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Illuminating microflora: shedding
light on the potential of blue
light to modulate the
cutaneous microbiome
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Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom,
2TNO, Holst Centre, Eindhoven, Netherlands
Cutaneous diseases (such as atopic dermatitis, acne, psoriasis, alopecia and

chronic wounds) rank as the fourth most prevalent human disease, affecting

nearly one-third of the world’s population. Skin diseases contribute to significant

non-fatal disability globally, impacting individuals, partners, and society at large.

Recent evidence suggests that specific microbes colonising our skin and its

appendages are often overrepresented in disease. Therefore, manipulating

interactions of the microbiome in a non-invasive and safe way presents an

attractive approach for management of skin and hair follicle conditions. Due to

its proven anti-microbial and anti-inflammatory effects, blue light (380 – 495nm)

has received considerable attention as a possible ‘magic bullet’ for management of

skin dysbiosis. As humans, we have evolved under the influence of sun exposure,

which comprise a significant portion of blue light. A growing body of evidence

indicates that our resident skin microbiome possesses the ability to detect and

respond to blue light through expression of chromophores. This can modulate

physiological responses, ranging from cytotoxicity to proliferation. In this review

we first present evidence of the diverse blue light-sensitive chromophores

expressed by members of the skin microbiome. Subsequently, we discuss how

blue light may impact the dialog between the host and its skin microbiome in

prevalent skin and hair follicle conditions. Finally, we examine the constraints of this

non-invasive treatment strategy and outline prospective avenues for further

research. Collectively, these findings present a comprehensive body of evidence

regarding the potential utility of blue light as a restorative tool for managing

prevalent skin conditions. Furthermore, they underscore the critical unmet need

for a whole systems approach to comprehend the ramifications of blue light on

both host and microbial behaviour.
KEYWORDS

blue light, microbiome, cutaneous, skin, photobiomodulation, photodisinfection,
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Introduction

The integumentary system is home to a diverse and delicately

balanced ecosystem, termed the microbiome. It comprises a dynamic

community of fungi, bacteria, viruses, archaea and mites, the

abundance of which varies considerably across sebaceous (e.g.

forehead), moist (e.g. toe webs) and dry (e.g. volar forearm) sites.

Collectively, the microbiome participates in a symbiotic dialog with its

host, modulating host innate immune responses, maintaining immune

homeostasis, protecting against oxidative stress and invading

pathogens and, metabolising host products, as well as promoting

barrier repair and recovery following insult (Byrd et al., 2018).

Tipping this balance can result in dysbiosis, a phenotype often

characterised by reduced microbial diversity or overrepresentation of

certain species. This dysbiosis is increasingly prevalent in

integumentary system conditions, especially in acne vulgaris, atopic

dermatitis, seborrheic dermatitis, alopecia areata, psoriasis and non-

healing chronic wounds (Kong et al., 2012; Constantinou et al., 2021;

Carmona-Cruz et al., 2022; Lawrence et al., 2022). The changes to the

microbiome observed range from an elevated abundance of at least

Staphylococcus aureus in atopic dermatitis to an overrepresentation of

specific Cutibacterium acnes phylotypes in acne vulgaris (Kong et al.,

2012; Lee et al., 2019; Versey et al., 2021).

UV light has anti-microbial action (Marasini et al., 2021), but its

carcinogenicity must be considered. Recently, described as a potential

‘magic bullet’ for the 21st century, blue light (400 – 470nm) has proven

to be a particularly enticing non-invasive and drug free modality for the

management of dysbiosis (Leanse et al., 2022). These antimicrobial

effects are often attributed to the expression of porphyrins - heterocyclic

compounds with a Soret band at 405nm, by microbes (Serrage et al.,

2019). Photo-excitation of porphyrins results in the production of

reactive oxygen species (ROS). Optimal dosimetry results in lethal ROS

accumulation above a threshold for Cutibacterium acnes, a contributor

to acne vulgaris (Spittaels et al., 2021).

These findings led to an upsurge of literature suggesting that

microbial species respond uniformly to 405nm light, irrespective of

the presence or indeed absence of porphyrins. However, such an

assumption ignores a myriad of prospective chromophores

expressed across the skin and hair follicle microbiome (both in

health and disease) that all may exhibit wavelength- and perhaps

dose dependent responses to blue light. Indeed, members of the skin

microbiome expressing blue light absorbing chromophores are

common. Mapping of prospective chromophore’s onto genomes

of the top 10 most abundant bacteria of the skin microbiome

showcases flavins, porphyrins and carotenoid pigments capable of

detecting and responding to the blue component of the visible

spectrum (Table 1). Expression of such pigments and proteins has

been observed from members of the healthy skin microbiome and

in species overrepresented in skin conditions including the

carotenoid pigment staphyloxanthin (460nm) in Staphylococcus

aureus (Dong et al., 2019) and the phenazine pyocyanin (380nm)

from Pseudomonas aeruginosa ( (El-Fouly et al., 2015) Figure 1).

Wavelength-dependent excitation of these chromophores can lead
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to a plurality of versatile responses (Harris, 2023) ranging from

phototoxicity, to elevated motility, growth and even invasion of

eukaryotic cells (Mussi et al., 2010; Halstead et al., 2019).

Having at hand a ‘magic bullet’ with anti-bacterial action may

seem a very efficacious solution. However, as human skin and hair

follicle microbiota is a universe of many different species, one needs

to restore the ecosystem balance instead of eradicating ‘‘all life’’.

This approach brings a challenge of identifying molecular targets

for light therapy, suitable wavelength, and treatment regimes.

In this review we first present evidence of the diverse blue light-

sensitive chromophores expressed by members of the skin

microbiome. Subsequently, we discuss how blue light may impact

the dialog between the host and its skin microbiome in prevalent

skin and hair follicle conditions. Finally, we examine the constraints

of this non-invasive treatment strategy and outline prospective

avenues for further research.
Microbial chromophores

Historically, light sensing systems were thought to be exclusive

to photosynthetic organisms However, a growing body of evidence

points to a plethora of pigments as well as flavin and porphyrin

containing sensing systems in non- photosynthetic bacteria. Here,

we summarise these characterised systems and potential

implications for future investigations using blue light.
Flavins

Flavins, including flavin mononucleotide (FMN) and flavin

adenine dinucleotide (FAD) can be excited by blue light (Losi and

Gärtner, 2011). Herein, we detail two bacterial flavin-

containing systems.
LOV and blue light-dependent
transcription regulation

In 2007 Swartz et al. made the discovery that Brucella abortis, a

gram-negative bacterium implicated in cutaneous infections in

humans (Karaali et al., 2011), expressed a blue light activated, two

component system; the light, oxygen or voltage (LOV) histidine

kinase. LOV senses blue light via a non-covalently bound flavin co-

factor, its photoactivation results in elevated B. abortis proliferation

and stimulation of macrophage invasion (Kennis and Crosson,

2007; Swartz et al., 2007).

Curiously, LOV domains are encoded in 16% of sequenced

bacterial genomes and appear ubiquitous across the Pseudomonas

genus, with the wound associated pathogen Pseudomonas aeruginosa

possessing a “short” LOV domain (Glantz et al., 2016). Indeed, blue

light was reported effective in photo disinfection of P. aeruginosa

associated biofilm (Kahl et al., 2022). However, uncertainties persist

regarding suitable irradiation parameters.
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BLUF
Blue-light sensing using flavin (BLUF) domains were first

observed ~20 years ago in the single celled algae Euglena gracilis

and facultative purple photosynthetic bacterium Rhodobacter

sphaeroides (Park and Tame, 2017). Like the LOV domain, BLUF

isn’t exclusive to photosynthetic/phototrophic organisms and it has

been observed within the small blue-light-sensing protein A (BlsA).

BlsA is expressed by the nosocomially acquired pathogen

Acinetobacter baumannii (Mussi et al., 2010; Brust et al., 2014).

This species has proven an increasing problem in hospitals due to its

growing recalcitrance to antibiotic treatment, capacity to form

biofilm and cause soft-tissue infections (Dijkshoorn et al., 2007).

Upon excitation at 470 nm, BLUF undergoes a conformational

change resulting in the binding of flavin adenine dinucleotide

(FAD) between two a-helices (Tokonami et al., 2022). In the

strain where the BLUF domain was originally observed, A.

baumannii ATCC 17978, this small protein can drastically impact

biofilm formation, virulence and even motility. BLUF domains are

observed across a diverse array of microbial species including
Frontiers in Cellular and Infection Microbiology 03
Escherichia coli which is frequently isolated from skin and soft

tissue infections (Petkovsek et al., 2009). E. coli possesses a BLUF-

EAL protein (YcgF) which binds the MerR-like repressor (YcgE)

upon illumination, resulting in dissociation from its operator DNA

and regulation of two component systems that diminish biofilm

formation and adhesion to surfaces (Tschowri et al., 2009). Details

of BLUF diversity, structure and function are discussed in detail

elsewhere (Kaushik et al., 2019).
Porphyrins

Porphyrins are a highly abundant group of macromolecules,

implicated in the biosynthesis of heme and chlorophyll (Bonkovsky

et al., 2013). This group of heterocyclic organic compounds act as

pigments, exhibiting a Soret band at 400 - 420nm (Gouterman, 1978;

Koren et al., 2011). Excitation of this Soret band results in ROS

accumulation and ultimately cell lysis (Wu et al., 2018). Biosynthesis

of porphyrins includes generation of d-aminolevulinic acid from
TABLE 1 Mapping of prospective chromophore’s onto genomes of the top 10 most abundant bacterial members of our skins diverse microbiome.

Species Prospective
Chromophore

Anticipated
wavelength
range

Evidence of sensitivity
to radiation

Gene ID Ranked
Abundance

Citation

Corynebacterium
tuberculostearicum

Flavin monoxygenase,
Beta-
carotene
monoxygenase

330 – 480nm Light inducible carotenoid
production in some
Corynebacterium spp.

I6I74_RS00030
I6I74_RS09990

1 (Kolenc and
Quinn, 2019)

Cutibacterium
acnes

Porphyrin 350 – 500nm
(peak ~405nm)

Pulsed/high intensity blue light
exerts a bactericidal effect on
C. acnes

PAGK_RS00150 2 (Ashkenazi
et al., 2003)

Staphylococcus
epidermidis

TCA cycle
(NADH/FADH)

330 – 465nm Blue light induces bactericidal
effects via a ROS
dependent mechanism

EQW00_RS09380 3 (Ramakrishnan
et al., 2016; Kolenc
and Quinn, 2019)

Staphylococcus
hominis

Electron Transport
chain (NADH/FADH)

330 – 465nm Evidence of elevated colonisation
in atopic dermatitis patients
following exposure to UVB

EGX58_RS02040 4 (Kolenc and
Quinn, 2019)

Staphylococcus
capitis

Strain dependent
carotenoid production,
TCA (NADH/FADH)

330 – 480nm Evidence of yellow pigmentation
in certain strains could confer
environmental protection.

NF392_RS09320 5 (Kolenc and
Quinn, 2019; Siems
et al., 2022)

Streptococcus mitis NADH containing
redox sensor

330 – 375nm Blue light (425nm) exerts no
significant effect on biofilm
formation at doses up to 192J/cm²

TZ90_RS04770 6 (Ahmed and
Claiborne, 1989)

Micrococcus luteus Carotenoid 415 - 480nm Carotenoid pigment confers
protection against UVB

crtX 7 (Mohana
et al., 2013)

Corynebacterium
simulans

Flavin
Dependent
Oxidoreductase

330 – 465nm N/A WM42_RS10275 8 (Kolenc and
Quinn, 2019)

Staphylococcus
warneri

TCA cycle
(FADH/NADH)

330 – 465nm UVC induces phototoxicity, no
evidence of the efficacy of
blue light

D3P10_RS09700 9 (Shoults and
Ashbolt, 2019)

Streptococcus
oralis

NADH containing
redox sensor
Porphyrin

330 – 500nm UVB, but not UVA or blue light
(448nm) induce photoxicity up to
a maximal dose of 0.6J/cm²

EL140_RS05180
EL140_RS03205

10 (Ahmed and
Claiborne, 1989)
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glutamyl-tRNA (Jones et al., 2020), ultimately resulting in

downstream accumulation of protoporphyrin IX, uroporphyrin III

and coproporphyrin III (Shu et al., 2013).

The abundant skin commensal Cutibacterium acnes synthesises

a range of porphyrins (Johnson et al., 2016). This has been exploited

for utilizing blue light for management of the C. acnes in acne

vulgaris (Sorbellini et al., 2018). However, success of this treatment

depends upon a host of factors including the propensity of C. acnes

strains to produce porphyrins. The latter highly varies and depends

upon the presence of the porphyrin biosynthesis repressor gene;

deoR (Spittaels et al., 2021). This may explain subsets of acne

patients proving recalcitrant to blue light treatment (Diogo et al.,

2021). However, other factors including abnormalities in follicular

keratinisation and sebum overproduction contribute to onset (Cruz

et al., 2023). Therefore, failing to address other underlying causes

may also contribute to the persistence of this prevalent condition.

Intriguingly, the expression of porphyrins occurs across a host

of wound-associated pathogens. Jones et al. surveyed the porphyrin

producing and autofluorescence of 32 bacterial members of the

wound microbiome and found 88% exhibited porphyrin expression

and excitation with blue light (Jones et al., 2020). This suggests
Frontiers in Cellular and Infection Microbiology 04
that violet-blue light could be a promising approach for

infection management.
Pigments

Pigments are expressed by a diverse range of both environmental

and skin-resident microbes. Expression of such pigments is

hypothesised to confer potential selective advantages including both

photo- and thermal- stability (Celedón and Dıáz, 2021; Agarwal et al.,

2023). However, one still needs to comprehend how we might exploit

these traits to manage microbial adherence and biofilm formation in

both health and disease scenarios (Narsing Rao et al., 2017).

Yellow pigmented photoreceptors
Bacteria displaying yellow pigmentation are common across the

skin microbiome. Commensals including Micrococcus luteus

(Anwar and Prebble, 1977), Kocuria rizophila (Govindan et al.,

2020), Dermacoccus nishinomiyaensis (Klein et al., 2017) and

Staphylococcus aureus (Zhang et al., 2018) exhibit a golden yellow

colour which is derived from a carotenoid pigment, a molecule
FIGURE 1

Light transmission through skin is attenuated but can be manipulated through increased irradiance and exposure times. Skin can be subdivided into
three layers; epidermis, dermis and hypodermis. Skin microbiome composition is variable these layers Certain species preferentially colonise the skin
surface including M. luteus and S. aureus, whilst others prefer anaerobic environments (hair follicle, dermis) including P. acnes. This niche specific
colonisation potentially dictates the capacity of light to manipulate skin microbiome composition as well as host responses. Light delivery at 453nm
is attenuated through skin by a factor of 2.5-10x at a depth of 0.5-1mm from the skin surface. Light delivery can be improved through increased
irradiance and exposure times to a maximum safe exposure of up to 250mW/cm². However, delivery still reduces as the light penetrates through the
multilayered structure of skin (as indicated by the reducing photon density observed when passing 453nm light through tissue), therefore
diminishing the possibility of manipulating microbial behaviour/viability (image created using BioRender.com).
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with a profound antioxidant function. Its absorption displays

peaks across 415 – 485nm, indicating photosensitivity to blue

light (Darvin et al., 2022). Similarly, group B streptococci

(Streptococcus agalactiae, gastrointestinal tract commensal often

associated with skin and soft tissue infections including diabetic

foot ulcers (Raabe and Shane, 2019),) express granadaene, a yellow/

orange pigment displaying an absorption spectra from 435-485nm

(Rosa-Fraile et al., 2014).

Phenazines
Phenazines form part of a group of nitrogen containing

heterocyclic compounds (Pierson and Pierson, 2010). They

shuttle electrons, ultimately modifying cellular redox status

thereby regulating gene expression, biofilm formation and even

architecture (Wang et al., 2011; Jo et al., 2020). The colour of this

metabolite varies from yellow to blue, depending upon pH or redox

state with absorption band ~385 – 500nm across the UVA-green

range (Ryazanova et al., 2007).

One well-characterised derivative of a phenazine is pyocyanin, a

blue metabolite expressed by the pathogen Pseudomonas

aeruginosa, proven to facilitate aggregation via extracellular DNA

(Das et al., 2013), promote biofilm formation and maintain bacterial

fitness (Jayaseelan et al., 2014). The absorption spectrum of

pyocyanin is dependent upon pH and redox state, with a

maximum occurring in the UVA range (~380nm) (El-Fouly et al.,

2015). However, purified pyocyanin can potentiate the bactericidal

properties of 405nm wavelength against methicillin resistant S.

aureus, indicating its capacity to elicit a response to blue light

(Leanse et al., 2022).
Blue light and cutaneous conditions

Dysbiosis in skin and hair follicle conditions is common,

demanding effective strategies to address microbiome composition

imbalances. Here, we highlight how blue light may manipulate

microbial behaviour in highly prevalent skin and hair conditions,

where there remains a deficit in treatments that effectively restore skin

health. Moreover, we explore how light exposure may exert dual

effects through photoexcitation of host derived chromophores.
Acne

Acne is a highly prevalent dermatosis affecting up to 95% of 11-

30 year olds, characterised by an elevated abundance of

Cutibacterium spp residing upon affected sites (Golchai et al.,

2010). Blue light therapy is a well-established drug-free strategy

for management of acne vulgaris (Gold, 2007). The efficacy of blue

light treatment is thought to centre on photoexcitation of porphyrin

containing Cutibacterium spp, resulting in bacterial lysis and

resolution of acne vulgaris. Indeed, the bactericidal effects of blue

light on Cutibacterium acnes have been widely reported (Masson-

Meyers et al., 2020; Nakayama et al., 2023), and porphyrin
Frontiers in Cellular and Infection Microbiology 05
containing phylotypes appear more abundant in acne vulgaris

(Huang et al., 2023).

Advances in a metagenomic sequencing have revealed that next

to C. acnes, as the key player in acne pathology, other species may

play an active role in promoting disease pathogenesis. The

abundance of Staphylococcus spp. increases with severity of acne

(Dreno et al., 2017). In particular, S. epidermidis has been cited as a

new player in acne pathogenesis. Staphylococcus epidermidis is

abundant in acne lesions and utilises glycerol as a shared carbon

source, resulting in production of short chain fatty acids (SCFA)

(Wang et al., 2014). These SCFAs facilitate competition between S.

epidermidis and C. acnes, indicating a delicate balance between

these two species could be important in the resolution of

inflammation associated with acne vulgaris. S. epidermidis

possesses a NADH:flavinoxidoreductase, which may be excited by

blue light (Wu et al., 2015) and Ramarkrishnan et al. indicated

exposure to 405nm light resulted in cell cytotoxicity via a ROS

dependent mechanism (Ramakrishnan et al., 2016). However,

studies also indicate S. epidermidis possesses mechanisms by

which it can deactivate ROS (Balasubramaniam et al., 2020; Smith

et al., 2023). Understanding of how these protective responses may

defend against blue light exposure and modulate imbalances in

microbiota composition remains to be elucidated.
Psoriasis

Psoriasis is a long-term, chronic immune-mediated skin disease

with no cure. It is linked to comorbidities like psoriatic arthritis,

cardiometabolic issues, and mental health conditions with a

prevalence of 3% in adults in the USA (Armstrong et al., 2021).

In the 1990s, researchers discovered psoriatic plaques in 45% of

patients emitted red fluorescence when excited with blue (442nm)

light (Bissonnette et al., 1998). Autofluorescence was attributed to

protoporphyrin IX, elevated in this subset of patients (Bissonnette

et al., 1998). Auto-fluorescence positive lesions have proven to

correlate with psoriasis severity and identified as a novel approach

for psoriasis diagnosis (Wang et al., 2017). It was hypothesised that,

like with acne vulgaris, protoporphyrin IX may be of microbial

origin, indicating inter-individual differences in skin microbiome

may predispose towards porphyrin accumulation. Presently,

literature citing psoriasis community composition remains

variable (Mazur et al., 2021) and no discernible link between

microbiome composition and protoporphyrin accumulation was

identified. Yet, a growing body of literature supports the use of blue

light for treating psoriasis, where efficacy varies from improved

disease severity (Lesiak et al., 2021) to no significant effect,

specifically in a subset of patients with elevated endogenous

protoporphyrin’s (Maari and Bissonnette, 2002). Favourable

patient outcomes were attributed to antiproliferative and pro-

differentiative effect of blue light on keratinocytes shown in vitro

and to nitric oxide-mediated mechanism shown in vivo, overall

resulting in resolution of plaques (Sadowska et al., 2021).
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Perturbations in the microbiome associated with psoriasis also

include enrichment in members of the Pseudomonas genus,

particularly sensitive to blue light exposure (Chen et al., 2020).

Future studies shall characterise the cross-talk between

the microbiome and skin in this multi-faceted and highly

prevalent condition.
Atopic dermatitis

Atopic dermatitis (AD) is one of the most common chronic,

relapsing inflammatory skin disorders affecting up to 3% of adults

worldwide (Kapur et al., 2018). It is characterised by an itch-flare

cycle that can lead to lichenification (hyperpigmentation, skin

thickening and exaggerated skin lines) AD pathogenesis is

characterized by impaired epidermal barrier function and

immune dysregulation some of which may be driven by S. aureus,

which is over-abundant in the skin of patients with AD (Weidinger

et al., 2018).. Current treatments both topical (tacrolimus,

corticosteroids and antibiotics) and systemic (cyclosporine) act to

supress immune responses and diminish S. aureus abundance

(Belloni Fortina and Neri, 2015; Avena-Woods, 2017). However,

these first line treatments are often ineffective and there remain

cohorts of patients recalcitrant to mainstay treatments for AD

(Lewis and Feldman, 2018).

A growing body of literature has endeavoured to evaluate the

efficacy of visible – near infra-red (NIR) light in the management of

AD. Blue light has garnered considerable attention due to its

capacity to manipulate dendritic cell activation, resulting in

modulation of cell proliferation and inflammatory responses in

vitro (Liebmann et al., 2010; Fischer et al., 2013). In vivo studies

demonstrated that full body irradiation with blue light (400 - 500

nm) resulted in improved pruritus (urge to itch), quality of life and

reduced hydrocortisone use (Uzunbajakava et al., 2023).

It is yet to be understood how blue light manipulates the AD

microbiota. Staphylococcus aureus is enriched in AD flares (lesional

skin) (Kong et al., 2012) and is capable of manipulating dendritic

cell activation and pruritus via induction of IL-31, ultimately

promoting skin barrier dysfunction (Wu and Xu, 2014; Blicharz

et al., 2019). Staphylococcus aureus exhibits a golden yellow colour

due to the expression of carotenoid pigment; staphyloxanthin,

which displays characteristic absorption peaks at 408nm and

486nm (Harris, 2023). The expression of this pigment promotes

bacterial survival, where in environments with high levels of

oxidative stress staphyloxanthin acts as an antioxidant,

detoxifying free radicals facilitating enhanced survival both in

vitro (Clauditz et al., 2006) and in murine models for chronic

wounds (Campbell et al., 2023), an environment associated with

high levels of oxidative stress (Cano Sanchez et al., 2018).

This potential carotenoid-dependent tolerance to radiation is

not exclusive to S. aureus. For example, skin commensalsM. luteus,

Kocuria spp. and D. nishinomiyaensis exhibit carotenoid pigment

expression (Koshti et al., 2022). M. luteus, a skin commensal with

probiotic properties, has proven highly tolerant to UV exposure due
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to carotenoid expression but responses to blue light are yet to be

evaluated (Anwar and Prebble, 1977). Future steps will be required

to understand how blue light manipulates pigment producing

bacteria and in turn, how we might exploit these characteristics

for management of prevalent conditions including AD.
Alopecia areata

Alopecia areata (AA) is an autoimmune disease with a lifetime

incidence of 2.1% characterised by the collapse of immune privilege

in the hair follicle which causes hair loss and has drastic impacts on

patient quality of life, often causing psychological distress (Pratt

et al., 2017).

Since early discovery of positive effect of red light on hair

regrowth (Hamblin, 2016), strides have been taken to understand

whether red light could prove a strategy for management of alopecia

areata as well as to unravel the fundamental mechanisms behind

photobiomodulation of the hair cycle. Blue light has been reported

to prolong anagen hair growth phase via sustained proliferation in

the hair follicle matrix (Buscone et al., 2017). The effect has been

attributed to interaction of blue light with putative photoreceptors,

cryptochromes and opsins (Buscone et al., 2017; Buscone et al.,

2021). However, so far to the best or our knowledge no research has

been conducted to unravel a potential blue-light-dependent hair

growth modulation via modulation of the HF microbiome (Lodi

et al., 2021).

The collapse of immune privilege is considered a pathogenic

event in AA and patients exhibit an elevated abundance of

Cutibacterium spp. and Mallasezia spp, and reduced abundance of

Staphylococcus spp (Huang et al., 2019; Sánchez-Pellicer et al., 2022).

Increasingly, researchers are posing the question of whether the scalp

microbiome can influence hair regrowth. The antibiotic

roxithromycin elevates hair growth, but is also toxic to C. acnes

(Sadowska et al., 2021). The fungicidal and bactericidal effects of blue

light on both Cutibacterium and Mallasezia spp. have been reported

(Wi et al., 2012; Nakayama et al., 2023). Therefore, understanding of

how blue light manipulates microbiome communities and markers

for AA pathogenesis warrants investigation.
Chronic wounds

Prevalence of chronic nonhealing wounds represent an immense

and ever-growing global pandemic, with incidence and mortality

rates exceeding those of many common cancers (Weigelt et al., 2022).

Recently, researchers started exploiting light to understand wound

microbiome composition. Excitation using a violet-blue light

(~405nm) resulted in detection of auto-fluorescence in the orange,

red and green spectral regions, denoting the presence of S. aureus, A.

baumannii and P. aeruginosa, respectively (DaCosta et al., 2015; Jung

et al., 2022; Rahma et al., 2022). This auto-fluorescence has been

observed in >50% of patients, and is increasingly utilised to detect

infection. Violet-blue light can be absorbed by several microbiome
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species and could be potentially applied for photo-disinfection (Bayat

et al., 2022).

Studies assessing blue light mediated photodisinfection

addressed readily isolated wound pathogens; P. aeruginosa and S.

aureus. Mechanisms of blue light dependent manipulation of P.

aeruginosa viability and biofilm formation have been assessed in

single species biofilm models, reporting blue light-dependent

manipulation of membrane potentials in P. aeruginosa, resulting

in altered biofilm formation (Kahl et al., 2022). Blue light induction

of membrane depolarisation/potential has proven both dose and

biofilm formation stage dependent: P. aeruginosa exhibits

heightened sensitivity to blue light in the adherence (1h) and

proliferation (3h) stages of biofilm formation. Cells in the

proliferative stage are particularly sensitive and doses <20mJ/cm²

have been exploited to disperse biofilm (Blee et al., 2020). This poses

the question; could blue light be applied as a preventative measure

following injury to prevent colonisation by P. aeruginosa alongside

treatment of chronic wounds?

Clinical studies on blue light efficacy in non-healing wounds are

scars, with only one study using blue light to accelerate wound

healing (Fraccalvieri et al., 2022). Therefore, future studies should

endeavour to evaluate promising bactericidal and wound healing

properties of blue light (Bayat et al., 2022).
The future of blue light in skin health:
potential therapeutic insights
and challenges

Exposure of skin to blue light has become a contentious topic,

sparking discussions over its benefits and risks, implications in

disease management, circadian clock, pigmentation but also

photodamage (Campbell et al., 2017; Stern et al., 2018). Blue light

could be a promising therapy for a diverse range of cutaneous and

systemic conditions, from blood pressure reduction to management

of seasonal affective disorder (Meesters et al., 2016; Stern

et al., 2018).

However, reports of adverse effects have also proven abundant,

even from exposure to environmental levels of blue part of

electromagnetic spectrum (Diogo et al., 2021; Kumari et al.,

2023). These potentially undesired effects span erythema

(sunburn), photoaging, decreased skin hydration, elevated

melanin production and subsequent hyperpigmentation

(Mahmoud et al., 2010; Duteil et al., 2014; Duteil et al., 2020;

Kumari et al., 2023). However, the latter has also been hypothesized

to carry a photoprotective effect against subsequent UV irradiation

by some groups (Uzunbajakava et al., 2023). The exposure to blue

light has only increased as technological advances have resulted in

our constant exposure to blue light from screens and mobile

devices. The actual irradiance and dose emitted by these

appliances is far lower than those found in natural lighting and

hence the impact of such appliances on the skin is minimal, if

present at all (Arjmandi et al., 2018; Duteil et al., 2020; Kumari et al.,

2023; Uzunbajakava et al., 2023). Nevertheless, exposure to such

devices, peaking around ~440nm via visual pathways, has been
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shown to manipulate circadian rhythm through excitation of

melanopsin located within retinal ganglion cells (Wahl et al.,

2019). Despite increased understanding of the dose dependent

effects of blue light on skin, there remains limited literature

exploring how blue light might manipulate the healthy skin

microbiome. In one study, Willmott et al. evidenced sunlight

exposure dependent shifts in microbiome composition in

holidaymakers. It is hypothesised blue light could play an

important role in mediating these shifts, due to the application of

sunscreens by holiday makers that may mitigate prospective effects

of other forms of radiation (UVA/UVB (Willmott et al., 2023)).

Notably, as humans, we have evolved under the sun, and under

the influence of the blue spectral band, where the skin is directly

exposed to photons of light. The intensity of the blue band varies

considerably depending upon the time of day (Bird and Riordan,

1984). It’s highest intensity relative to other spectral components

occurs at noon, but reduces significantly at dusk. Hence it is not

surprising that blue light entrains a circadian rhythm that is

controlled via central control mechanism (CNS) but perhaps also

locally via our cutaneous system of clock genes (Lyons et al., 2019).

These circadian rhythms are intrinsically linked to skin diseases. For

example, symptoms of psoriasis exhibit a diurnal pattern with a

more severe itch in the evening for 70% of patients (Duan et al.,

2021). Circadian oscillations also affect mast cells (Baumann et al.,

2013), participating in various immune and inflammatory

reactions, including allergies, infections, wound healing and skin

cancer. In line with that, patients with mastocytosis present higher

plasma histamine levels in the morning (Friedman et al., 1989) and

patients with chronic urticaria often have symptoms in the evening

(Maurer et al., 2009).

In vivo studies have revealed deletion of Clock genes in mouse

models for atopic dermatitis result in more severe delayed-type

allergic reactions and elevated ‘nocturnal pruritus’ in patients

(Lavery et al., 2016; Duan et al., 2021). These diurnal cycles are

certainty not restricted to the skin cells only, as the skin together

with its microbiome evolved under the sunlight. So, it is not

surprising that the relative abundance of members of the skin

microbiome vary with the time of day. For example, evidence

suggests that the abundance of acne associated species C. acnes

increases in the evening (Wilkins et al., 2021). This highlights a key

question surrounding blue light therapy: could efficacy depend

upon the time of exposure?

Perhaps the most promising trait of blue light is its potential to

address dysbiosis in skin and hair follicle conditions, while exerting

little or no impact on bacterial resistance following repeated

exposures (Haridas and Atreya, 2022). The rising prevalence of

skin diseases urgently demands a comprehensive understanding of

the dialog between the host and microbiome in response to blue

light to develop adequate therapies for relevant conditions. Future

studies are needed as current focus remains upon nosocomial

acquired pathogenic species only, with little regard for the

contribution of commensals to light dependent responses. For

example, abundant members of the commensal microbiome

express carotenoid pigments, that exhibit antioxidant properties

(Mohana et al., 2013). It could be hypothesised that strains may

evolve to elevate expression of carotenoid synthesis genes as a
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protective mechanism against blue light exposure. Another aspect

to consider is virulence, where reports cite blue light enhanced

virulence of S. aureus and A. baumannii (Tuttobene et al., 2021).

To achieve favourable patient outcomes, effective blue light

delivery systems will be required. Blue light is strongly attenuated by

the skin haemoglobin and melanin in comparison to wavelengths

within the red and near-infrared spectra. Still blue light can reach

relatively deep targets in the skin, including the hair follicle bulge at

a depth of approximately 0.5-1mm relative to the skin surface, while

its intensity will be highly attenuated versus the photon density

administered at the skin surface (Figure 2) (Uzunbajakava et al.,

2023). While blue light may be most effective in manipulating

surface level microbes, its efficacy in influencing sub-epidermal

layers including sebaceous gland and entire hair follicles will be

modulated by light attenuation by the skin. Methods to boost

photon concentration at deeper-located targets include usage of a

larger spot size, pulsing along with increasing the applied dose

within the safety limits, and perhaps usage of light guides along the

hair follicle shafts for light delivery to a deeper targets (Ash et al.,
Frontiers in Cellular and Infection Microbiology 08
2017). Therefore, critically the relationship between the location of

the target, penetration depth, dose, irradiance and pulsing in

relation with efficacy and potential adverse effects must be

considered when designing blue light devices.

It is apparent that an interdisciplinary and whole systems

approach is required for the effective translation of blue light to

clinics (Figure 3). However, alongside understanding individual

microbial responses to blue light, development of co-culture models

to assess the impact of microbes on host-responses and an

understanding of light transmission through tissue, the patient

must be at the centre of light delivery. Device design must be

carefully considered, and recent technological advances have

facilitated the development of flexible, breathable, and convenient

devices capable of effective light delivery (Matsuhisa et al., 2021).

Such designs should be incorporated into a personalised approach

to blue light exposure. In which a combination of microbiome

composition, skin condition severity and survey of pre-existing

conditions (e.g., cancer) should be taken into consideration prior

to exposure.
FIGURE 2

Pathway to Clinical Implementation of Blue Light for Management of Skin Conditions. To determine the viability of blue light as a potential treatment
option for skin conditions, firstly we need to decipher how blue light impacts microbial behaviour and in turn how theses microbes manipulate host
responses to blue light utilising laboratory characterisation techniques (1). This will involve development of increasingly physiologically relevant
models with the eventual use of ex vivo models and microbes derived directly from individuals. In parallel with this we also must ensure device
design (2) is central to clinical application through thorough characterisation of light transmission through skin and patient centred design of
photonics devices. This will involve a combination of photonics experts, biologists and engineers to reliably characterise a device convenient for
everyday use. Ultimately, design of a device and application of irradiation of parameters will also rely upon personalised approach to medicine (3).
For example, determining if there is a microbial imbalance in tissue and in turn anticipating whether the microbiome will elicit a favourable response
to blue light, without elevating virulence and promoting host cell tissue apoptosis. We all must consider the dose dependent response where some
individuals may experience a ‘sunburn’ response to blue light, whilst others may experience hyperpigmentation through elevated melanin expression.
Such responses may be predicted through clinical consultation or perhaps development of AI platforms that automatically predict responses.
Collectively this pathway will facilitate prediction of responses and suitability for clinical applications (image created using BioRender.com).
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Conclusion

Blue light represents an attractive non-invasive, drug-free

approach for management of cutaneous conditions where there is

an imbalance in microbial community composition. However, we

have only scratched the surface in understanding the relative

abundance of blue light sensing systems across the skin

microbiome, and in turn how this impacts microbial viability,

motility and virulence. It is apparent that steps must be taken in

this nascent field to understand how presence or absence of these

systems manipulates microbial community composition and in turn

how photosensitive chromophores expressed by the host contribute

to these responses.
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FIGURE 3

Chromophores expressed by microbial species implicated in skin and hair conditions. An imbalance in skin microbiome composition is often
observed in skin and hair follicle conditions including alopecia areata (elevated abundance of Mallasezia globosa), acne vulgaris (increased
abundance of porphyrin producing phylotypes of Cutibacterum acnes), psoriasis (possible association with the elevated abundance of Pseudomonas
aeruginosa) and atopic dermatitis (increased abundance of Staphylococcus aureus in atopic dermatitis flares). Soft tissue infections that can
ultimately develop into chronic wounds are often colonised by environmentally acquired isolates including Streptococcus agalactiae and
Acinetobacter baumannii, which express blue light absorbing chromophores granadaene and blue light sensing using flavin (BLUF) respectively. This
figure depicts these species commonly overrepresented, alongside their prospective chromophores. (Image created with Biorender.com).
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