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Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract,

accounting for the second most common cause of gastrointestinal tumors. As

one of the intestinal barriers, gut bacteria form biofilm, participate in intestinal

work, and form the living environment of intestinal cells. Metagenomic next-

generation sequencing (mNGS) of the gut bacteria in a large number of CRC

patients has been established, enabling specific microbial signatures to be

associated with colorectal adenomato-carcinoma. Gut bacteria are involved in

both benign precursor lesions (polyps), in situ growth and metastasis of CRC.

Therefore, the term tumorigenic bacteria was proposed in 2018, such as

Escherichia coli, Fusobacterium nucleatum, enterotoxigenic Bacteroides

fragilis, etc. Meanwhile, bacteria toxins (such as cytolethal distending toxin

(CDT), Colibactin (Clb), B. fragilis toxin) affect the tumor microenvironment and

promote cancer occurrence and tumor immune escape. It is important to note

that there are differences in the bacteria of different types of CRC. In this paper,

the role of tumorigenic bacteria in the polyp-cancer transformation and the

effects of their secreted toxins on the tumormicroenvironment will be discussed,

thereby further exploring new ideas for the prevention and treatment of CRC.
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GRAPHICAL ABSTRACT
1 Introduction

Colorectal cancer (CRC) is a malignant tumor of the colon or

rectum that usually originates from mucosal epithelial cells. It is a

common type of cancer with high incidence rates worldwide.

Several risk factors, such as age, family history, dietary habits,

intestinal polyps, and inflammatory bowel disease, are associated

with the development of CRC (Center et al., 2009). The intestinal

microbiome is a multifaceted ecosystem consisting of a rich array of

bacteria, viruses, and fungi. It harbors a vast reservoir of genetic

diversity, surpassing that which resides within an individual’s own

DNA, making it a profoundly intricate and unique entity. The

intricate interplay between bacteria and the host leads to

multifaceted impacts of intestinal microbiota and their

metabolites on the initiation and progression of CRC, as well as

the modulation of the immune microenvironment. Intestinal

colonizing bacteria secrete metabolites and enter the blood

circulation, thereby affecting important physiological processes

such as nutrient absorption, material metabolism, and immune

defense (Sun et al., 2023). Moreover, the oncogenic flora promotes

the occurrence of CRC by inducing DNA damage in epithelial cells,

which in turn promotes the proliferation of bacteria that have a

growth advantage in the tumor microenvironment (Tjalsma et al.,

2012; Clavenna et al., 2023). The definition of intestinal microbiome

is becoming more and more clear, and it is related to countless
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health conditions. These interactions are now understood to occur

locally and throughout the body through changes in the immune

system and other mechanisms. The local proximity of intestinal

microbiome to the colon led many early researchers to study its

effect on CRC, making CRC a frontier for studying the response of

microbiome to cancer development, progression and treatment.
2 The occurrence and development
of CRC

CRC originates from the mucosal epithelial cells in the

colorectal mucosa layer. Clinically, CRC is mainly secondary to

intestinal polyps and inflammatory bowel disease (Dyson and

Rutter, 2012; Wolf et al., 2023). Novel ideas about CRC

progression course are that normal mucosa after mucosal bump,

small adenomatous polyp, large adenoma, high-level neoplasia,

eventually into malignant tumor. The types of polyp tissue prone

to cancer include tubular adenoma, villous adenoma, tubular-

villous adenoma (mixed adenoma), and serrated adenoma

(Knudsen et al., 2023). In a recent investigation, researchers

delved into the composition of “mucosal-associated metabolites”

in low-grade versus high-grade dysplastic polyps. Notably, they

observed an enrichment of the genus Pelomonas, a member of the

Proteobacteria phylum, in the low-grade dysplastic polyps.
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Conversely, microbiota analyses of high-grade dysplastic adenomas

unveiled an elevated presence of the genus Anaerococcus, a taxon

that has been notably abundant in CRC tissues (Clavenna et al.,

2023). In a clinical study of Chinese patients, it was found that

Bifidobacterium bifidum, Candida albicans, and Saccharomyces

cerevisiae in the feces of CRC patients were more prevalent than

those of healthy population (Li X. et al., 2023). In research

conducted among individuals diagnosed with familial

adenomatous polyposis (FAP), the colonic biofilms were observed

to harbor oncogenic bacteria, primarily Escherichia coli and

Bacteroides fragilis (Dejea et al., 2018).

In approximately 85% of colon cancers, the adenomatous

polyposis coli (APC) gene, a critical tumor suppressor, undergoes

deletion or inactivation (Grivennikov et al., 2012). APC gene is not

only associated with FAP, but also plays an important role in the

occurrence of CRC. NOTUM retains tumor suppressor activity in

APC-ineffective adenomas. However, NOTUM becomes a specific

oncogene when it develops into adenocarcinoma with p53 deletion

(Tian et al., 2023). Oncogenic microbial communities wield the

ability to reshape the entire gut microbiota’s composition, inciting

pro-inflammatory reactions and incipient cellular metamorphosis,

culminating in carcinogenesis (Yan et al., 2023). Furthermore,

oncogenic microbiota catalyze CRC progression through the

instigation of DNA damage within the epithelial cells. Epithelial

barrier damage may be a consequence of b-catenin activation as

well as loss of APC, microbial products drive IL-23/IL-17-mediated

tumor growth (Grivennikov et al., 2012).

As early as 2012, the bacterial driver–passenger model was

proposed (Tjalsma et al., 2012). Certain driver bacteria, such as E.

faecalis, produce extracellular superoxide, which causes cellular

DNA damage (Table 1). In a 16s RNA sequencing discovery, 7

bacterial genera were identified as potential drivers (e.g., unclassified

Pseudomonadaceae and Neissenaceae) and 12 bacterial genera as

potential passengers (e.g., Staphylococcus and Veillonella) (Geng

et al., 2014). Some studies have also proposed the “Alpha-bug”

model (Sears and Pardoll, 2011; Avril and DePaolo, 2021),

enterotoxigenic Bacteroides fragilis induces colon tumors in mice

(Sears and Pardoll, 2011; Yu and Fang, 2015).
3 Gut bacterial products associated
with CRC

Bacteria can obtain the ability to penetrate the intestinal

mucosal barrier through flagella, pili, and adhesins, as well as

adhere to and invade intestinal epithelial cells, produce endotoxin

or exotoxin, and then form pathogenicity (Perez-Lopez et al., 2016).

Common pathogenic bacteria have been mentioned before and will

not be repeated.

A recent study has suggested that an analysis of the microbial

community in tumors holds the potential to identify distinct

prognostic subtypes of CRC. This classification system delineates

three principal subtypes: OCS1, predominantly associated with

Fusobacteria and oral pathogens; OCS2, characterized by a

prevalence of Firmicutes and Bacteroidetes; and OCS3, featuring

an abundance of Escherichia, Pseudomonas and Shigella (Mouradov
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et al., 2023). OCS1 tumors mostly occur in the right colon and have

high pathological grade. In contrast, OCS2 and OCS3 tumors are

mostly located in the left colon and rectum with low pathological

grade (Mouradov et al., 2023). There was no significant difference in

clinical features between OCS2 and OCS3 (Mouradov et al., 2023).

It has been found that the expression of Gal‐GalNAc (recognized by

Fusobacterium Fap2) may promote the binding of Fusobacterium to

CRC (Abed et al., 2016). F. nucleatum utilizes the non-lectin

structure of Clostridium Fap2 to achieve tumor-promoting effects

(Alon-Maimon et al., 2022). Additionally, in a pathological context,

F. nucleatum augments its virulence through the secretion of an

amyloid-like adhesin called FadA, utilizing a Fap2-like

autotransporter (Meng et al., 2021). In addition, F. nucleatum can

enhance drug resistance of tumor cells, inhibit neutrophil

infi ltration, and ultimately change the tumor immune

microenvironment (Alon-Maimon et al., 2022; Garcia-Serrano

et al., 2023). F. nucleatum is involved in tumor initiation or

progression before cancer formation, which regulating the tumor

immune microenvironment and promoting the proliferation of

tumor-infiltrating immune cells (Kostic et al., 2013). F. nucleatum

pro-inflammatory genes are characterized by upregulation of

PTGS2 (Kostic et al., 2013). Nevertheless, certain experiments

have revealed that F. nucleatum is not an unequivocal instigator

of cancer (Nawab et al., 2023). Instead, its carcinogenic potential

hinges on the particular dietary context in which it operates.

E. coli is involved in the development of CRC through the

induction of inflammation and genotoxic host responses by

bacteria-derived virulence factors. Some strains of E. coli produce

a secondary metabolite called colibactin (Clb), and bacteria carrying

pks genomic islands have DNA-damaging properties associated

with CRC (Dougherty et al., 2023; Harnack et al., 2023). Blocking

bacterial adhesion attenuates colibactin-mediated genotoxicity and

CRC exacerbations (Jans et al., 2023). Pks+ E. coli can

opportunistically enter the epithelium and promote existing

mucosal damage, while mice colonized with pks+ E. coli cannot

reestablish functional barriers (Harnack et al., 2023). Grotesquely, it

has also been found that about half of colibactin-producing E. coli

(CoPEC) can encode cytotoxic necrotizing factor-1 (CNF1) which

induces CRC in mice by reducing CoPEC (Chat et al., 2023). The

influence of microorganisms such as F. nucleatum, E. coli,

enterotoxigenic B. fragilis, and Faecalibacterium prausnitzii on

miRNAs is well-established, and this microbial impact leads to

the stimulation of tumor growth and exacerbates inflammatory

responses (Xing et al., 2022). Microbiota reprograms mouse

intestinal lipid metabolism by suppressing expression of lncRNA

Snhg9 in small intestinal epithelial cells (Tian et al., 2023).

Lostridium sporogenes is responsible for breaking down

tryptophan and secreting the metabolite indole propionic acid

(IPA), which has been shown to help strengthen the intestinal

barrier and interact with the immune system, then change the

biological characteristics of the intestine (Dodd et al., 2017). The gut

microbiota metabolizes tryptophan to generate Indole-3-acetic acid

(3-IAA), which effectively downregulates the expression of TNF-a.
This reduction in TNF-a expression is attributed to the enzymatic

conversion of tryptophan, highlighting the microbiota’s significant

role in modulating inflammatory responses (Tomii et al., 2023).
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Furthermore, the metabolization of tryptophan by the bacterial

flora results in the production of indole, which exerts regulatory

control over mucosal immunity by activating receptors associated

with polycyclic aromatic hydrocarbons (Lavelle and Sokol, 2020;

Hezaveh et al., 2022). Bacteroides thetaiotaomicron inhibits tumor

growth by producing short-chain fatty acids (SCFAs) such as

propionate (Xu et al., 2023). Elevating the abundance of species

such as Ruminococcaceae, Parabacterium, and Blautellae known for

their capacity to generate SCFAs, Zearalenone (ZEA) exhibits a

notable capacity to effectively suppress the development of

colorectal tumors (Leung et al., 2023). The initiation of AhR

signaling is triggered by microbiome-derived formate, which

subsequently leads to the expansion of Th17 cells and promotes

CRC tumor invasion (Ternes et al., 2022).

The occurrence and progression of CRC are influenced by DNA

mismatch repair (MMR). In a recent examination of DNA

mismatch repair deficiencies (dMMR) versus proficient DNA

mismatch repair (pMMR), researchers investigated the impact of

microbial-driven metabolic reconfiguration (Hale et al., 2018; Li J.

et al., 2023). In the realm of dMMR, a total of 211 distinct species

thrived, with noteworthy representatives including F. nucleatum, A.

muciniphila and O. splanchnicus (Hsueh et al., 2022; Li J. et al.,

2023). In stark contrast, a mere 2 species displayed a deficiency in

dMMR, as exemplified by F. plautii. Furthermore, the dMMR

environment boasted 13 metabolites in abundance, with retinoic

acid being a prominent member, while on the opposite end of the

spectrum, 77 metabolites experienced a significant depletion in the

dMMR context, encompassing lactic acid, succinic acid, and 2,3-

dihydroxyvaleric acid (Li J. et al., 2023).
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The improved prognosis of colon cancer can be attributed to

specific mucosal biota, namely Faecalibacterium prausnitzii and

Ruminococcus gnavus. These microorganisms play a pivotal role by

producing metabolites that encompass a spectrum of fatty acid

species, including medium chain (MCFAs), long-chain (LCFAs),

and very long-chain (VLCFAs) fatty acids, alongside ceramides and

lysophospholipids (Alexander et al., 2023).

Similarly, gut bacteria can also produce substances that reverse

CRC progression. In a study of female CRC patients, it was found

that Carnobacterium maltaromaticum was missing (Li Q. et al.,

2023). Intestinal colonization of C. maltaromaticum is influenced

by estrogen and increases the abundance of vitamin D-related

metabolites in colon tissue (Li Q. et al., 2023). Remarkably, the

progression of CRC has been observed to be exacerbated by

alterations in the male gut microbiome (Wang L. et al., 2023).

This includes an augmentation in the presence of the pathogenic

bacterium Akkermansia muciniphila and a reduction in the levels of

the beneficial probiotic Parabacterium kingeri (Wang L.

et al., 2023).
4 Gut bacteria regulate the
tumor microenvironment

The CRC tumor microenvironment (TME) constitutes a

multifaceted and intricate ecosystem, and plays a pivotal role in

tumor growth, metastasis, and treatment response. TME comprises

a diverse array of cellular components and molecular elements. It

encompasses tumor cells, immune cell populations, vascular

networks, fibroblasts, intestinal flora and the extracellular matrix

(ECM) (Zhang et al., 2023).

It is currently believed that the TME of CRC mainly consists of

the intestinal bacteria microenvironment, the inflammatory

microenvironment and the hypoxic microenvironment, which

work together and coordinate with each other (Wang et al.,

2017). This article mainly describes the impact of intestinal

bacteria on TME. Bifidobacterium adolescentis is a probiotic

found in the human intestine. It can inhibit the proliferation of

patholgen in the intestine and maintain the homeostasis of the

bacterial microenviroment. It has been experimentally confirmed

that B. adolescentis inhibits tumorigenesis by inducing a new

CD143+ cancer-associated fibroblasts through Wnt signaling-

regulated GAS1 (Chen et al., 2023). In addition, B. adolescentis

inhibits colorectal carcinogenesis through TLR2 induction of

decorin+ macrophages (Lin et al., 2023). In AOM/DSS-induced

mice, B. thetaiotaomicron suppresses tumorigenesis of colitis-

associated CRC and MC38 allograft tumors (Xu et al., 2023). Not

only in CRC, but other experiments have shown that in melanoma,

Eubacterium rectale significantly improves the efficacy of anti-PD1

treatment and the overall survival rate of tumor-bearing mice (Liu

et al., 2023). Eubacterium rectale consumes l-serine to enhance NK

cell function and anti-PD1 therapeutic effect, leading to activation

of NK cell activity through the FOS/FOSL2 signaling pathway (Liu

et al., 2023).
TABLE 1 CRC-associated bacteria.

Strain Pathogenic
metabolites

Mechanism Reference

Enterococcus
faecalis

Extracellular
Superoxide

DNA damage (Evans et al.,
2004; Tjalsma
et al., 2012)

Escherichia
coli

Polyketide
synthetase

Induces single-strand
DNA breaks

(Tjalsma
et al., 2012)

Bacill
us fragilis

B. fragilis
toxin
(Metalloproteinase)

Promotes T helper 17
cells to increase
expression of
interleukin-17 (IL-17)
to
increase
tumorigenesis

(Sears and
Pardoll, 2011;
Tjalsma
et al., 2012)

Increased intestinal
barrier permeability

(Sears and
Pardoll, 2011)

Wnt, NF-kB and
Stat3
signal transduction

(Sears and
Pardoll, 2011;
Yu and
Fang, 2015)

Streptococcus
bovis

S.bovis bacterial
wall
extracted antigens

Inflammation-based
sequence of tumor
development or
dissemination by IL-
1, COX-2, and IL-8

(Biarc
et al., 2004)
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1299977
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Han et al. 10.3389/fcimb.2023.1299977
In an in vitro study, F. nucleatum infection was found to induce a

significant increase in the production of neutrophil extracellular traps

(NETs) (Kong et al., 2023). This demonstrates that F. nucleatum-

induced NETs indirectly accelerate malignant tumor growth through

angiogenesis and promote tumor metastasis. This is exemplified by

cellular migration linked to the process of epithelial-mesenchymal

transition (EMT), the breakdown of basement membrane proteins

facilitated by matrix metalloproteinases (MMPs), and the entrapment

of CRC cells (Kong et al., 2023). In research, exposure of peripheral

blood mononuclear cells (PBMCs) to LPS derived from these

microorganisms revealed that F. periodonticum triggers cytokine

synthesis in PBMCs, whereas both B. fragilis and P. asaccharolytica

exerted a suppressive influence (Sulit et al., 2023). In a study of

intratumoral bacteria, elevated autophagy induced by F. nucleatum

led to increased resistance to reactive oxygen species (ROS) in CRC,

this resistance was alleviated, ultimately promoting apoptosis in cancer

cells, and apoptosis was triggered by intracellular redox imbalance

caused by the interaction with BSA-Cu SAN (Wang X. et al., 2023).
5 Metastasis and immune escape of
CRC cells

Studies have shown that relevant DNA analysis of CRC patients

and fecal microorganisms found that KRAS gene mutations have a

significant impact on distant metastasis of CRC (Sui et al., 2020). At

the same time, in CRC, the abundance of different bacterial groups

is also influencing the mutation of KRAS gene, which affects the

metastasis and progression of CRC (Sui et al. , 2020).

Microorganisms such as Rosella, Paramecium, Post-Rosella,

Staphylococcaceae and Bacillariophyta in the mutant group

significantly affected distant metastasis of CRC through KRAS

gene mutation, and their prevalence and metastasis were

significantly higher than those in the non-mutant group (Liu

et al., 2021). Furthermore, butyrate, a prominent component

among SCFAs, plays a pivotal role in the metabolic processes of

normal colorectal epithelial cells (Yan et al., 2024). Remarkably, a

substantial portion of butyrate remains unmetabolized, largely

attributed to the fact that colon cells have a Warburg effect

pathway (Eslami et al., 2020). Butyrate serves as a potent histone

deacetylase (HDAC) inhibitor, influencing the intricate

orchestration of tumor cell metabolism, proliferation, and

apoptosis (Korsten et al., 2023). Consequently, these multifaceted

interactions exert a significant impact on the metastatic potential of

CRC (Li et al., 2021). At the same time, it was shown that F.

nucleatum was found to be highly abundant in CRC and promote

CRC metastasis by affecting the miR-1322/CCL20 axis and M2

polarization (Xu et al., 2021). The ALPK1/NF-kB/ICAM1 pathway

can be induced by F. nucleatum, leading to enhanced adhesion of

CRC cells to intestinal endothelial cells, as well as increased

infiltration and distant metastasis (Zhang et al., 2022).

Additionally, EVADR induction has the potential to facilitate

CRC metastasis through YBX1-dependent translation processes

(Lu et al., 2022). It has been reported that sustained F. nucleatum

exposure reduces the diversity of the intestinal microbiota in mice,
Frontiers in Cellular and Infection Microbiology 05
leading to an imbalance of the intestinal bacteria, and a

reorganization of the associated bacteria, which intricately affects

colorectal carcinogenesis and progression through the secretion of

pro-inflammatory cytokines (Yin et al., 2022).

F. nucleatum promotes CRC progression and upregulates PD-

L1 protein expression in CRC cell lines, thereby promoting immune

escape from the tumor (Gao et al., 2023). Furthermore, studies have

shown that the accumulation of tryptophan derivatives in the gut

promotes the formation of suitable targets for immune escape

(Puccetti et al., 2015). Simultaneously, the oncogenic bacteria in

the gut, or the metabolites they generate, stimulate the generation of

macrophages. The presence of LPS or HCD-induced macrophage

infiltration notably triggers the activation of the macrophage-

derived CCL5-p65/STAT3-CSN5-PD-L1 signaling pathway, which

plays a crucial role in facilitating immune evasion in CRC (Liu et al.,

2020). F. nucleatum can also lead to tumor subclones with PD-L1

mutations, nonsense-mediated RNA decay in PD-L1 K1fs, and

protein degradation in PD-L162 L1S, thereby promoting its

immune escape and tumor metastasis (Stein et al., 2021). It has

also been shown that metabolites associated with F. nucleatum can

affect up to 50% of dMMR/high microsatellite instability (MSI-H)

advanced cancer patients who progress after PD-1 blockade, leading

to a high probability of immune escape (Cohen et al., 2020). F.

nucleatum has the capacity to promote CRC immune escape by

influencing the depletion of human leukocyte antigen class I (HLA-

I) (Anderson et al., 2021). In addition, F. nucleatum can also help

colon cancer evade immune surveillance and immune elimination

by influencing Fas expression (O ’Connell et al., 2000).

Simultaneously, it can bolster the resistance of CRC to the

immune system through the upregulation of FasL expression

(Zhu et al., 2005). In summary, as mentioned in Figure 1 CRC

immune escape and distant metastasis can be caused by the joint

action of intestinal carcinogenic flora and their metabolites.
6 Microbiological therapy for CRC

The connection between CRC and the gut microbiota is strong.

While we still don’t fully understand how the microbiota impacts

the development and progression of CRC, there is increasing proof

that it plays a direct role in influencing signaling pathways, anti-

tumor immune responses, and cell growth (Montalban-Arques and

Scharl, 2019). It has been shown that the gut microbiota immune

system kills the bacterial flora through specific receptors (Toll-like

receptors) and related metabolites (Figure 2). Clostridium

nucleatum, Escherichia coli, and Mimicronium fragilis play a

crucial role in the development of CRC. Increasing dietary fiber,

including fructans and oligogalactans, has an inhibitory effect on

CRC, but it also affects the abundance of Bifidobacteria and

Lactobacillus, which increases fecal butyrate concentrations

(Rebersek, 2021). It has been reported that intestinal flora plays

an anti-cancer role in the efficacy of PD-L1 immune checkpoint

inhibitor blockade (Yu, 2018). F. nucleatum has been shown to

induce different immune responses in CRCs with varying

microsatellite instability (MSI) states. F. nucleatum could induce
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PD-L8 expression by activating STING signaling during PD-L1

blockade therapy and increase the interferon-gamma (IFN-g) CD1
tumor-infiltrating lymphocytes (TILs), which increases tumor

sensitivity to PD-L1 blockade (Gao et al., 2021). It has also been

reported that inhibition of F. nucleatum and reduction of its

abundance modulate the TLR-4-mediated pathway and MyD88-

induced cel lu lar autophagy, which may enhance the

chemotherapeutic effect of CRC (Mima et al., 2015; Yu et al.,
Frontiers in Cellular and Infection Microbiology 06
2017). Simultaneously, the restoration of the gut microbiota

composition can lead to the augmentation of regulatory T cell

populations within the colonic mucosa (Routy et al., 2018; Shi et al.,

2023). According to recent studies, the anticancer effects of

microbial therapies such as bacterial therapies are mainly

manifested in the form of bacterial-related biologics, including

toxins and peptides (Mueller et al., 2022). These compounds

produce regulatory cytokines, like TNF-a, which leads to the
FIGURE 1

Immune escape and metastasis of colorectal cancer.
FIGURE 2

Microbiological therapy for colorectal cancer.
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activation or blocking of NF-kB, and they also activate pro-

apoptotic proteins (Bcl-1, Bad, Bax, Bak), combine cytochrome C

with caspase-9 to form an apoptotic complex, and ultimately

promote CRC cells apoptosis. Apoptosis is a key target of cancer

therapy and is characterized by an imbalance between cell

proliferation and death, resulting in autophagy in CRC cells

(Mueller et al., 2022). Next, how the following related strains and

their metabolites combat CRC was explored (Figure 3). According

to some studies, timulation of the inflammatory vesicle pathway

triggered by bacteria can activate the immune system, and DppGpp
Salmonella typhimurium inhibits primary and even metastatic CRC

by secreting ATP, which causes activation of the NLRP3

inflammatory vesicle in macrophages (Mengesha et al., 2007;

Nguyen et al., 2010). It has also been shown that the anaerobic

strain of E. coli counteracts CRC cells by activating the production

of T-lymphocytes, thereby greatly contributing to the tumor-

protective activity of CD8+ and CD4+ T-cells (Azadi et al., 2021).

At the same time, anaerobic bacterial species can invade and grow

in solid tumors, allowing impaired circulation and necrosis of CRC

(Fox et al., 1996; Zhao et al., 2005; Agrawal et al., 2017; Kasper et al.,

2020). The antagonistic effect of related toxins on CRC was also

investigated. Based on relevant reports and experiments, it has been

shown that Clostridium perfringens enterotoxin (CPE) produced by
Frontiers in Cellular and Infection Microbiology 07
Clostridium perfringens can bind to Claudin-3 and -4 receptors on

the surface of CRC, leading to the breakdown of cellular osmotic

homeostasis and the lysis of cancer cells (Pahle et al., 2017; Sasaki

et al. , 2020). The subunit derived from Gram-positive

Corynebacterium diphtheriae can halt protein production by

ADP-ribosylating cytoplasmic elongation factor 2 (EF-2),

eventually resulting in the demise of CRC cells (Vallera et al.,

2002; Martarelli et al., 2009). The polycyclic peptide Nisin secreted

by Lactococcus lactis strains enables the formation of pores in the

membranes of Caco-2 and HT-29 CRC cells ultimately leading to

membrane depolarization and apoptosis in CRC cells (Ahmadi

et al., 2017). Cytotoxic effects of colistin on CRC cells include

membrane pore formation, reduced DNase and RNase activities,

and inhibition of murein synthesis (Kohoutova et al., 2020).

Microcin/Microcin E492 causes apoptosis by enabling pore

formation in CRC cell membranes and ultimately by binding to

Toll-like receptor 4 (Hetz et al., 2002; Lagos et al., 2009). Pediocin

has been observed to trigger apoptosis through a mechanism that

remains unidentified (Mueller et al., 2022). Proteins capable of

entering CRC cells and inducing cell cycle arrest and apoptosis by

aspyrins (Mueller et al., 2022). Phenazine, a nitrogen-containing

metabolite, is produced by various bacterial strains, with notable

secretion observed in numerous Pseudomonas aeruginosa strains.
FIGURE 3

Toxins and peptides related to microbiological therapy.
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This compound includes phenazine 1-carboxylic acid and

phenazine 1,6-dicarboxylic acid (PDC) (Wolf and Elsässer-Beile,

2009). Crucially, it induces G1 cell-cycle arrest, consequently

prompting apoptosis, while also negatively impacting CRC cell

viability and hampering DNA synthesis (Iglewski and Kabat,

1975; Wolf and Elsässer-Beile, 2009). Recall antigens delivered via

Listeria might serve as a viable option for cancer immunotherapy

beyond neoantigens (Selvanesan et al., 2022). Listeriolysin O (LLO),

a poisonous compound produced by the anaerobic microorganism

Listeria monocytogenes, possesses the ability to infiltrate the

cytoplasm of antigen-presenting cells and rupture the phagosome

membranes (Mueller et al., 2022).

Following that, non-ribosomal peptides are discussed, which

constitute an alternative group of peptides produced by bacteria,

fungi, and cyanobacteria. These peptides play a role in combatting

CRC. Lucentamycins, Arenamides, Ohmyungsamycins, Mixirins,

and Urukthapelstatin A possess the ability to engage with CRC cells,

either through direct interactions or indirect mechanisms (Sacks

et al., 2018). For instance, sarcosamides A and B have demonstrated

their potential in inhibiting the pro-inflammatory NF-kB signaling

pathway by effectively blocking TNF-induced activation, ultimately

leading to a reduction in inflammation (Byun et al., 2020).

Consequently, this decrease in inflammation hinders the

production of NO and PGE2, effectively opposing the activities of

CRC cells (Byun et al., 2020). Cyclic depsipeptides, specifically

Ohmyungsamycin A and B, display a discerning ability to impede

the proliferation of CRC cells (Um et al., 2013; Byun et al., 2020).

Mixirin, derived from Bacillus marinus, is a cyclic thiopeptide that

can exhibit cytotoxicity against the HCT-116 (human colon cancer

cell line) (Yamamoto et al., 2015). Urukthapelstatin A is a cyclic

sulfur peptide produced by Mechercharimyces asporophorigenens, a

marine microorganism affiliated with the Thermoactinobacteriaceae

family (Matsuo et al., 2007). This compound exerts inhibitory

effects on the proliferation of HCT-116 cell line through its

biological activity (Mueller et al., 2022).
7 Conclusion

Intestinal microorganisms constitute a rich ecosystem, with

more than 1000 species of bacteria belonging to 50 genera and 17

families. Their composition depends largely on environmental

conditions, and there are differences among individuals. With the

in-depth study of intestinal bacteria, we can find that intestinal

bacteria and their metabolites have many effects on CRC, such as

inflammatory transformation, malignant transformation of

intestinal polyps, tumor escape, treatment and so on. According

to relevant studies, it can be reported that apoptosis of CRC cells

can be induced by inhibiting the activity of glutamate

dehydrogenase, regulating the MAPK signaling pathway, PI3K/

AKT, and other related pathway mechanisms, which are crucial

for the development of CRC (Chang and Kang, 2023; Yang

et al., 2023).

In this paper, we reviewed that intestinal bacteria can

participate in adenoma-adenocarcinoma transformation through
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their metabolites and affect the DNA coding of intestinal cells. It is

believed that in the initial stage of CRC, “driver” bacteria are

dominant in the intestine, which leads to adenoma and even

malignant tumor with the increase of DNA damage and

chromosome instability in intestinal cells. In addition, intestinal

flora can directly induce tumor-associated immune cell infiltration

and promote the formation of tumor microenvironment. In some

familial hereditary adenomatous polyposis, specific intestinal

bacteria often play a role in promoting the carcinogenesis of

adenomas. No matter which kind of colon cancer patients, the

determination of intestinal flora and its metabolites has great

clinical significance, because it may early warn the occurrence of

colorectal cancer and adenoma, or improve the prognosis of

patients with CRC. Tailoring the regulation of gut microbiota on

an individual basis is poised to emerge as a focal point and

innovative strategy in the realm of preventing and supporting the

treatment of CRC.
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