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Promising antimalarial hits from
phenotypic screens: a review
of recently-described multi-
stage actives and their modes
of action

Annie-Peiyuan Luo, Carlo Giannangelo, Ghizal Siddiqui*

and Darren J. Creek*

Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash
University, Parkville, VIC, Australia
Over the last two decades, global malaria cases caused by Plasmodium

falciparum have declined due to the implementation of effective treatments

and the use of insecticides. However, the COVID-19 pandemic caused major

disruption in the timely delivery of medical goods and diverted public health

resources, impairing malaria control. The emergence of resistance to all existing

frontline antimalarials underpins an urgent need for new antimalarials with novel

mechanisms of action. Furthermore, the need to reduce malaria transmission

and/or prevent malaria infection has shifted the focus of antimalarial research

towards the discovery of compounds that act beyond the symptomatic blood

stage and also impact other parasite life cycle stages. Phenotypic screening has

been responsible for the majority of new antimalarial lead compounds

discovered over the past 10 years. This review describes recently reported

novel antimalarial hits that target multiple parasite stages and were discovered

by phenotypic screening during the COVID-19 pandemic. Their modes of action

and targets in blood stage parasites are also discussed.

KEYWORDS

Plasmodium falciparum, antimalarial, phenotypic screening, mode of action,
target identification
Introduction

Malaria, a bloodborne protozoan infection, is a continuous threat to global health.

Among the six Plasmodium species that can infect humans, Plasmodium falciparum causes

the most severe symptoms (Burrows et al., 2013; Ashley et al., 2018). From 2000 to 2017,

the global P. falciparum incidence declined from 232.3 million to 193.9 million, and deaths

declined by 42.5% (Weiss et al., 2019). This was achieved due to the collective impacts of

insecticide-treated nets (ITNs), insecticide sprays and artemisinin-based combination

therapy (ACT) (Bennett et al., 2017; Weiss et al., 2019). However, new challenges have
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arisen. Resistance to artemisinin has emerged in Southeast Asia,

South America, Sub-Saharan Africa and Papua New Guinea

(Chenet et al., 2016; Mathenge et al., 2020; Miotto et al., 2020;

Uwimana et al., 2020). Although this has not directly resulted in

widespread treatment failures for the recommended ACTs, the

impact of artemisinin resistance is exacerbated by resistance to

the ACT partner drugs. Meanwhile, the COVID-19 pandemic has

disrupted the distribution of ITNs and the administration of

seasonal malaria chemoprophylaxis as limited healthcare

resources were shifted towards the control of COVID-19

(Hussein et al., 2020; Heuschen et al., 2021). Furthermore,

overlapping symptoms between COVID-19 and malaria has made

accurate diagnosis more challenging (Zawawi et al., 2020). This

mis-diagnosis has also been shown to increase sales and misuse of

non-prescription antimalarials, potentially exacerbating the

emergence of antimalarial resistance (Makanjuola et al., 2021).

Since resistance to all frontline antimalarials has rapidly emerged

and the COVID-19 pandemic has caused an unexpected disruption

in progress toward malaria elimination, there is an even greater

need to develop novel antimalarials.
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Six target candidate profiles (TCPs) have been proposed to

assist in the evaluation of potential antimalarial candidates

(Burrows et al., 2017). In relevance to P. falciparum infections,

three TCPs describe antimalarial activity against the three

distinct stages of the parasite life cycle (Figure 1), the

symptomatic asexual blood stage (TCP-1), asymptomatic liver

stage (TCP-4) and sexual stage (TCP-5). Ideally, a single-dose

treatment regimen would be the most beneficial malaria

treatment, however, this is difficult to achieve with one

antimalarial. Hence, it is recommended to combine two or

more antimalarials, each of which satisfies multiple TCPs or in

other words, demonstrates multi-stage activities. Considerable

advances in high throughput screening (HTS) technologies have

expanded the detection range for antimalarial activities from

asexual parasites to other stages of their life cycle (Hovlid and

Winzeler, 2016). Here, we review a panel of multi-stage active (at

least two TCPs) antimalarial hit compounds discovered from

HTS with identified modes of action (MOAs), which were

published during the COVID-19 pandemic (March 2020 – May

2023) (Table 1).
FIGURE 1

The life cycle stages of Plasmodium parasites. Sporozoites are introduced into the human body via a blood meal of a female Anopheles mosquito.
Sporozoites invade the human liver and replicate asexually for 1-2 weeks whilst the host remains asymptomatic. Compounds targeting liver stage
Plasmodium parasites satisfy the target candidate profile 4 (TCP-4) criteria. Once the parasitaemia reaches a threshold, the liver schizonts burst into
hundreds of merozoites that invade host red blood cells (RBCs). At this stage of the Plasmodium lifecycle, the host will become symptomatic and
require effective antimalarial treatment to clear the asexual blood stage parasitaemia (TCP-1). The asexual blood stage consists of rings, trophozoites,
schizonts and merozoites. Whilst Plasmodium parasites amplify their number in the asexual replication stage, a portion of rings commit to sexual
differentiation into gametocytes via a process called gametocytogenesis. Compounds with TCP-5 display transmission-blocking activity against
gametocyte parasites, the sexual stage. Once these gametocytes are ingested by mosquitoes, the male and female gametes fuse into a zygote,
which further develops into an ookinete. The ookinete migrates across the mosquito gut epithelium to form an oocyst, which releases sporozoites
after a series of replication events. Transmission-blocking activity against the mosquito vector is described as TCP-6. Sporozoites eventually travel to
the mosquito salivary gland and prepare for the next infection, thus completing the lifecycle. Compounds satisfying TCP-1, TCP-4 and TCP-5 are
listed in the black, magenta and turquoise boxes respectively.
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TABLE 1 Summary of novel multi-stage active compounds discovered in HTS during the COVID-19 pandemic.

Compound Chemical Structure

Multi-stage activity
IC50 (µM) Mode of actionIV

ReferenceTCP1I TCP4II TCP5III

MMV030084 0.12 0.199 0.141

Inhibits PfPKG in the
egress cascade and
subsequently inhibits
merozoite egress (Vanaerschot

et al., 2020)

WM382 0.0006
100

mg/kga
0.0025

Inhibits PMIX and PMX
in the egress cascade,
disrupting merozoite
egress and invasion (Favuzza

et al., 2020)

SGI-1027 0.045 N/A 0.014

Inhibits PfDNMT, which
disrupts the functioning
of promotors and exons
for virulence genes

(Vanheer
et al., 2020)

FNDR-20123 0.041 N/A 0.19
Inhibits PfHDAC and
disturbs the histone
acetylation equilibrium,
which further disrupts
the parasitic

(Potluri
et al., 2020)

CAY10603 0.37 N/A 1.3
(Coetzee

et al., 2020)

UNC0638 0.0283 N/A 0.442

Inhibits PfHKMT and
disturbs the histone
methylation equilibrium,
which further disrupts
the parasitic
gene expression

(Coetzee
et al., 2020)

UNC0631 0.024 N/A 0.014

(Vanheer
et al., 2020)

UNC0642 0.016 N/A 0.014

(Vanheer
et al., 2020)

JIB-04 0.535 N/A 0.14

Inhibits PfHDM and
disturbs the histone
methylation equilibrium,
which further disrupts
the parasitic
gene expression

(Vanheer
et al., 2020)

(Continued)
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TABLE 1 Continued

Compound Chemical Structure

Multi-stage activity
IC50 (µM) Mode of actionIV

ReferenceTCP1I TCP4II TCP5III

ML324 2.1 >5 0.077

(Reader
et al., 2021)

Epirubicin 0.111 N/A 0.39

Inhibits PfGryA, which
further disrupts DNA
replication, transcription
and repair (Ferreira

Letıćia
et al., 2020)

ML901 0.002 0.013Pf 0.13
Inhibits PfYRS and hence
parasite
protein translation

(Xie
et al., 2022)

1-(pyridin-4-yl)
pyrrolidin-
2-ones

0.01 0.013Pf Inactive
Inhibits PfcPRS and
downstream
protein synthesis

(Okaniwa
et al., 2021)

BI-2536 0.178 0.367 N/A
Inhibits PfNEK3 and
potentially a PfMRS

(Bohmer
et al., 2023)

(S)-SW703 0.78 0.57 1
Resistance to (S)-SW703
is associated with
PfCARL and PfAT1 (Imlay

et al., 2023)

Clemastine 2.5 6.3 N/A

Disrupts microtubule
biogenesis and induces
abnormal
cytoskeletal morphology (Lu

et al., 2020)

Pyrazolo[3,4-
b]pyridine

0.278 0.57 >25

Inhibits cytochrome bc1
complex, disrupting the
downstream de novo
pyrimidine
synthesis pathway

(Eagon
et al., 2020)

(Continued)
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Inhibiting merozoite egress
and invasion

Several phenotypically active compounds identified over the

past three years have been found to target the parasite processes of

egress and invasion. Once asexual blood stage parasites reach the

mature schizont stage, merozoites are released from infected red

blood cells (RBCs) via a process called egress (Tan and Blackman,

2021). Following egress, the free merozoites invade new RBCs to

continue the asexual life cycle. Since merozoite egress and invasion

are essential for the continuation of the P. falciparum life cycle, the

egress and invasion machinery are promising antimalarial targets.
Frontiers in Cellular and Infection Microbiology 05
The trisubstituted imidazole, MMV030084, was a multi-stage

active compound that was identified in a phenotypic screen by

Vanaerschot et al. (Vanaerschot et al., 2020). It displayed

nanomolar potency against asexual (TCP-1) and sexual blood

stages (TCP-5) P. falciparum, as well as liver stage (TCP-4) P.

berghei (Figure 1) (Vanaerschot et al., 2020). MMV030084 was

found to target P. falciparum cGMP-dependent protein kinase

(PfPKG) in asexual stages by interacting with the enzyme’s ATP

binding site (Vanaerschot et al., 2020). PfPKG initiates the parasite

egress cascade in response to an increased level of intracellular

cGMP (Taylor et al., 2010; Collins et al., 2013). Consistent with

PfPKG being the target, MMV030084 treatment resulted in
TABLE 1 Continued

Compound Chemical Structure

Multi-stage activity
IC50 (µM) Mode of actionIV

ReferenceTCP1I TCP4II TCP5III

Thiadiazine 0.219 0.003 N/A

(Dorjsuren
et al., 2021)

Pyrimidine
azepine

1.5 0.71 N/A

Inhibits cytochrome bc1
complex and DHODH,
disrupting the
downstream de novo
pyrimidine
synthesis pathway (Dorjsuren

et al., 2021)

DDD01061024 0.344 0.375 N/A
Inhibits cytochrome
bc1 complex

(Abraham
et al., 2020)

WJM228 0.02 0.001 0.56
Inhibits cytochrome bc1
complex and
potentially DHODH (Nguyen

et al., 2023)

PBI.109 0.0537 N/A 0.102

Inhibits
haemozoin formation

(Leshabane
et al., 2021)

PBI.105 0.0942 N/A 0.569

(Leshabane
et al., 2021)
I Values represent the in vitro potency of compounds against asexual blood stage P. falciparum.
II Values represent the potency of compounds against in vitro liver cells infected by P. berghei or Pf P. falciparum or a chemoprotection effect in P. berghei-infected mice in vivo (the ED50 value is
not available).
III Values represent the potency of compounds against gametocyte growth, gamete development, oocyst formation and ookinete development of P. falciparum.
IV Mode of action against the asexual blood stage P. falciparum.
Antimalarial activity against different life cycle stages is annotated with a colour gradient where green represents low nanomolar potency and yellow-to-red represents micromolar potency. The
grey colour is assigned to compounds that are inactive against a life cycle stage, or their activity against that life cycle stage has not been assessed.
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abnormal schizont morphology and it halted the progression of

parasites into rings (Vanaerschot et al., 2020). Additionally, the

transmission-blocking activity of MMV030084 was likely due to

inhibition of PfPKG during the sexual blood stage, which prevented

the activation and emergence of gametocytes (Diaz et al., 2006;

McRobert et al., 2008; Taylor et al., 2010; Brochet and Billker, 2016).

The liver-stage activity of MMV030084 against P. berghei

potentially resulted from inhibiting PbPKG and subsequently

delaying the development and egress of hepatic merozoites.

However, the direct binding of MMV030084 PbPKG needs

further validation and the translation of this liver-stage activity

against P. falciparum requires further investigation.

WM382 is a dual inhibitor of plasmepsin IX (PMIX) and

plasmepsin X (PMX) that prevents both merozoite egress and

invasion (Favuzza et al., 2020). It was optimized based on two

hits from an aspartic protease inhibitor library and demonstrated

nanomolar activity against asexual blood stage (TCP-1) parasites

with no cross-resistance to existing frontline antimalarials (Favuzza

et al., 2020). WM382 also reduced the viability and infectivity of

liver stage merozoites (TCP-4) and inhibited oocyst development

(TCP-5) (Figure 1) (Favuzza et al., 2020). Hence, WM382 has both

suppressive prophylactic and transmission-blocking potential, in

addition to its ability to cure an active malaria infection. PMIX and

PMX were identified as the targets for WM382 by cellular thermal

shift assay and validated by improved potency observed against

PMIX and PMX knockdown parasites (Favuzza et al., 2020). PMX

catalyses the activation of proteins and enzymes involved in the

egress cascade and merozoite invasion, whereas PMIX is only

essential for merozoite invasion (Yeoh et al., 2007; Nasamu et al.,

2017; Pino et al., 2017; Thomas et al., 2018; Favuzza et al., 2020). In

addition to preventing the asexual blood stage reproduction of P.

falciparum parasites, dual inhibition of PMIX and PMX has also

been shown to delay hepatic merozoite egress and prevent

development of fertile gametes (Pino et al., 2017).
Disrupting epigenetic regulation

In P. falciparum, epigenetic regulation controls the expression

of genes for essential parasite processes, including metabolic

activity, immune evasion, merozoite invasion, gametocytogenesis

and sexual differentiation (Abel and Le Roch, 2019; Hammam et al.,

2021). Hence, compounds that disrupt epigenetic regulation are

detrimental to the survival of asexual and sexual parasites.

SGI-1027, a DNA methyltransferase inhibitor (DNMT), showed

low-nanomolar potency against asexual blood stage (TCP-1)

parasites and early-stage gametocytes (TCP-5) (Figure 1) (Vanheer

et al., 2020). Similarly, other DNMT inhibitors have been reported to

demonstrate low-nanomolar potency against asexual blood stage P.

falciparum (Nardella et al., 2020). P. falciparumDNMT (PfDNMT) is

an epigenetic regulator that methylates parasite DNA and controls

gene expression (Lucky et al., 2023). Inhibition of PfDNMT may

disrupt parasite metabolism and subsequently impact stress response

and merozoite invasion (Hammam et al., 2021; Lucky et al., 2023).

However, further validation is required to demonstrate direct

inhibition of P. falciparum DNMT (PfDNMT) by SGI-1027.
Frontiers in Cellular and Infection Microbiology 06
Histone acetylation and methylation provide essential

epigenetic regulation mechanisms for parasite growth and

development throughout asexual blood stages (TCP-1) and

gametocytogenesis (TCP-5) (Figure 1) (Chaal et al., 2010; Gupta

and Bozdech, 2017; Neveu et al., 2020). The acetylation state of

histone 3 lysine 9 (PfH3K9) and histone 3 lysine 14 (PfH3K14) is

governed by histone acetyltransferases and histone deacetylases

(PfHDAC), which regulate the expression of P. falciparum genes

for essential parasite pathways such as merozoite invasion and

sexual differentiation (Abel and Le Roch, 2019). FNDR-20123 was

identified in a screen of a HDAC inhibitor library by Potluri et al.,

and was found to inhibit multiple PfHDAC isoforms at nanomolar

concentration. FNDR-20123 showed low-nanomolar activity

against asexual blood stage (TCP-1) parasites and male

gametocytes (TCP-5) (Potluri et al., 2020). A 4-day treatment of

50 mg/kg FNDR-20123 reduced parasitaemia by 50-fold in infected

mice. However, FNDR-20123 was 10-fold more selective towards

human HDAC than PfHDAC, indicating that further chemical

optimisation is needed to limit the risk of host cell toxicity.

CAY10603 and UNC0638 were identified as hits from the

Cayman Epigenetics library with nanomolar activity against

asexual blood stage (TCP-1) of P. falciparum and no cross-

resistance with chloroquine, pyrimethamine or cycloguanil

(Coetzee et al., 2020). CAY10603 was equally active against early

and late-stage gametocytes (TCP-5), whereas UNC0638 was more

active against late-stage gametocytes (Figure 1). Although further

affinity- or functional-based validation is required, CAY10603 and

UNC0638 are predicted to inhibit PfHDAC and P. falciparum

histone methyltransferase (PfHMT) respectively. PfHMT and

histone demethylase (PfHDM) control the methylation state of

PfH3K9 and histone 3 lysine 4 (PfH3K4), regulating gene

expression that is essential for asexual and sexual blood stage

parasites (Malmquist et al., 2015). Hence, two PfHMT inhibitors,

UNC0631 and UNC0642, also showed nanomolar potency against

asexual (TCP-1) P. falciparum and early-stage gametocytes (TCP-5)

(Figure 1) (Vanheer et al., 2020).

In a phenotypic screen performed by Vanheer et al, JIB-04

showed higher potency against early-stage gametocytes (TCP-5)

than asexual blood stage (TCP-1) parasites (Figure 1) (Vanheer

et al., 2020). JIB-04 competitively inhibits the Jumonji-domain-

containing PfHDM, disrupting the histone methylation

equilibrium, leading to gene dysregulation and eventually parasite

death (Matthews et al., 2020; Vanheer et al., 2020). Interestingly,

ML324 (MMV1580488) shared the same proposed target as JIB-04

but displayed a different antimalarial profile (Reader et al., 2021).

ML324 was potent against late-stage gametocytes (TCP-5) whilst

showing minimal activity against early-stage gametocytes and

asexual blood stage parasites (Figure 1). Exposure to ML324

resulted in an increased level of methylated PfH3K9 and the

associated changes in gene expression resembled JIB-04 treatment

(Matthews et al., 2020; Reader et al., 2021).

Epirubicin is predicted to be an antimalarial hit via

computational chemogenomics (Ferreira Letıćia et al., 2020). It

demonstrated nanomolar potency against asexual blood stage

(TCP-1) P. falciparum and blocked the in vitro conversion from

sexual stage P. berghei to ookinetes (IC50 0.39 µM). Epirubicin also
frontiersin.org
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reduced 53% of P. vivax oocyst formation (TCP-5) in infected

mosquitoes’ midguts in membrane feeding assays (Figure 1). P.

falciparum Gyr subunit A (PfGyrA) was predicted to be the target

of epirubicin by molecular modelling and docking (Ferreira Letıćia

et al., 2020). PfGyr is a type II topoisomerase which releases tension in

the supercoiled double stranded DNA and hence facilitates DNA

replication (Nagano et al., 2014; Tan et al., 2021). PfGyrA is also

essential for the structural integrity of the apicoplast (Goodman and

McFadden, 2013; Nagano et al., 2014; Milton and Nelson, 2016; Tan

et al., 2021). Resistance selection for epirubicin in Saccharomyces

cerevisiae resulted in downregulation of alg7, which encodes for the

dolichol phosphate N-acetylglucosamine-1-phosphotransferase

(Ferreira Letıćia et al., 2020). Since P. falciparum has a homologous

alg7 gene that is thought to be essential, epirubicin is speculated to

interfere with protein glycosylation in P. falciparum (Zhang et al.,

2018; Böhme et al., 2019; Chappell et al., 2020). However, due to

potential toxicity to mammalian cells, epirubicin requires further

chemical optimisation to be a clinically useful antimalarial.
Inhibiting protein synthesis

In protein translation, amino acids are shuttled to the ribosomes

by their allied transfer RNAs (tRNAs) and assembled into

polypeptide chains based on alignment of the tRNA anticodons

with the codons on the messenger RNA. Aminoacyl tRNA

synthetases (aaRSs) are key upstream enzymes of protein

translation which catalyse the formation of amino acid-adenosine

5’ monophosphate (AMP) intermediates and the conjugation of

these amino acids to their corresponding tRNAs with the release of

AMP (Xie et al., 2023). Key differences in conserved motifs of P.

falciparum aaRSs (PfaaRSs) and human aaRSs were reported,

suggesting PfaaRSs to be promising antimalarial targets during

the liver, asexual and sexual blood stages of the parasites (Bhatt

et al., 2009; Xie et al., 2023).

ML901, a pyrazolopyrimidine sulfamate, was identified from

a screen of the Takeda compound library with nanomolar

potency against asexual blood stage (TCP-1), liver stage (TCP-4)

and sexual stage (TCP-5) P. falciparum (Figure 1) (Xie et al.,

2022). In addition to its multi-stage activity, ML901 is 800- to

5000-fold less toxic to human cells. ML901 structurally resembles

AMP and it inhibits P. falciparum tyrosine tRNA synthetase

(PfYRS) by hijacking PfYRS-bound tyrosine after AMP is

released. LC-MS based methods detected ML901-tyrosine

conjugates produced by PfYRS but not by its human homolog,

suggesting that ML901 selectively inhibits PfYRS over human YRS

(Xie et al., 2022).

The cytoplasmic prolyl-tRNA synthetase (PfcPRS) is essential

for P. falciparum development in the asexual blood stage (TCP-1)

and liver stage (TCP-4) (Figure 1) (Herman et al., 2015). In a screen

for PfcPRS competitive inhibitors at the ATP-binding site, 1-

(pyridine-4-yl)pyrrolidine-2-ones showed nanomolar potency

against asexual blood stage and liver stage P. falciparum

(Okaniwa et al., 2021). Similar to how ML901 prevents the

conjugation of tyrosine with its cognate tRNA, 1-(pyridine-4-yl)

pyrrolidine-2-ones inhibit the proline-tRNA formation and hence
Frontiers in Cellular and Infection Microbiology 07
disrupt downstream protein synthesis. However, 1-(pyridine-4-yl)

pyrrolidine-2-ones showed off-target inhibition of the human

adenosine A3 receptor (IC50 1.8 µM), suggesting that further

optimisation is required to reduce potential host toxicity

(Okaniwa et al., 2021).

The HMS LINCS library was screened for kinase inhibitors

with antimalarial activity and BI-2536 demonstrated low

nanomolar potency against asexual blood stage (TCP-1) and

liver stage (TCP-4) P. falciparum (Figure 1) (Bohmer et al.,

2023). BI-2536 inhibits Polo-like kinase 1, an important cell

division regulator in humans, however, as no Plasmodium

homologs have been identified, an alternative target is likely

responsible for its antimalarial activity (Archambault

and Glover, 2009; Lian et al., 2018; Bohmer et al., 2023). BI-

2536 was shown to inhibit P. falciparum NIMA related kinase 3

(PfNEK3), however, PfNEK3 is not essential for asexual

blood parasites but rather highly expressed in gametocytes (Lye

et al., 2006; Zhang et al., 2018). In vitro selection for BI-2536

resistance identified mutations in methionyl-tRNA synthetase

(PfMRS) and other enzymes invo lved in the tRNA

aminoacylation process, suggesting that BI-2536 potentially

inhibits protein translation (Bohmer et al., 2023). However,

further investigation is required to validate the direct inhibition

of PfMRS by BI-2536.
Disrupting protein trafficking and
cellular scaffolding

Similar to other eukaryotic cells, the endoplasmic reticulum

(ER) and Golgi apparatus of P. falciparum process and package

proteins before they are transported to their destination. Some of

these proteins are exported outside of the parasite and modify the

host RBC membrane, which assists merozoite egress and allows the

parasite to evade the host immune system. Some other proteins

exported to the host RBC cytoplasm may direct exported protein

trafficking, remodel lipids and detoxify haem, in order to make the

RBCs more habitable for parasite growth (Cooke et al., 2004).

Hence, compounds that disrupt parasitic protein processing in

the ER, Golgi apparatus and host RBC can significantly inhibit

parasite growth and development.

A tyrosine amide, (S)-SW703 showed a fast-killing profile

against asexual blood stage (TCP-1) P. falciparum in a HTS

(Imlay et al., 2023). It also showed liver-stage (TCP-4) activity

and transmission-blocking (TCP-5) activity (Figure 1). Resistance

selection with (S)-SW703 led to point mutations in the P.

falciparum cyclic amine resistance transporter (PfCARL) and the

acetyl-CoA transporter 1 (PfAT1). The function of PfCARL

remains unknown, however, it is not essential for parasite growth

(LaMonte et al., 2016). Although the exact function of PfAT1

remains elusive, it is generally accepted to transport acetyl-CoA

across the ER/Golgi membrane for downstream protein packaging

and trafficking (Martin et al., 2005). Parasites with mutations in

PfAT1 showed impaired fitness and grew at a slower rate compared

to wildtype parasites, suggesting PfAT1 is important but not
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essential (Lim et al., 2016). PfCARL and PfAT1 were shown to

mediate the resistance mechanisms to multiple compounds with

unrelated chemical structures (LaMonte et al., 2016; Lim et al., 2016;

Magistrado et al., 2016). Hence, mutations in PfCARL and PfAT1

are more likely to be associated with the resistance mechanism

rather than being the direct targets of (S)-SW703. Further target

identification studies are required to elucidate the binding target of

(S)-SW703.

A few FDA-approved antihistamines have exhibited

antimalarial activity against blood stage P. falciparum (Chong

et al., 2006; Derbyshire et al., 2012; Milner et al., 2012). Since the

Plasmodium genome does not encode for a homologous protein to

mammalian histamine-1 receptor, these antihistamines are

hypothesized to act on other Plasmodium-specific targets

(Derbyshire et al., 2012). For example, clemastine showed single-

digit micromolar potency against liver stage (TCP-4) and asexual

blood stage (TCP-1) parasites (Figure 1) (Lu et al., 2020).

Proteomics-based target deconvolution of clemastine revealed the

P. falciparum chaperonin containing T-complex protein 1 delta

subunit (PfCCT4) as the likely target, indicated by stabilization of

PfCCT4 when challenged by heating and exposure to denaturant

(Lu et al., 2020). PfCCT4 has been shown to be essential for asexual

parasite development, particularly in rings and trophozoites where

the maximal activity of clemastine was observed (Spillman et al.,

2017; Lu et al., 2020). There has been a debate about whether P.

falciparum CCT4 mediates the trafficking of parasite proteins in the

host RBC or if it solely functions within the parasite cytosol

(Mbengue et al., 2013; Mbengue et al., 2015; Spillman et al.,

2017). Nevertheless, reduced microtubule biogenesis and

abnormal cytoskeletal morphology were observed in parasites

treated with clemastine. Similar observations were reported when

the mammalian CCTs were inhibited (Willison, 2018; Grantham,

2020; Lu et al., 2020). Overall, clemastine combines multi-stage

activity with a novel MOA and an extensively studied safety profile

in humans.
Inhibiting the mitochondrial electron
transport chain

In blood stage P. falciparum, the mitochondrial electron

transport chain (mtETC) is crucial for maintaining the precursor

pool for de novo pyrimidine synthesis (Barton et al., 2010;

Rodrigues et al., 2010; Nixon et al., 2013b). Inhibition of the

mtETC cytochrome bc1 complex disrupts pyrimidine synthesis

and hence suppresses parasite growth during the asexual blood

stage and liver stage (Nixon et al., 2013a; David Hong et al., 2018;

Okada-Junior et al., 2018; Song et al., 2018; Wojnarski et al., 2019).

Pyrazolo[3,4-b]pyridine is a cytochrome bc1 inhibitor which

binds to the quinol oxidation (Qo) binding site (Eagon et al., 2020).

It showed nanomolar potency in a HTS and no cross resistance with

chloroquine, pyrimethamine, cycloguanil or quinine in asexual

blood stage (TCP-1) parasites (Eagon et al., 2020). Pyrazolo[3,4-

b]pyridines also showed low-micromolar potency against liver stage

(TCP-4) parasites (Figure 1). Whilst both pyrazolo[3,4-b]pyridine
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and atovaquone bind to the Qo site of the cytochrome bc1 complex,

in silico molecular docking predicted pyrazolo[3,4-b]pyridine to fit

in a different orientation to atovaquone (Siregar et al., 2015; Eagon

et al., 2020). It is worth investigating whether this different binding

mechanism of pyrazolo[3,4-b]pyridine would conserve its

antimalarial activity against atovaquone-resistant parasites.

Pyrimidine azepine and thiadiazine demonstrated activity against

both asexual blood stage (TCP-1) and liver stage (TCP-4) P.

falciparum (Figure 1) (Dorjsuren et al., 2021). In vitro resistance

selection for pyrimidine azepine and thiadiazine resulted in four

mutations within or near the Qo site of the P. falciparum

cytochrome bc1complex, whilst being distant from the quinol

reduction (Qi) site (Barton et al., 2010; Dorjsuren et al., 2021).

Furthermore, the pyrimidine azepine-resistant parasite line and one

thiadiazine-resistant parasite line showed cross-resistance to

atovaquone, confirming P. falciparum cytochrome bc1 complex as

its target. Interestingly, the other two thiadiazine-resistant parasite

lines became more susceptible to atovaquone, suggesting that these

thiadiazines may have a different binding mechanism to atovaquone

despite sharing the common Qo binding site. Furthermore, these two

thiadiazine-resistant lines were hypersensitive to DSM265, an

inhibitor of dihydroorotate dehydrogenase (DHODH) (Phillips

et al., 2015). DHODH is an essential enzyme in the pyrimidine

biosynthesis pathway, the function of which relies on the

production of oxidized coenzyme Q by the cytochrome bc1
complex. These findings further confirm parasite cytochrome bc1 as

the likely antimalarial target of thiadiazine antimalarials.

DDD01061024 is a potential P. falciparum cytochrome bc1
inhibitor discovered from the Global Health Chemical Diversity

Library (Abraham et al., 2020). It showed nanomolar potency

against asexual blood stage (TCP-1) and liver stage (TCP-4)

Plasmodium parasites (Figure 1). Resistance selection for

DDD01061024 resulted in a point mutation at the same position as

one of the thiadiazine-resistant strains (Dorjsuren et al., 2021).

Similarly, DDD01061024-resistant parasites were less susceptible to

atovaquone, suggesting P. falciparum cytochrome bc1 to be its target.

WJM228, a 7-N-substituted-3-oxadiazole quinolone, was

screened out of the Janssen Jumpstarter library with nanomolar

potency against asexual (TCP-1), sexual blood stage (TCP-5) and

liver stage (TCP-4) P. falciparum (Figure 1) (Phillips et al., 2015).

Resistance selection for WJM228 led to the V259L point mutation

on the cytochrome bc1 Qo binding site, the same mutation which

resulted in atovaquone and DDD01061024 resistance (Nixon et al.,

2013a; Phillips et al., 2015; Dorjsuren et al., 2021). Furthermore,

WJM228 showed reduced susceptibility against DHODH inhibitor-

resistant P. falciparum (Phillips et al., 2015). These findings suggest

that WJM228 also inhibits parasite growth by interfering with

the mtETC.
Inhibiting the haem
detoxification process

Blood stage Plasmodium parasites contain a unique organelle

known as the food vacuole, which is the site of digestion of host cell
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haemoglobin (Bannister et al., 2000). Haemoglobin digestion is an

essential metabolic process and a key point of vulnerability during

asexual blood stage development. The parasite digests up to 75% of

host cell haemoglobin to provide amino acids for parasitic protein

synthesis (Ecker et al., 2012). However, this process releases free

haem that is toxic to the parasite. Hence, Plasmodium parasites have

evolved a unique haem detoxification mechanism in which free

haem is polymerised into insoluble hemozoin in the food vacuole.

There have been a number of antimalarial discovery programs

based on the benzimidazole core structure (Keri et al., 2015;

L’Abbate et al., 2018; Attram et al., 2019; Devine et al., 2021).

Screening of an in-house benzimidazole-based library revealed six

pyrido-1,2-a-benzimidazole (PBI) hits with sub-100 nM potency

against asexual blood stage (TCP-1) P. falciparum (Leshabane et al.,

2021). Within these six hits, PBI.109 and PBI.105 showed

nanomolar activity against early and late gametocytes (TCP-5)

respectively, indicating they may have transmission-blocking

potential (Figure 1). PBIs were found to accumulate in the food

vacuole and inhibit the formation of hemozoin in asexual blood

stage parasites (Singh et al., 2017; Korkor et al., 2020). However,

haem detoxification is not critical for gametocyte development,

suggesting an alternative MOA for their transmission-blocking

activity (van Biljon et al., 2019). Another series of benzimidazole

derivatives that were structurally related to PBI.109 and PBI.105

were found to inhibit microtubule formation in P. falciparum

(Dziwornu et al., 2021). In P. falciparum, microtubules are crucial

for cell division during asexual blood stage and critical for

maintaining the inner membrane functionality for gametocyte

development (Gerald et al., 2011; Parkyn Schneider et al., 2017).

Thus, it is possible that the transmission-blocking activity of these

PBI compounds stems from their ability to disrupt gametocyte

microtubule function.
Concluding remarks

Malaria eradication is a challenging mission, and resistance to

all frontline antimalarials has made it more difficult. The COVID-

19 pandemic has brought additional pressure to healthcare systems

in malaria-endemic countries that often have pre-existing

economic challenges. Significant efforts have been invested on a

global level in screening, designing and repurposing medicines in

order to find promising antimalarial candidates with multi-stage

activity and novel MOAs. Here we have compiled a summary of

recently reported antimalarial hit compounds with such properties

(Table 1). Phenotypic screening has demonstrated the ability to

identify antimalarial compounds with potent activity, and

technological advances have expanded the screening of

antimalarial activity to parasite lifecycle stages other than the

symptomatic blood stage. However, there are still limitations in

the current screening technologies and models. For a few

antimalarial hits in this review, the liver-stage activities (TCP-4)
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against P. falciparum parasites were inferred from activity against

liver-stage P. berghei parasites. Further development is needed to

design more screening systems and models to improve the

translation between in vitro pharmacology and clinical relevance.

Drug discovery requires significant investment of time and

resources, and there is no guarantee that the antimalarial hit

compounds discussed in this review will reach clinical practice.

However, target identification studies of these hit compounds have

demonstrated promising results, yielding new drug targets and

revealing novel biological pathways that are suitable for future drug

discovery efforts. These mechanistic insights can underpin further

chemical modification of these hits in order to optimize the

activity, toxicity and pharmacokinetic profiles of these

compounds with the goal to produce attractive antimalarial

candidates for pre-clinical and clinical development.
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