet et al., 2009)),

and VACV-Cop A36R (playing role in actin tail formation) (Wolffe

et al., 1998)). The exact mechanisms by which these proteins may

also contribute to differences in pathogenicity between Clade I and

II strains remains elusive.
4.2 Signal transduction and pathways

Manipulation of signaling pathways promotes viral replication

and determines disease outcomes, mainly by targeting cell growth

and immune responses (Krajcsi and Wold, 1998; Greber, 2002).

MPXV infection suppresses expression of host genes whose

products are implicated in regulation of histone expression,

cytoskeletal rearrangements, cell cycle progression, IFN-associated

genes, and signaling pathways such as the nuclear factor kappa B

(NFkB), the mitogen-activated protein kinase (MAPK), and

metabolic pathways (Alkhalil et al., 2010; Rubins et al., 2011;

Xuan et al., 2022).

The NFkB pathway plays pivotal roles in inflammation and

immunity (Shao-Cong Sun, 2017). NFkB is typically found as a

cytosolic trimer of p65/p50 and the inhibitor protein IkB.
Phosphorylation of IkB by the trimer IKKa/IKKb/IKKg results in
the release and activation of p65/p50, which translocate to the

nucleus and act as a transcription factor (Hayden and Ghosh, 2008)

(Figure 4B). Ankyrin proteins from OPXVs can inhibit the NFkB
pathway by interfering with different components of this pathway

(Shisler and Jin, 2004; Chen et al., 2008; Mohamed and McFadden,

2009; Ember et al., 2012; Mansur et al., 2013; Herbert et al., 2015).

MPXV genome encodes the ankyrin-like proteins J3L, D1L, D7L,

D9L, O1L, C1L, B5R, B17R, N4R, and J1R (Shchelkunov et al., 2002;

Lum et al., 2022), but their exact function remains to be determined.

In addition, the MPXV BCL2-like proteins A47R, B13R, C6R, and

P1L can prevent activation of the NFkB pathway (Lum et al., 2022).

The MPXV B1R gene encodes the VACV Kelch-like protein A55,

which inhibits the NFkB pathway and stimulates CD8+ T cell

proliferation (Lysakova-Devine et al., 2010). However, it remains to

be determined whether B1R exerts a similar function.

The Janus kinase (JAK) and signal transducer and activator of

transcription (STAT) pathway mediates cellular responses to
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cytokines and growth factors (Mythology, 1990). H1L inactivates

STAT1, and C6R blocks STAT2 (Mann et al., 2008; Stuart et al.,

2016). Whether the MPXV H1L and D11L orthologues act similarly

has not been investigated (Figure 4B).

The VACV epidermal growth factor homologue VGF (C11R)

usurps the epidermal growth factor receptor (EGFR) pathway to

provoke cell proliferation and to stimulate efficient virus spread and

pathogenesis (Buller et al., 1988; Beerli et al., 2019). The D3R gene

(OPG019) encodes an EGF homologue that might activate the

EGFR pathway and enhance viral dissemination. VACV-Cop F11L

also promotes viral spreading by inhibiting the RhoA signaling

pathway (Beerli et al., 2019). It is not known whether the MPXV

orthologue C17L possesses the same function.

Circumventing apoptosis is used by viruses to achieve

productive replication. VACV F1L and N1L proteins can prevent

apoptosis by inhibiting pro-apoptotic proteins BAK, BID, BAD, and

BAX (Aoyagi et al., 2006; Cooray et al., 2007). It is unknown

whether the MPXV C7L and P1L isologues have similar functions.

Other MPXV genes that prevent apoptosis include B12R, B19R,

D5R, and F3L (Lum et al., 2022). B12 is a serine protease and its

VACV orthologue B13R has been shown to be a caspase inhibitor

(Li and Beg, 2000).

Signal transduction is often mediated through a cascade of

phosphorylation events (Denhardt, 1996). Kindrachuk et al.

compared the phosphorylation pattern of host cell proteins after

Clade I or Clade II MPXV infection (Kindrachuk et al., 2012). They

found that Clade I MPXV infection down-regulated pathways

related to cell proliferation and apoptosis as compared with Clade

II MPXV. Differences in MPXV-induced posttranslational

modification may explain the differences in virulence between

MPXV clades.
4.3 Host immune response and virus
immune decoy mechanisms

4.3.1 Host immune response
Human infection with MPXV is associated with increased levels

of ILs, C-C motif chemokine ligand 2 (CCL2) and CCL5 (Johnston

et al., 2015), and a significant decrease in tumor necrosis factor

alpha (TNF-a), IFN-g, and IL-2 and IL-12 (Li et al., 2022). MPXV

infection provokes IgM and IgG antibodies, long-term persistence

of residual IgG-memory B cells, and a rapid expansion of activated

effector CD4+ and CD8+ T cells followed by a decrease over time

(Agrati et al., 2022; Mitjà et al., 2022). MPXV also interferes with

adaptive immune responses of antiviral CD8 + and CD4 + T cell

responses via inhibiting T cell receptor-mediated T cell activation

(Hammarlund et al., 2008).

4.3.2 Evasion host immune defense
Because of the high homology between the MPXV genes and

the corresponding OPXV orthologues, it is assumed and, in some

cases, demonstrated that MPXV applies similar strategies to evade

the host immune defense system. The Toll-like receptor (TLR)

family functions as pattern recognition receptors, which recognize

damage-associated molecular patterns such as viral dsRNA.
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Binding of viral dsRNA to specific TLR members triggers the

expression of proinflammatory molecules involved in host anti-

viral responses and subsequent activation of the adaptive immune

defense system (Mogensen, 2009). The VAVC A46 protein inhibits

the TLR4 signaling pathway (Lysakova-Devine et al., 2010).

However, it is unknown whether the MPXV orthologue A47 has

the same property, but the A47 protein has structural similarities to

VACV protein A52R, which can inhibit the TLR3 and TLR4

signaling pathways (Bowie et al., 2000; Harte et al., 2003),

underscoring a role for MPXV A47 in interfering with TLR

signaling. MPXV produces low levels of dsRNA intermediates

(Arndt et al., 2016), but whether these are recognized by TLR3

has not been investigated, although transcriptome analysis of

MPXV-infected cells revealed repression of TLR3 target genes

(Rubins et al., 2011). dsRNA can also activate kinase R (PKR),

which mediates phosphorylation of eIF2a, resulting in the

inhibition of viral and cellular mRNA translation (Pears, 1995).

VACV E3 and K3 are inhibitors of PKR, allowing VACV to evade

an antiviral response (Seet et al., 2003; Deng et al., 2008). The N-

terminal domain of VACV E3 protein is absolutely required for the

interaction with dsRNA (White and Jacobs, 2012). MPXV F3

protein is the VACV E3 protein homologue with a 37 aa

truncation at the amino terminus (Arndt et al., 2015), suggesting

that MPXV F3 does not bind dsRNA. However, MPXV can inhibit

host immune responses, although a recombinant VACV expressing

the MPXV F3L gene did not inhibit host PKR activation (Arndt

et al., 2015), suggesting that MPXV has evolved to encode for yet

undiscovered proteins that compensate for the missing N-terminal

amino acids of F3 in limiting host antiviral activities. As previously

mentioned, MPXV CCP (D14L gene) is completely absent in Clade

II isolates, whereas the Clade I strains are predicted to express CCP,

albeit with a truncated fourth short consensus repeat (Yeh and

Contreras, 2022). Loss of expression of CCP/MOPICE limited the

adaptive immune response against MPXV infection in rhesus

macaques (Estep et al., 2011).

IFNs are main effectors of the innate immune response and can

inhibit virus replication (Seet et al., 2003; Randall and Goodbourn,

2008). The MPXV B16 protein (VACV B19 orthologue) is a

secreted type I IFN inhibitor and suppresses the antiviral type I

IFN-induced signaling pathway (Fernández de Marco et al., 2010).

VACV K7 abrogates IFN signaling by destabilizing IFN-regulated

factor 3 (IRF3) and inhibits NFkB activation, whereas VACV H1

can block IFN signaling (Benfield et al., 2013; Liu and Moss, 2018).

Whether the MPXV D9 and H1 orthologues have the same function

remains to be proven, but both proteins are predicted to interact

with several cellular proteins of the immune system (Mann et al.,

2008; Kumar et al., 2023). VACV E3 perturbs IFN signaling by

binding host Z-DNA binding protein 1 (ZBP1). The MPXV E3

orthologue (F3) perturbs the IFN pathway, but whether in a ZBP1-

dependent manner needs to be established. The DNA-sensing

receptor pathway cGAS/STING (cyclic GMP-AMP synthase/

stimulator of interferon genes) can activate the IFN and NFkB
pathways (Motwani et al., 2019). The VACV B16 and B8 proteins

block IFN signaling by operating as soluble IFN-a and IFN-g
receptors, respectively (Alcamı ́ and Smith, 1995; Colamonici

et al., 1995). The MPXV ORF B16R and B9R encode functional
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homologues (Shchelkunov et al., 2002). OPXVs encode poxins that

degrade 2′,3′ cGAMP and thereby inhibit cGAS/STING signaling

(Eaglesham et al., 2019). Poxin is conserved in MPXV where it is

fused to an additional C-terminal domain previously noted to have

homology with human schlafen proteins (VACV B2R = MPXV

B4R) (Eaglesham et al., 2019), hence MPXV may evade the immune

system by targeting the cGAS/STING pathway.

MPXV can dodge the immune system by targeting the antiviral

cytokine TNFa and other immunomodulating molecules. The

MPXV-encoded cytokine response-modifying protein B (CrmB;

J2L or OPG002) functions as a decoy receptor for TNFa (Gileva

et al., 2006). The C-terminal domain of VACV CrmB can bind

CCL28, CCL25, CXC motif chemokine ligand 12 (CXCL12),

CXCL13 and CXCL14 (Alejo et al., 2006). It is unknown whether

MPXV CrmB interacts with these chemokines, but the amino acid

sequence of the corresponding domain in MPXV CrmB differs

significantly (Gileva et al., 2006).

Natural killer (NK) cells and cytotoxic T cells (CTL) play a

crucial role in eliminating viral infections. Although the number of

NK cells expand significantly in peripheral blood and lymph nodes

in MPXV-infected rhesus macaques, their migrating capacity was

reduced, and several functions such as expression of chemokine

receptors (including CCR5, CCR6 and CXCR3) and secretion of

IFNg and TNFa were impaired (Song et al., 2013). The importance

of NK cells in controlling MPXV viral load was demonstrated in the

highly vulnerable to OPXV infection CAST/EiJ mouse strain owing

to low numbers of NK cells. IL-15 treatment, known to increase the

numbers of IFNg-secreting NK cells and CD8+ T cells, protected

CAST/EiJ mice from lethal MPXV infection even when both CD4+

and CD8+ T cells were depleted. This implies that the expanded NK

cells were responsible for the protective effect (Al-musa et al., 2022;

Lum et al., 2022).

MPXV protein B10 avoids detection of virus-infected cells by

CTL by impairing peptide loading and MHC-I trafficking within the

endoplasmic reticulum. However, NK cells continually screen cells

via NKG2D for the absence of MHC-I, thereby ensuring that the

MHC system is not compromised (Lum et al., 2022). MPXV-

infected cells with downregulated MHC-I expression overcomes

detection by NK cells by secreting the OCMP protein that binds

NKG2D and suppress the typical NKG2D-dependent NK cell lysis

of cells that do not express MHC-I (Lum et al., 2022) (Figure 4C).

IL-18, an IFNg-inducing factor, stimulates the synthesis of various

cytokines and chemokines, regulates Th1 and Th2 cell responses,

and activates NK and CTL (Seet et al., 2003). OPXVs block IL-18

activities by producing an IL-18 binding protein (Born et al., 2000).

The MPXV D6L gene encodes such IL-18 binding protein

(Shchelkunov et al., 2002).

The MPXV J3R and A41L genes encode chemokine binding

proteins (Shchelkunov et al., 2002), which are assumed to destroy

the chemokine concentration gradient resulting in decreased

neutrophil migration in tissues infected with MPXV and thus

reducing viral virulence and inflammatory response (Bahar

et al., 2008).

The complement system, which forms an essential part of the

innate immune system is activated early in MPXV infection in mice,

and is crucial for viral control (Moulton et al., 2008). MPXV
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MOPICE which from studies with VARV and VACV MOPICE

was found to inhibit activation of the complement pathway

(Liszewski et al., 2006). MOPICE modulates the antiviral immune

response as observed by enhanced viral replication in vivo and

dampened adaptive immune response in rhesus macaques infected

with MPXV lacking MOPICE expression (Estep et al., 2011;

Hudson et al., 2012). Because of the absence of the D14L gene in

the Clade II, the virus and virus-infected cells would be predicted to

be susceptible to the host complement attack. However, the

expression of MOPICE in Clade II did not increase its virulence

(Hudson et al., 2012), demonstrating that MOPICE is not the sole

determinant of differences in viral virulence between the two clades.

Less is known how MPXV may interfere with the adaptive

immune system. MPXV interferes with adaptive immune responses

of antiviral CD8 + and CD4 + T cell responses via inhibiting T cell

receptor-mediated T cell activation (Hammarlund et al.,

2008).VACV A35 blocks immune priming of T lymphocytes by

interfering with MHC class II-restricted antigen presentation.

Moreover, infection studies in cells with MPXV lacking the A35R

gene demonstrated that A35 inhibits production of cytokines and

chemokines (Rehm et al., 2011). MPXV A35 analogue, A37, might

suppress presentation of viral antigens to immune cells and help the

virus to evade the host immune defense system. However, MPXV

does not seem to interfere with MHC expression or intracellular

transport of MHC molecules (Hammarlund et al., 2008).
5 Epidemiology

5.1 Demographic and
epidemiological characteristics

Surveillance data on mpox in endemic countries during

different periods between 1970-2015 showed that 71%-83% of the

disease occurred in children (<10 years of age) and 51%-67% in

males (Breman et al., 1980; Heymann et al., 1998; Rimoin et al.,

2011). In contrast, the median age for the 2017-2018 outbreak in

Nigeria was 29 years, with males accounting for 64% of the cases

(Yinka-Ogunleye et al., 2019). However, for the 2022 multi-country

outbreak, males accounted for 96.8% of the cases, and the median

age was 34 years (Interquartile range: 29 – 41) (World Health

Organization., 2022). In the African region, children (0-9 years of

age) accounted for 23.08% of mpox cases compared to <1% in

Europe and the Americas. Notably, the male-to-female ratio in

Africa is also markedly lower than in other regions (Figures 5A-C)

(World Health Organization, 2022).
5.2 Case fatality rate

Before the 2022 outbreak, the overall pooled estimated case

fatality rate (CFR) was 8.7% and varied by the clade of the virus

(Bunge et al., 2022). The pooled CFR for Clade II was 3.6% and

10.6% for Clade I (Bunge et al., 2022). The 2022 outbreak has an

estimated CFR of 0.08% (World Health Organization, 2022). The

low CFR in the current outbreak may be related to several factors,
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including the fact that the Clade II has a CFR of <1%, active

surveillance, early diagnosis, and treatment (World Health

Organization, 2022b).
5.3 Secondary attack rate

Over the past five decades, the secondary attack rate for mpox

has been stable and ranges from 0% to 10.2% (Breman et al., 1977;

Merouze and Lesoin, 1983; Tchokoteu et al., 1991; McCollum et al.,

2014; Besombes et al., 2019; Ye et al., 2019). Higher estimates were

reported in the 2013 outbreak in the DRC (50% among 16

households) and Nigeria (71% in the 2017- 2018 outbreak from a

single household) (Nolen et al., 2015; Beer and Bhargavi Rao, 2019;

Bunge et al., 2022). However, it is imperative to note that it is

unclear how the high estimates were obtained and thus may likely

be overestimated (Beer and Bhargavi Rao, 2019).
5.4 Virus reproduction number

Reproduction number (R0) is the number of secondary cases

anticipated to develop from a single primary case in a naive

population (Beer and Bhargavi Rao, 2019). While historical data

on R0 is limited, published evidence from DRC’s active surveillance

between 1980 and 1984 estimated R0 to be 0.8 (Beer and Bhargavi

Rao, 2019), implying that transmission is ineffective as a human-to-

human epidemic is likely to die out (Beer and Bhargavi Rao, 2019).

However, early estimations of the R0 in the 2022 outbreak in non-

endemic countries showed a high variability ranging from 1.54

(Belgium) to 3.62 (Germany), with a median of 2.44 (Branda et al.,

2023). This suggests sustained human-to-human transmission,

possibly due to several contributing factors, including different

social and/or sexual behaviors, different MPXV variants,

population density or other unknown causes (Branda et al., 2023).

While the early estimations indicated sustained transmission, the

outbreak has slowed down with case reductions. This could be due

to behavior change, infection induced immunity, and vaccinations.
5.5 Risk factors (sexual and social
networks, smallpox vaccination) and
co-morbidities

Transmission of MPXV can occur from animal-to-human

(zoonotic) and from human-to-human (interhuman). Zoonotic

transmission usually happens through contact with an infected

animal’s bodily fluid or through a bite or scratch (Reynolds et al.,

2007). Exposure to animal reservoirs, especially in regions with

deforestation enhancing animal-human contact, and uncooked meat

products are major risk factors for zoonotic transmission (Kipkorir

et al., 2022). During the 2003 USA outbreak, exposure was classified as

“non-invasive” (touching an infected animal) or “complex” (invasive

bite from an ill animal; non-invasive exposure i.e., any exposure that

did not break the skin) (Reynolds et al., 2018). Patients with complex

exposures were more likely to develop systemic illness compared to
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those with non-invasive exposure (Reynolds et al., 2018). Dewitt et al.

predicted the MPXV mode of transmission in most 2022 studies to be

caused by inter-human transmission (Dewitt et al., 2022) (Figure 5D).

Large respiratory droplets, bodily fluids, contaminated fomites, and

viral shedding through feces are also considered risk factors for viral

transmission (Rimoin et al., 2010; Sklenovská and Van Ranst, 2018; El

Eid et al., 2022). Airborne transmission of MPXV between animals in

experimental settings has also been reported and MPXV was detected

in upper respiratory samples, suggesting that interhuman transmission

of MPXV via the airborne route may be possible. However,

epidemiological observations do not support airborne transmission

as the primary route of transmission (Riopelle et al., 2022). The virus

can also cross the placenta, suggesting vertical transmission (Mbala

et al., 2017; Cuerel et al., 2022). At least 12 pregnant women have been

infected during the 2022 outbreak, but vertical transmission was not

observed in any case (Khalil et al., 2020).

MPXV has also been detected in human semen (Antinori et al.,

2022; Noe et al., 2022), and in archival testes tissue of crab-eating

macaque (Liu et al., 2022), suggesting potential sexual transmission

of the virus. Recent outbreak suggests that MSM subpopulation may

also be at an increased risk (Kipkorir et al., 2022).

In addition, waning immunity against smallpox has been

considered another potential risk factor for the disease (Rimoin

et al., 2010). Evidence from early outbreaks in the 1980s showed

that previous smallpox vaccination provided 85% protection against

mpox (Rimoin et al., 2010). Most cases reported were among those

born after vaccination ceased in 1980, and herd immunity has

significantly decreased (Rimoin et al., 2010).

Evidence from the literature suggests that those who are

immunocompromised due to HIV and other underlying conditions

are at increased risk of severe mpox disease (Center for Diseases

Control and Prevention (CDC), 2022b) (Yinka-Ogunleye et al.,

2019). A high proportion of patients with mpox in the 2022

outbreak had concurrent HIV infection and sexually transmitted

infections (STI) (Fischer et al., 2022; Ghaffar and Shahnoor, 2022).

Mpox patients with HIV infection were more likely to be hospitalized

than those without HIV infection (Curran et al., 2022). However, the

evidence on the reason for hospitalization is limited, and it is

unknown if it reflects a more severempox illness (Curran et al., 2022).

Furthermore, co-infection with other conditions with rashes,

such as a varicella-zoster virus (VZV), can occur (Hughes et al.,

2021; Stephen et al., 2022). This herpesvirus causes chickenpox and

shingles and is frequently misdiagnosed as mpox in regions where

both diseases are endemic (Hoff et al., 2017; Hughes et al., 2021).

Chickenpox is exclusive to humans and more common in younger

age groups, and co-infection with mpox has been reported more

commonly among children (Leung et al., 2019; Hughes et al., 2021).
6 Diagnosis, screening, prevention,
and treatment

6.1 Diagnosis and case definitions

Electron microscopy, immunohistochemical detection of

MPXV proteins, and detectable levels of anti-OPXV IgM
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antibody during the period of 4 to 56 days after rash onset can be

used to diagnose MPXV infection, but all methods are not specific

(Center for Diseases Control and Prevention (CDC), 2022a).

According to the Centers for Disease Control and Prevention

(CDC) (Center for Diseases Control and Prevention (CDC),

2022a), mpox cases should be confirmed by real-time polymerase

chain reaction (qPCR) or Next-Generation sequencing and

isolation of MPXV in culture from a clinical specimen. The F3L,

E9L, B6R and J2R genes are all target of qPCR in MPXV diagnosis

(Li et al., 2010; Alakunle et al., 2020; Altindis et al., 2022; Cheema

et al., 2022; Nakhaie et al., 2022). The suspected mpox cases are

characterized by fulfilling one of the epidemiological criteria (within

21 days of illness onset), as outlined by CDC (Center for Diseases

Control and Prevention (CDC), 2022a).
6.2 Surveillance and contact tracing

One of the crucial ways of controlling the spread of mpox is

contact tracing (Harapan et al., 2022; Kalyar et al., 2022). Individuals

exposed to MPXV should be monitored for 21 days checking mpox

symptoms, and those with suspected or confirmedmpox cases should

be isolated to avoid infecting others (Titanji et al., 2022). Velavan

et al. predicted the mpox outbreak would not last provided that cases

are well isolated through the contact tracing (Velavan and Meyer,

2022). Although much attention is given to human-human contact

tracing, great efforts need to be put into animal-animal and animal-

human contact tracing especially due to non-specificity of reservoir

hosts for MPXV (Petersen et al., 2019a). Surveillance cannot be

undermined in curtailing mpox as surveillance would provide more

insight into the epidemiology of the disease (Riopelle et al., 2022). In

Nigeria, the Outbreak Response Management and Analysis System

(SORMAS) for mpox surveillance across portions of 8 states was

implemented in November 2017 for the mpox outbreak. The use of

the system increased the quantity of epidemiological data collected

and the communication of aggregate case data (Mauldin et al., 2022).
6.3 Vaccine

Although there is no specific vaccine for MPXV (Hobson et al.,

2021; Sah et al., 2022a), the smallpox vaccines have been reported to

give 85% cross-immunity against MPXV due to shared antigenic

features (Alakunle et al., 2020).

ACAM2000™ is a replication-competent vaccinia virus vaccine

licensed by Food and Drug Administration (FDA) in August 2007 for

smallpox prevention, and it is derived from a single clonal viral isolate

from Dryvax (Gruber, 2022; Poland et al., 2022) which is a first-

generation smallpox vaccine. As a second-generation attenuated

vaccinia virus vaccine (Gessain et al., 2022), ACAM2000™ has been

recommended as MPXV post-exposure prophylaxis (Aden et al., 2022;

McCarthy, 2022). Although high level of protection against mpox in

animal models has been recorded, the safety of ACAM2000™ in

humans is still of great concern as cardiac complications, and extremely

painful and uncomfortable cutaneous reaction at the injection site have
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been associated with the vaccine (Chandran et al., 2022). Therefore, the

vaccine is no longer licensed by European Union (Luo and Han, 2022).

JYNNEOS (Imvamune or Imvanex) was approved by FDA in

September 2019 for prevention of smallpox and mpox in adults

aged >18years (Alakunle et al., 2020). JYNNEOS is the brand name

of Modified Vaccinia virus Ankara Bavarian Nordic (MVA-BN)

vaccine (Kmiec and Kirchhoff, 2022), a non-replicating third-

generation attenuated vaccine. JYNNEOS is considered safer

(with proven efficacy in animals and humans) than

ACAM2000™ (Sah et al., 2022a). The Advisory Committee on

Immunization Practices has recommended JYNNEOS as an

alternative to ACAM2000™ (Harapan et al., 2022). Nonetheless,

both vaccines (JYNNEOS and ACAM2000™) have been

recommended for MPXV high-risk groups (Petersen et al., 2022).

LC16m8 is another potential vaccine for MPXV which is

obtained by subjecting VACV lister to 36 serial passages at low

temperature (30°C) in primary rabbit kidney cells (Domán et al.,

2022; Poland et al., 2022; Schnierle, 2022). As a third-generation

attenuated vaccine (Gessain et al., 2022), LC16m8 has been shown to

be protective against MPXV in animal models with lower

neurotoxicity (Domán et al., 2022; Schnierle, 2022). The frameshift

mutation in LC16m8’s major extracellular enveloped virion antigen

(B5R) contributes to the vaccine replication competence and low

virulence (Domán et al., 2022). Presently, LC16m8 is only licensed in

Japan (Domán et al., 2022; Schnierle, 2022).
6.4 Antivirals

Although there are no specific antivirals for mpox, some

antivirals (tecovirimat, brincidofovir, cidofovir) have been explored

(Riopelle et al., 2022). Tecovirimat (ST-246 or TPOXX®), 4-

trifluoromethylphenol derivative, was approved (for smallpox) by

FDA in 2018 and approved by European Medicines Agency in

January 2022 for treatment of smallpox and cowpox. Tecovirimat

inhibits VP37 (p37) protein of VACV by targeting the viral F13L gene

(Frenois-Veyrat et al., 2022) and the CPXV homolog V016 gene

(Siegrist and Sassine, 2022). VP37, a highly conserved protein in

OPXV genus, is required for viral maturation and release from the

infected cell. Inhibition of VP37 prevents viral spread within an

infected animal models (Rizk et al., 2022). Goyal etal. recommended

tecovirimat to be administered as first line of mpox treatment in

pregnant and breastfeeding patients (Goyal et al., 2022). A

tecovirimat analogue (synthesized by the State Research Center of

Virology and Biotechnology, Russia) has been highlighted as a

promising antivirals against OPXV infections (Singhal et al., 2022).

Cidofovir (CDV or Vistide®) prodrug is an acyclic nucleoside

phosphate (Alakunle et al., 2020) that was approved by FDA in 1996

for the treatment of retinitis (caused by cytomegalovirus) in AIDS

patients (Harapan et al., 2022). The efficacy of CDV has been

identified during the in vitro studies in MPXV-infected animals, but

the clinical data of CDV efficacy against mpox in human are not

available. Brincidofovir (CMX001 or hexadecyloxypropyl-

cidofovir), a CDV derivative, was approved for smallpox

treatment in 2021 by FDA, and it has lesser toxic effects than
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CDV (Ortiz-Saavedra et al., 2022). Evaluation of CMX001 efficacy

and safety in human mpox through the clinical trials is needed

(Ortiz-Saavedra et al., 2022; Siegrist and Sassine, 2022).
7 Biosafety, Biosecurity and Bioethics

7.1 Recombination with vaccinia virus and
other OPXV

Due to inadequate genome surveillance data particularly in endemic

regions, little information about MPXV recombination is available (Yeh

et al., 2022). However, there are some evidences of recombination

between coinfecting or superinfecting OPXVs both in a laboratory

setting and in nature (Estep et al., 2011; Goff et al., 2011; Brennan et al.,

2022; Diaz-Cánova et al., 2022b, 2022a; Gigante et al., 2022).

MPXV circulating in non-endemic regions where other OPXVs

are endemic, for instance, CPXV in Europe and VACV-like in south

America, and vaccination against mpox with JYNNEOUS or ACAM

2000 are scenarios for coinfection and superinfection between

different species of OPXV. Thus, there remains a potential risk of

recombination between MPXV and other OPXVs that may result in

MPXVs with mosaic genomes and altered biological characteristics.
7.2 Dual use and bioterrorism

Although there is insufficient evidence of MPXV being used for

bioterrorism at the moment (Hosseini-Shokouh et al., 2022), many

scientists have expressed concerns over its potential use for

bioterrorism because there is a report that there was an attempt

by the former Soviet Union to use MPXV as a bioweapon (Nalca

et al., 2005; Duraffour et al., 2007; Kindrachuk et al., 2012; Hosseini-

Shokouh et al., 2022; Makkar, 2022). The possibility of MPXV as a

potential bioweapon due to its global reemergence and its clinical

similarities with VARV has placed the virus on the global public

health agenda (Ellis et al., 2012; Ihekweazu et al., 2020). For

example, the USA has made preparation for the possibility of

smallpox virus as a potential bioterror biological by storing

smallpox vaccines and antivirals after the 9/11 attack (Franz,

2004; Xiang and White, 2022). Smallpox virus is in category A of

the CDC list of bioterrorism agents (Hosseini-Shokouh et al., 2022).

The risk of bioterrorism is heightened knowing that MPXV

genomes can be synthesized from publicly available sequence data

and life viruses (with or without further genetic modification) can

be re-constituted. This has already been demonstrated with

horsepox virus (HPXV), which shares the same genus as MPXV

(Noyce et al., 2018). Hence, a strict dual-use policy must be agreed

upon and implemented in all laboratories across the globe.
7.3 Stigmatization and vaccine inequity

Sexual orientation (especially LGBQTI+ community) (Sousa et al.,

2022) and racial (Happi et al., 2022) are two stigmas associated with

MPXV. The persistent narrative of the media alongside many scientists
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linking the mpox 2022 outbreak to Africa/West Africa/Nigeria is

worrisome (Sousa et al., 2022). Despite the mpox 2022 outbreak,

which occurred outside Africa, the nomenclature and the geographical

labels of MPXV strains still reference West African, even though the

origin of this outbreak is still unresolved. Furthermore, high mpox cases

were reported amongMSM (Happi et al., 2022; Malta et al., 2022; Sousa

et al., 2022; Sah et al., 2022b). This narrative portrays these men

contracting MPXV because they engaged in sexual intercourse with

fellow men, meanwhile the spread of the virus can occur regardless the

sex. Vaccine inequality affects lower- and middle-income countries

(LMICs). An unknown number of mpox cases in LMICs are not

captured due to a shortage of resources like limited testing and

surveillance capacity (Malta et al., 2022). As highlighted by Malta

et al., the MPXV vaccines are presently accessible only in high-income

countries (Canada, the USA, and the UK) (Malta et al., 2022).
8 Conclusion

MPXV has emerged and re-emerged for over five decades and yet

not much is known about its virological profile and the characteristics

of the disease it causes. In particular, the reservoir host of MPXV

remains unknown, the viral, host and environmental factors that

modulate the virus maintenance in the wild, animal-to-animal

transmission, zoonotic transmission and reverse spillover are still a

mystery. Neither are we closer to reliable prognostication of virus

emergence and accurate modelling of the disease outcomes. Current

and future studies should prioritize understanding the molecular basis

of MPXV infection to develop effective drugs and vaccines against

mpox as well as functional mutational studies that will shed insight into

the dynamics ofMPXV transmission across hosts. To improve tracking

of MPXV, laboratories particularly in resource-poor countries should

be equipped with genome-based surveillance capacity and capability.

Lastly, MPXV and mpox affect human, animal, and ecosystem health.

Thus, a One Health strategy is indispensable to the prevention and

treatment of current and future outbreaks.
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