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Discovering common
pathogenetic processes between
COVID-19 and tuberculosis by
bioinformatics and system
biology approach

Tengda Huang1†, Jinyi He1†, Xinyi Zhou1, Hongyuan Pan1,
Fang He2, Ao Du1, Bingxuan Yu1, Nan Jiang1, Xiaoquan Li1,
Kefei Yuan1* and Zhen Wang1*

1Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State
Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, 2Center of
Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
Introduction: The coronavirus disease 2019 (COVID-19) pandemic, stemming

from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has

persistently threatened the global health system. Meanwhile, tuberculosis (TB)

caused by Mycobacterium tuberculosis (M. tuberculosis) still continues to be

endemic in various regions of the world. There is a certain degree of similarity

between the clinical features of COVID-19 and TB, but the underlying common

pathogenetic processes between COVID-19 and TB are not well understood.

Methods: To elucidate the common pathogenetic processes between COVID-

19 and TB, we implemented bioinformatics and systematic research to obtain

shared pathways and molecular biomarkers. Here, the RNA-seq datasets

(GSE196822 and GSE126614) are used to extract shared differentially expressed

genes (DEGs) of COVID-19 and TB. The common DEGs were used to identify

common pathways, hub genes, transcriptional regulatory networks, and

potential drugs.

Results: A total of 96 common DEGs were selected for subsequent analyses.

Functional enrichment analyses showed that viral genome replication and

immune-related pathways collectively contributed to the development and

progression of TB and COVID-19. Based on the protein-protein interaction

(PPI) network analysis, we identified 10 hub genes, including IFI44L, ISG15,

MX1, IFI44, OASL, RSAD2, GBP1, OAS1, IFI6, and HERC5. Subsequently, the

transcription factor (TF)–gene interaction and microRNA (miRNA)–gene

coregulatory network identified 61 TFs and 29 miRNAs. Notably, we identified

10 potential drugs to treat TB and COVID-19, namely suloctidil, prenylamine,

acetohexamide, terfenadine, prochlorperazine, 3′-azido-3′-deoxythymidine,

chlorophyllin, etoposide, clioquinol, and propofol.
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Conclusion: This research provides novel strategies and valuable references for

the treatment of tuberculosis and COVID-19.
KEYWORDS

SARS-CoV-2, tuberculosis, differentially expressed genes, protein-protein interaction
(PPI), hub gene, drug molecule
Introduction

Coronavirus disease 2019 (COVID-19), resulting from severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an

atypical respiratory disease (Pollard et al., 2020). According to the

World Health Organization (WHO), as of January 2023, there have

been more than 659 million confirmed cases and over 6.6 million

deaths worldwide. The common symptoms of COVID-19 include

fever, dyspnea, dizziness, upper airway congestion, dry cough, and

sputum production (Jin et al., 2020). Additionally, vomiting,

headaches, dizziness, loss of taste and smell, and diarrhea have

also been reported (Shi et al., 2020; Spinato et al., 2020). The

primary mode of SARS-CoV-2 transmission is through respiratory

droplets released when an infected person sneezes or coughs,

potentially infecting individuals in close proximity (Umakanthan

et al., 2020). SARS-CoV-2 belongs to the b coronaviruses and is

composed of four structural proteins: spike (S), nucleocapsid (N),

membrane (M), and envelope (E) (Chan et al., 2020). The spike

protein plays a critical role in binding to host cell receptors and

facilitating the fusion of cellular and viral membranes. Angiotensin-

converting enzyme 2 (ACE2) is a pivotal receptor for SARS-CoV-

2’s invasion of host cells and is abundantly present in the bladder,

heart, lung, kidney, and ileum (Chen et al., 2020; Gheblawi et al.,

2020; Zou et al., 2020). Certain preexisting conditions substantially

elevate the risk of severe complications and mortality among

COVID-19 patients (Huang et al., 2023b; Huang et al., 2023a;

Song et al., 2023).

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.

tuberculosis), is a grave infectious disease that poses a significant

threat to global public health due to its high global mortality and

morbidity rates (Behr et al., 2021). TB can affect individuals of all

age groups and both sexes, with adult men constituting 56% of all

TB cases (Chakaya et al., 2021). TB is a severe infectious pulmonary

disorder, resulting in pulmonary consolidation, cavitary lesions, and

bronchial wall thickening (Deshpande et al., 2020). Furthermore,

COVID-19 patients with active pulmonary tuberculosis face a

higher risk of mortality due to compromised lung immunity in

comparison to patients without tuberculosis (Aggarwal et al., 2021).

Additionally, individuals with severe COVID-19 are at greater risk

of TB infection compared to those with milder cases (Gao et al.,

2021). These studies illustrate that there is a strong interaction and

association between TB and COVID-19.

As our understanding of these diseases has deepened, numerous

similarities between TB and COVID-19 have been discovered in terms
02
of pathogenesis, clinical symptoms, and sequelae. Within host cells,

both M. tuberculosis and SARS-CoV-2 can induce proinflammatory

cytokines, potentially leading to a cytokine storm if not properly

regulated, and they share similar mechanisms for evading the immune

system and host cell responses (Zhai et al., 2019; Ragab et al., 2020;

Callaway, 2021). Notably, M. tuberculosis infection boosts the

expression of ACE2, causing significantly severe multi-organ injury

(Ziegler et al., 2020). Bacillus Calmette–Guérin (BCG), a weakened live

vaccine againstM. tuberculosis, is helpful in decreasing the proportion

of incidence of SARS-CoV-2 IgG seroconversion and clinical

symptoms in COVID-19 patients (Benn et al., 2013; Rivas et al., 2021).

Exploring the transcriptional profiles of TB and COVID-19

may provide new insights into the common pathogenesis of the two

diseases. The TB datasets (GSE126614) and COVID-19 datasets

(GSE196822) were obtained from the Gene Expression Omnibus

(GEO) database. Then differentially expressed genes (DEGs) in TB

and COVID-19 were filtrated, and their shared DEGs were

identified to investigate their functions in these two diseases. In

addition, we utilized the common DEGs to establish a protein–

protein interaction (PPI) network chart and extracted the hub

genes, which are used for the recognition of engaged transcription

factors (TF), microRNAs (miRNA), and the prediction of potential

drugs. The sequential workflow of the analysis is presented

in Figure 1.
Methods

Data sources

To determine common pathogenetic processes among TB and

COVID-19, we used RNA-seq datasets from the GEO database of

the National Center for Biotechnology Information (NCBI, https://

www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2013). The GEO

accession number of the COVID-19 dataset was GSE196822,

which was transcriptional profiling of the peripheral blood of 34

patients with COVID-19 and nine healthy individuals. The

COVID-19 dataset was obtained through high-throughput

sequencing on the Illumina Hiseq 4000 platform (Homo sapiens)

for extracting RNA sequences (Huang et al., 2023a; Li et al., 2022).

For the TB dataset, we utilized the GEO accession ID of GSE126614

(Del Rosario et al., 2022), which contains the transcriptomic profiles

for peripheral blood mononuclear cells from 19 healthy controls

and 20 patients with active TB infection. The TB dataset was
frontiersin.org
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obtained through high-throughput sequencing on the Illumina

HiSeq 2000 system (Homo sapiens). Supplementary Tables S1, S2

show the baseline characteristics of samples in COVID-19 and TB.
Identification of DEGs and common DEGs
in COVID-19 and TB

A statistically significant difference between diverse test

circumstances at the transcriptional level is generally accepted as

the criterion for determining whether the genes are expressed

differently (Kvam et al., 2012). The DEGs were detected from the

expression read count values by the DEseq2 R package with a

Benjamini–Hochberg correction to control the false discovery rate

(FDR) (Love et al., 2014). The main role of the analysis is to acquire

DEGs for the GSE196822 and GSE126614 datasets. The genes that

comply with |log2 Fold Change| > 1 and FDR < 0.05 were viewed as

significantly DEGs. The mutual DEGs of GSE196822 and

GSE126614 were obtained by Jvenn (http://jvenn.toulouse.inra.fr/

app/example.html), an online Venn analysis program (Bardou

et al., 2014).
Gene ontology and pathway
enrichment analysis

Gene enrichment analysis is a considerable systematic effort

to illuminate and categorize shared biological knowledge

(Subramanian et al., 2005). EnrichR (https://maayanlab.cloud/

enrichr/) is a versatile web-based tool that was used to identify

gene ontology functional enrichment (biological processes (BP),

molecular function (MF), and cellular component (CC)) and

signaling pathway enrichment to clarify potential biological

mechanisms of common DEG (Kuleshov et al., 2016). Three

databases (Bioplanet, Kyoto Encyclopedia of Genes and

Genomes (KEGG), and WikiPathways) were used for pathway

enrichment analysis.
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PPI network analysis and hub
gene extraction

STRING (version 11.5), a protein interaction database, was utilized

to build the PPI network using common DEGs to describe the physical

and functional relationship between COVID-19 and TB (Szklarczyk

et al., 2019). The medium confidence score set in the analysis was 0.400

to conduct the PPI network. Cytoscape (version 3.9.1) was applied to

visualize and process the PPI network (Smoot et al., 2011).
Hub gene extraction

The PPI network covers edges, nodes, and their links. In this

network, the most prominent nodes are supposed to be hub genes.

Cytohubba (http://apps.cytoscape.org/apps/cytohubba), a remarkable

plug-in in Cytoscape, is used for analyzing nodes and the relationships

between them in the PPI network (Ma et al., 2021). Applying the

Maximal Clique Centrality (MCC) method of Cytohubba, we

confirmed the top 10 genes within the PPI network as the hub genes.
Gene-regulatory network analysis

Transcription factors are proteins that can specifically identify

the corresponding genes and control the transcription rate (Rustad

et al., 2014). The gene–TF interaction network was conducted by

NetworkAnalyst (http://www.networkanalyst.ca) (Zhou et al.,

2019). The topologically credible TFs within the network that

were inclined to bind to specific hub genes were from the

JASPAR database. JASPAR is an open-access database that

contains TF profiles from six taxonomic groups (Fornes et al.,

2020). Moreover, miRNAs targeting gene interaction were used to

identify miRNAs that have the potential to regulate the hub genes at

the post-transcriptional level. MiRTarBase is one of the most

known gene–miRNA interplay repositories (Huang et al., 2020).

From the miRNA–gene interaction via NetworkAnalyst, we
FIGURE 1

A schematic illustration of the overall general workflow of this study.
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retrieved the miRNAs that can interplay with hub genes

concentrated on topological analysis from the miRTarBase

database (v 8.0). In Cytoscape, the gene–TF and the gene–miRNA

interaction networks were visualized.
Identification of candidate drugs

The identification of drug molecules is one of the most crucial

parts of the research. Based on the hub genes of TB and COVID-19,

the drug molecule was discovered using the Drug Signatures

Database (DSigDB) via EnrichR. DSigDB is a data management

repository for recognizing the chemical compounds of the medicine

that correspond with the genes (Yoo et al., 2015). The drug function

of EnrichR provides easy access to the DSigDB database.
Results

Identification of DEGs and shared DEGs
between COVID-19 and TB

To investigate the common pathogenetic processes between

COVID-19 and TB, we filtrated the DEGs from transcriptional

datasets and identified the common DEGs that cause COVID-19

and TB. From the assessment of the COVID-19 dataset (GES196822),

there are 1,668 DEGs, including 839 upregulated DEGs and 829

downregulated DEGs (Supplementary Table S3). Similarly, based on

RNA-seq profiling of patients with TB (GSE126614), we identified

779 DEGs, where 470 DEGs were upregulated and 309 DEGs were

downregulated (Supplementary Table S4). The summarized

information on DEGs for COVID-19 and TB is listed in Table 1.

Moreover, there are 96 shared DEGs identified from the COVID-19

and TB datasets by the accomplishment of the cross-comparison

evaluation on Jvenn (Figure 2). These results reveal that the 96

common genes screened in this study mediated the regulation of

COVID-19 and TB, suggesting that there are some mechanismal

commonalities and common pathogenetic processes between

COVID-19 and TB.
Analyses of gene ontology and
pathway enrichment

To further understand the biological significance and the

common signaling pathways of the dataset, we used the common

DEGs to implement the GO enrichment approach and pathway

enrichment method through EnrichR. For gene ontology analysis, the
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top 10 terms related to the biological process, molecular function, and

cellular component categories are summarized in Table 2. The bar

graph in Figure 3 indicates the comprehensive ontological analysis for

each category. Notably, viral genome replication and immune-related

pathways are significantly enriched, including negative regulation of

viral process (GO:0048525), negative regulation of viral genome

replication (GO:0045071), regulation of viral genome replication

(GO:0045069), neutrophil activation involved in immune response

(GO:0002283), neutrophil-mediated immunity (GO:0002446),

defense response to viruses (GO:0051607), and innate immune

response (GO:0045087).

To find the most significant pathways of the mutual DEGs, three

global databases were utilized, including Bioplanet, KEGG, and

WikiPathways. The identified top 10 pathways in the three databases

are outlined in Table 3. Moreover, the pathway enrichment study is

described in the bar graph in Figure 4. The Bioplanet enrichment

analysis showed that the common DEGs are mainly involved in the

regulation of immune-related pathways, including interferon signaling,

interferon alpha/beta signaling, type II interferon signaling (interferon-

gamma), interferon-gamma signaling pathway, immune system,

antiviral mechanism by interferon-stimulated genes, and interleukin-

2 signaling pathway. Furthermore, the KEGG analysis showed the

shared DEGs may influence the progression of a variety of infectious

diseases, including coronavirus disease, influenza A, measles, hepatitis

C, and Epstein–Barr virus infection. Most important of all, the

WikiPathways analysis revealed mutual DEGs significantly enriched

in the immune response to tuberculosis (WP4197), type I interferon

induction and signaling during SARS-CoV-2 infection (WP4868), and

host–pathogen interaction of human coronaviruses—interferon

induction (WP4880). These results strongly suggest that these

mutual DEGs are involved in the occurrence and development of

these two infectious diseases through viral genome replication and

immune-related pathways.
Protein–protein interaction analysis and
hub gene extraction

To identify the interplay and adhesion routes of common

DEGs, we analyzed the PPI network constructed from STRING

and visualized it in Cytoscape. Figure 5 demonstrates the PPI

network of common DEGs, which consists of 176 edges and 49

nodes. As shown, the size and color depth of the circles indicated

the degree of intercorrelation of the proteins, and the most

prominent nodes are considered the hub genes. From the PPI

network analysis utilizing the Cytohubba plugin, 10 hub genes

were selected. Figure 6 shows the submodule network of hub-gene

connections that consists of 22 nodes and 142 edges. These hub
TABLE 1 Overview of the datasets in this analysis.

Disease
name

GEO
accession

GEO
platform

Total
DEG count

Upmodulated
DEG count

Downmodulated
DEG count

COVID-19 GES196822 GPL20301 1,668 839 829

TB GSE126614 GPL11154 779 470 309
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genes comprised IFI44L, ISG15, MX1, IFI44, OASL, RSAD2, GBP1,

OAS1, IFI6, and HERC5, which could be potential biomarkers for

common pathogenetic processes between COVID-19 and TB and

may accelerate the development of novel therapeutic strategies.
Determination of regulatory networks at
the transcriptional level

To investigate the transcriptional regulation of hub genes, a

network-based technique was utilized to decipher the regulatory

TFs and miRNAs. Figure 7 shows TF regulators interplay with the

hub genes, which have 61 nodes and 99 edges. Moreover, Figure 8
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depicts the interactions of miRNAs and hub genes, consisting of 29

nodes and 32 edges. From TF-gene and miRNA-gene interaction

networks, 61 TFs such as GATA2, FOXC1, USF2, MEF2A, STAT1,

SREBF1, POU2F2, and 29 miRNAs such as hsa-mir-26b-5p, hsa-

mir-15b-3p, hsa-mir-146a-3p, hsa-mir-34b-3p, hsa-mir-1248, hsa-

mir-4256, hsa-mir-3921, and hsa-mir-4653-5p, are discovered.
Identification of candidate drugs

The protein–drug interaction analyses may be useful in drug

discovery (Al-Mustanjid et al., 2020). Protein–drug interaction is

vital to understanding the function of proteins and discovering
FIGURE 2

The study incorporates TB (GSE126614) and COVID-19 (GSE196822). The Venn diagram revealed 96 common DEGs for TB and COVID-19.
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TABLE 2 Ontological analysis of common DEGs between TB and COVID-19.

Category GO ID Term p-
value

Genes

GO
biological
process

GO:0048525 Negative regulation of the
viral process

2.96E
−14

IFITM3; PARP10; PLSCR1; RSAD2; OAS1; MX1; EIF2AK2; ISG15; PML; OASL; LTF

GO:0045071 Negative regulation of viral
genome replication

8.07E
−14

IFITM3; PARP10; PLSCR1; RSAD2; OAS1; MX1; EIF2AK2; ISG15; OASL; LTF

GO:0140546 Defense response to symbiont 7.55E
−13

IFITM3; ZBP1; PLSCR1; RSAD2; OAS1; MX1; IFI6; EIF2AK2; ISG15; RNASE2;
IFI44L; OASL

GO:0045069 Regulation of viral
genome replication

7.94E
−13

IFITM3; PARP10; PLSCR1; RSAD2; OAS1; MX1; EIF2AK2; ISG15; OASL; LTF

GO:0043312 Neutrophil degranulation 1.25E
−12

TNFAIP6; ANXA3; CRISP3; RNASE3; RETN; OLFM4; MMP8; RNASE2; VNN1; LCN2;
OLR1; BPI; S100P; GYG1; CAMP; HSPA1B; CD177; LTF; SIGLEC5

GO:0002283 Neutrophil activation is involved
in the immune response

1.44E
−12

TNFAIP6; ANXA3; CRISP3; RNASE3; RETN; OLFM4; MMP8; RNASE2; VNN1; LCN2;
OLR1; BPI; S100P; GYG1; CAMP; HSPA1B; CD177; LTF; SIGLEC5

GO:0002446 Neutrophil-mediated immunity 1.60E
−12

TNFAIP6; ANXA3; CRISP3; RNASE3; RETN; OLFM4; MMP8; RNASE2; VNN1; LCN2;
OLR1; BPI; S100P; GYG1; CAMP; HSPA1B; CD177; LTF; SIGLEC5

GO:0051607 Defense response to virus 1.75E
−12

IFITM3; ZBP1; PLSCR1; RSAD2; OAS1; MX1; IFI6; EIF2AK2; ISG15; RNASE2;
IFI44L; OASL

GO:0045087 Innate immune response 1.49E
−11

IFITM3; CRISP3; MX1; IFI6; ISG15; RNASE3; RNASE2; PML; VNN1; OAS1; LCN2;
BPI; APOL1; CAMP; LTF

GO:0071357 Cellular response to type
I interferon

8.44E
−10

IFITM3; RSAD2; OAS1; MX1; IFI6; ISG15; IFI35; OASL

GO
cellular
component

GO:0042581 Specific granule 2.98E
−10

ANXA3; CRISP3; LCN2; OLR1; BPI; RETN; OLFM4; MMP8; CAMP; CD177; LTF

GO:0035580 Specific granule lumen 5.72E
−10

CRISP3; LCN2; BPI; RETN; MMP8; OLFM4; CAMP; LTF

GO:0034774 Secretory granule lumen 3.72E
−09

CRISP3; RNASE3; RETN; OLFM4; MMP8; RNASE2; LCN2; SERPING1; BPI; S100P;
GYG1; CAMP; LTF

GO:0070820 Tertiary granule 9.47E
−08

TNFAIP6; CRISP3; OLR1; OLFM4; MMP8; CAMP; CD177; LTF; SIGLEC5

GO:1904724 Tertiary granule lumen 2.50E
−07

TNFAIP6; CRISP3; MMP8; OLFM4; CAMP; LTF

GO:0042582 Azurophil granule 1.03E
−04

VNN1; BPI; RNASE3; RETN; OLFM4; RNASE2

GO:0035578 Azurophil granule lumen 9.29E
−04

BPI; RNASE3; RETN; RNASE2

GO:0005775 Vacuolar lumen 1.08E
−03

BPI; RNASE3; RETN; RNASE2; GYG1

GO:0034364 High-density lipoprotein particle 3.70E
−03

CETP; APOL1

GO:0070821 Tertiary granule membrane 5.23E
−03

OLR1; CD177; SIGLEC5

GO
molecular
function

GO:0003725 Double-stranded RNA binding 4.21E
−04

ZBP1; OAS1; EIF2AK2; OASL

GO:0046914 Transition metal ion binding 1.36E
−03

RPH3A; MT2A; PLSCR1; LCN2; TIMM10; MMP8; GYG1; LTF

GO:0004518 Nuclease activity 3.01E
−03

PLSCR1; RNASE3; RNASE2

GO:0070566 Adenylyltransferase activity 4.95E
−03

OAS1; OASL

(Continued)
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TABLE 2 Continued

Category GO ID Term p-
value

Genes

GO:0017111 Nucleoside-
triphosphatase activity

1.10E
−02

GBP6; MX1; RHOH; GBP1; HSPA1B

GO:0003924 GTPase activity 2.03E
−02

GBP6; MX1; RHOH; GBP1

GO:0008270 Zinc ion binding 2.30E
−02

RPH3A; MT2A; PLSCR1; TIMM10; MMP8

GO:0030283 Testosterone dehydrogenase
[NAD(P)] activity

2.38E
−02

DHRS9

GO:0048406 Nerve growth factor binding 2.38E
−02

SORT1

GO:0031721 Hemoglobin alpha binding 2.38E
−02

HBD
F
rontiers in Cellu
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A

FIGURE 3

The bar chart of the GO assessment of the shared DEGs between TB and COVID-19. (A) Biological processes, (B) Cellular components, and
(C) Molecular function.
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advancing drugs. Ten possible drug molecules were predicted using

EnrichR based on transcriptome characteristics from the DSigDB

database, including suloctidil, prenylamine, acetohexamide,

terfenadine, prochlorperazine, 3′-azido-3′-deoxythymidine,

chlorophyllin, etoposide, clioquinol, and propofol. The 10

potential medications are extracted in accordance with their p-

value. Table 4 depicts the potential drugs in the DSigDB database

for hub genes. These potential drugs are recommended for the hub

genes, a common compound used to treat two diseases.
Discussion

Due to the high incidence and mortality of TB and COVID-19,

the main target organ of both is the lung. More importantly, some

research recently indicated that there is a strong association
TABLE 3 Pathway enrichment analysis of common DEGs between TB
and COVID-19.

Category Pathways p-
value

Genes

Bioplanet Interferon signaling 1.43E
−12

IFITM3; GBP6; MX1; IFI6;
EIF2AK2; ISG15; IFI35;
PML; OASL; HERC5;
MT2A; OAS1; GBP1

Immune system
signaling by
interferons,
interleukins,
prolactin, and
growth hormones

8.61E
−10

IFITM3; GBP6; MX1; IFI6;
EIF2AK2; ISG15; IFI35;
PML; OASL; HERC5;
MT2A; OAS1; GBP1

Interferon alpha/
beta signaling

2.34E
−08

IFITM3; OAS1; MX1; IFI6;
ISG15; IFI35; OASL

Type II interferon
signaling
(interferon-gamma)

4.10E
−06

OAS1; IFI6; EIF2AK2;
ISG15; GBP1

Interferon-gamma
signaling pathway

7.26E
−06

GBP6; MT2A; OAS1;
GBP1; PML; OASL

Immune system 2.02E
−05

IFITM3; ZBP1; GBP6;
MX1 IFI6; EIF2AK2;
ISG15; IFI35; PML; OASL;
HERC5; MT2A; OAS1;
FBXO6; TLR5; GBP1

Antiviral
mechanism by
interferon-
stimulated genes

3.59E
−04

HERC5; MX1;
EIF2AK2; ISG15

Oncostatin M 3.87E
−03

MT2A; OAS1; ANXA3;
LCN2; S100P; CAMP

Interleukin-2
signaling pathway

7.43E
−03

IFITM3; MT2A;
SMARCD3; IL24; MX1;
TBC1D8; IFI44; GBP1;
IL18R1; LY6E

KEGG Influenza A 1.44E
−03

RSAD2; OAS1; MX1;
EIF2AK2; PML

Measles 4.53E
−03

OAS1; MX1;
EIF2AK2; HSPA1B

Hepatitis C 6.94E
−03

RSAD2; OAS1;
MX1; EIF2AK2

Cholesterol
metabolism

2.41E
−02

CETP; SORT1

Coronavirus disease 2.56E
−02

OAS1; MX1;
EIF2AK2; ISG15

Legionellosis 3.07E
−02

TLR5; HSPA1B

Inflammatory
bowel disease

3.90E
−02

TLR5; IL18R1

Protein processing
in the
endoplasmic
reticulum

4.93E
−02

EIF2AK2;
FBXO6; HSPA1B

NOD-like receptor
signaling pathway

5.66E
−02

OAS1; GBP1; CAMP

(Continued)
TABLE 3 Continued

Category Pathways p-
value

Genes

Epstein–Barr
virus infection

7.34E
−02

OAS1; EIF2AK2; ISG15

WikiPathways Type II interferon
signaling
(IFNG) WP619

8.85E
−07

OAS1; IFI6; EIF2AK2;
ISG15; GBP1

Immune response
to
tuberculosis
WP4197

1.77E
−04

OAS1; MX1; IFI35

Nongenomic
actions of 1,25-
dihydroxyvitamin
D3 WP4341

3.79E
−04

RSAD2; ISG15;
IFI44L; CAMP

Type I interferon
induction and
signaling during
SARS-CoV-2
infection WP4868

9.68E
−03

OAS1; EIF2AK2

Host–pathogen
interaction of
human
coronaviruses-
interferon
induction WP4880

1.09E
−02

OAS1; EIF2AK2

Neural crest cell
migration in
cancer WP4565

1.81E
−02

SORT1; MMP8

Male
infertility WP4673

3.33E
−02

EPSTI1; BRCA2; LTF

p53 transcriptional
gene
network WP4963

4.12E
−02

ISG15; PML

IL-18 signaling
pathway WP4754

4.21E
−02

CETP; NRN1;
MMP8; IL18R1

Composition of
lipid
particles WP3601

4.24E
−02

CETP
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between the onset and exacerbation of TB and COVID-19, and

likewise, TB is a risk factor for COVID-19 (Fonseca et al., 2021; Gao

et al., 2021; Visca et al., 2021). Therefore, it is crucial to explore the

common pathogenesis, interaction, and connection between TB and

COVID-19.

The enrichment analysis of gene ontology and pathways can

help us understand the function and regulation mechanisms of

genes in different physiological states. In this study, first of all, 96

common DEGs were identified through the differential analysis of

gene expression abundance in transcriptional profiles and the

analysis of Venn diagrams, which indicated that there is a certain

degree of correlation and similarity between tuberculosis and

COVID-19 in their pathogenesis. Subsequently, the functional

enrichment analysis of common DEGs was carried out. The

results of enrichment analysis showed that these common DEGs

were mainly involved in viral genome replication and immune-

related pathways. In coronaviruses, the viral genome replication
Frontiers in Cellular and Infection Microbiology 09
that evades the immunity system may contribute to the viral process

(Perlman and Netland, 2009). The negative regulation of viral

genome replication is closely tied to the interferon response

pathway, and interferon-g (IFN-g) is a genome replication

negative regulator of SARS-COV-2 (Bhat et al., 2018; Trugilho

et al., 2022). SARS-CoV-2 may trigger aggressive proinflammatory

reactions in infected cells, including IL-2, IL1-b, IL-4, IL-6, IL-10,
IFN-g, and tumor necrosis factor-a (TNF-a) (Guan et al., 2020).

Furthermore, T-cell depletion caused byM. tuberculosis affects host

immunity, which increases the body’s susceptibility to airborne

pathogens, making the host more susceptible to COVID-19

infection (Rahman et al., 2009; Tadolini et al., 2020; Mousquer

et al., 2021). In addition, elevated levels of the proinflammatory

cytokines IL-6 and TNF-a in COVID-19 patients cause damage to

the lymphatic system, resulting in immunosuppression, which

contributes to the progression of TB (Tan et al., 2020; Hildebrand

et al., 2022).
B

C

A

FIGURE 4

The bar graphs of the pathway enrichment of the shared DEGs between TB and COVID-19. (A) Bioplanet, (B) KEGG, and (C) WikiPathways.
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FIGURE 5

PPI network of the mutual DEGs between COVID-19 and TB. The nodes and the edges of the figure represent DEGs and the interactions between
the nodes, respectively. The PPI network contains 176 edges and 49 nodes.
FIGURE 6

The PPI network from all the shared DEGs is constructed by the Cytohubba plugin in Cytosacpe. Red nodes present the selected top 10 hub genes.
The network has 22 nodes and 142 edges.
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The shared DEGs are utilized to construct the PPI network, in

which the hub gene is the most significant regulator in the common

pathogenetic processes of TB and COVID-19. IFI44L is a potential

target for reducing viral replication (Dediego et al., 2019). IFI44L

promotes positive regulation and eliminates M. tuberculosis from

human macrophages, highlighting its potential as a therapeutic target

against M. tuberculosis infection (Jiang et al., 2021; Deng et al., 2023).

IFI44 and IFI44L are antiproliferative factors that independently limit

respiratory syncytial virus (RSV) infection (Busse et al., 2020). The

expression levels of IFI44L and antiviral genes exhibit alterations

during SARS-CoV-2 infection in various human cells, such as liver,

respiratory epithelial, and stomach cells (Geerling et al., 2022). IFI44 is

situated on human chromosome 1p31.1 and is part of the interferon-

stimulated gene (ISG) family, which has a crucial function in regulating

immunity and recognizing tumor cells (Lukhele et al., 2019; Boutin

et al., 2021; Li et al., 2021a; Li et al., 2021b). IFI44 negatively regulates

the IFN signaling pathway, promotes viral replication and bacterial

proliferation, and is a crucial molecular target for immune evasion by

SARS-CoV-2 (Zheng et al., 2022). Although ISG15 antiviral does not

directly hinder the viral life cycle, it restricts viral transmission by
Frontiers in Cellular and Infection Microbiology 11
joining the host response to modify the immune-metabolic network

and restrain the availability of resources for viral amplification (Raso

et al., 2020; Gold et al., 2022; Munnur et al., 2022). ISG15 can

collaborate with IL-12 to stimulate T and NK cells to produce IFN-g,
which regulates Mycobacterium tuberculosis infection through an

extracellular cytokine-like pathway (Bogunovic et al., 2012; Kimmey

et al., 2017). Mx1 has noteworthy antiviral effects on hematopoietic

cells, alongside its recognized antiviral activity on nonhematopoietic

cells (Spitaels et al., 2019; Gough et al., 2022). OASL induces amyloid

fibrillation in RIPK3, promoting virus-induced necrosis (Lee et al.,

2023). OASL is strongly induced upon viral infection to enhance the

antiviral IFN response (Leisching et al., 2017; Ghosh et al., 2019). The

association between OASL and TB infection has also been validated,

and OASL plays a central role in COVID-19 immunopathogenesis

(Zhang et al., 2019; Hasankhani et al., 2021; Yi et al., 2021). RSAD2 is

the direct suppressor of viral replication and facilitates TLR9- and

TLR7-mediated production of IFN-a (Mantovani et al., 2022). The

adaptive behavior of NK cells during viral infection is facilitated

through STAT1-mediated epigenetic control of RSAD2 (Wiedemann

et al., 2020). GBP1 was found to be one of the potential biomarkers of
FIGURE 7

DEG-TF interaction network created by the NetworkAnalyst. The orange nodes represent gene symbols interacting with TFs, while the herringbone
nodes represent TFs.
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active TB, and its expression was negatively correlated with lymphocyte

activity but positively correlated with myeloid and inflammatory cell

activity (Perumal et al., 2020; Chen et al., 2022). In severe conditions of

COVID-19, there is a high abundance of CXCL10+ and CCL2+

inflammatory macrophages that heavily express the GBP1

inflammatory gene (Zhang et al., 2020). OAS1 acts as a negative

regulator of the expression of chemokines and interferon-responsive

genes in human macrophages (Lee et al., 2019). Reduced OAS1

expression due to a common haplotype is proven to be related to the

severity of COVID-19 (Banday et al., 2022). Genetically regulated loss

of OAS1 expression contributes to impaired spontaneous clearance of

SARS-CoV-2 and an increased risk of hospitalization for COVID-19

(Banday et al., 2021; Huffman et al., 2022). Compared to normal

tissues, IFI6 is markedly upregulated in white blood cells fromCOVID-

19 patients and nasopharyngeal tissues infected with SARS-COV-2 and

is associated with antiviral immune modulation and clinical

progression (Dong et al., 2022; Sun et al., 2023; Villamayor et al.,

2023). The antiviral activity displayed by HERC5 makes them

promising drug targets for the development of novel antiviral

therapeutics that can augment the host antiviral response (Jacquet

et al., 2020; Mathieu et al., 2021).

TFs and miRNAs that act as upstream regulators of these hub

genes have also been discovered to better understand the

pathological basis of these disease states. Transcription factor
Frontiers in Cellular and Infection Microbiology 12
GATA2 is associated with hematopoietic dysfunction in severe

COVID-19 patients (Wang et al., 2021). Downregulation of

GATA2, involved in lymphocyte commitment, is also found in

TB (Li et al., 2023). The phosphorylation of STAT1 was reportedly

strengthened in severe COVID-19 cases that failed to induce

transcription of interferon-stimulated response elements (ISRE)

by unbalanced JAK/STAT signaling (Rincon-Arevalo et al., 2022).

MiR-26b-5p targeted cyclooxygenase 2 (COX2), leading to a

decrease in its expression. Consequently, there were considerable

reductions in the levels of proinflammatory mediators such as

prostaglandin E2 (PGE2), TNF-a, and IL-6 in retinal artery and

human dermal microvascular endothelial cells (HMEC-1). This

resulted in an effective inhibition of inflammation (Jiang et al.,

2020). MiR-26b-5p was predicted to be regulated by spike, ACE,

and histone deacetylation (HDAC) pathways in COVID-19

(Teodori et al., 2020). Although many previous studies have

suggested that these TFs and miRNAs may have potential

therapeutic effects, these analytical results require further

experiments to confirm their effectiveness and authenticity.

Drugs tending to regulate the hub genes were identified from the

DSigDB database. The hub genes, which act as regulators of the

common pathogenic processes of both diseases and can lead to

the simultaneous administration of antiviral and anti-TB drugs,

have the potential to provide significant clinical benefit to this
FIGURE 8

The regulatory interaction network of DEG-miRNAs. MiRNAs are presented by the square node, and gene symbols interacting with miRNAs are in an
oval shape.
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TABLE 4 Potential drugs for COVID-19 and TB.

Name p-value Chemical formula Structure

Suloctidil HL60 UP 2.19E−22 C20H35NOS

prenylamine HL60 UP 3.45E−21 C24H27N

Acetohexamide PC3 UP 1.15E−19 C15H20N2O4S

Terfenadine HL60 UP 1.17E−13 C32H41NO2

Prochlorperazine MCF7 UP 4.28E−11 C20H24ClN3S

3′-Azido-3′-deoxythymidine CTD 00007047 8.64E−11 C10H13N5O4

Chlorophyllin CTD 00000324 8.57E−10 C34H34MgN4O6

Etoposide HL60 UP 4.90E−09 C29H32O13

Clioquinol PC3 UP 6.60E−09 C9H5ClINO

Propofol MCF7 UP 9.84E−09 C12H18O
F
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patient population. Some of the drugs identified in this study are

proposed by different authors as therapeutics for the treatment of

COVID-19 or TB, for example, (1) suloctidil is found to be one of the

candidate drugs between COVID-19 and idiopathic pulmonary

fibrosis (Chen et al., 2022); (2) acetohexamide is a nucleotide-

binding domain (NBD)-binding drug that can be used against

COVID-19 by preventing replication and viral attachment to the

cell surface binding immunoglobin protein (csBiP) (Zhang et al.,

2021); (3) The use of prochlorperazine has been shown to decrease

the replication ability of SARS-CoV-2, which is linked to the ACE2

receptor. Also, prochlorperazine is found significant inhibition in

lung pathology and lung viral load of SARS-CoV-2-challenged

hamsters. Prochlorperazine can bind to G-quadruplexes (G4s), a

secondary structure in nucleic acids that is known to impact

numerous cellular processes, including viral replication and

transcription. This binding can impede SARS-CoV-2 reverse

transcription and ultimately reduce the lung viral load (Roy et al.,

2023). (4) The application of chlorophyllin and molnupiravir as a

specific antiviral drug for SARS-CoV-2 can diminish the detrimental

genetic alterations and host cell harm caused by molnupiravir while

enhancing the therapeutic effectiveness (Clark et al., 2022).

While the genes we have identified offer fresh perspectives on

the creation of potential therapeutic targets for COVID-19 and TB,

the validation of these gene targets and drugs requires continued

investigation through experimental studies like cellular and animal

models. Also, information and methodological biases preclude the

full reproduction of potential genetic links using computational

biology techniques. Additionally, translating experimental results

into clinical applications remains a significant challenge. These are

the main limitations of our current study and the focus of our

future research.
Conclusion

To help get insights into the common pathogenetic processes

between the SARS-CoV2 infection and TB, we utilized transcriptomic

data analysis to determine the shared pathways and biomarkers in TB

and COVID-19. There are 96 common DEGs of TB and COVID-19

identified by bioinformatics tools. GO terms and signaling pathway

enrichment analysis revealed that 96 common DEGs were mainly

involved in the regulation of viral genome replication and immune-

related pathways. Moreover, through the PPI analysis of DEGs, the

top 10 hub genes were extracted, including IFI44L, ISG15, MX1,

IFI44, OASL, RSAD2, GBP1, OAS1, IFI6, and HERC5, which may be

a therapeutic target for COVID-19 and help to find drug molecules

and drug-target interactions. Also, gene–TF and gene–miRNA

association were examined to gain a deeper understanding of

COVID-19 progression. In addition, several potential drugs were

listed for COVID-19 patients with TB treatment, including suloctidil,

prenylamine, acetohexamide, terfenadine, prochlorperazine, 3′-
azido-3′-deoxythymidine, chlorophyllin, etoposide, clioquinol, and

propofol. We hope these findings may provide key perspectives for

developing novel and effective medications to combat COVID-19

and TB.
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Alffenaar, J. W., et al. (2020). Active tuberculosis, sequelae and COVID-19 co-
infection: first cohort of 49 cases. Eur. Respir. J. 56 (1), 2001398. doi: 10.1183/
13993003.01398-2020

Tan, L., Wang, Q., Zhang, D., Ding, J., Huang, Q., Tang, Y. Q., et al. (2020).
Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive
study. Signal Transduct Target Ther. 5 (1), 33. doi: 10.1038/s41392-020-0148-4

Teodori, L., Sestili, P., Madiai, V., Coppari, S., Fraternale, D., Rocchi, M. B.L., et al.
(2020). MicroRNAs bioinformatics analyses identifying HDAC pathway as a putative
target for existing anti-COVID-19 therapeutics. Front. Pharmacol. 11, 582003. doi:
10.3389/fphar.2020.582003

Trugilho, M. R. O., Azevedo-Quintanilha, I. G., Gesto, J. S. M., Moraes, E. C. S.,
Mandacaru, S. C., Campos, M. M., et al. (2022). Platelet proteome reveals features of
cell death, antiviral response and viral replication in covid-19. Cell Death Discovery 8
(1), 324. doi: 10.1038/s41420-022-01122-1
frontiersin.org

https://doi.org/10.3389/fmolb.2023.1274463
https://doi.org/10.1093/nar/gkz896
https://doi.org/10.1002/mef2.42
https://doi.org/10.1097/MD.0000000000034570
https://doi.org/10.1038/s41588-021-00996-8
https://doi.org/10.3389/fimmu.2020.605270
https://doi.org/10.1042/BSR20201981
https://doi.org/10.1155/2021/5599408
https://doi.org/10.3390/v12040372
https://doi.org/10.1016/j.micinf.2016.12.006
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.3732/ajb.1100340
https://doi.org/10.1038/s41556-022-01039-y
https://doi.org/10.5483/BMBRep.2019.52.2.129
https://doi.org/10.3389/fcimb.2017.00196
https://doi.org/10.1186/s12964-022-01010-2
https://doi.org/10.3389/fcimb.2023.1079774
https://doi.org/10.1186/s41065-021-00183-z
https://doi.org/10.1002/2211-5463.13030
https://doi.org/10.1002/2211-5463.13030
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1016/j.smim.2019.05.001
https://doi.org/10.1038/s41598-020-79235-9
https://doi.org/10.1038/s41435-021-00157-1
https://doi.org/10.3390/v13061102
https://doi.org/10.1016/j.tube.2020.102020
https://doi.org/10.1042/BST20220839
https://doi.org/10.1038/nrmicro2147
https://doi.org/10.3389/fimmu.2020.612564
https://doi.org/10.1152/physiolgenomics.00089.2020
https://doi.org/10.3389/fimmu.2020.01446
https://doi.org/10.2353/ajpath.2009.080941
https://doi.org/10.1083/jcb.202002175
https://doi.org/10.1002/eji.202149575
https://doi.org/10.1172/JCI145157
https://doi.org/10.3389/fmolb.2023.1133123
https://doi.org/10.1186/s13059-014-0502-3
https://doi.org/10.1016/S1473-3099(20)30086-4
https://doi.org/10.1093/bioinformatics/btq675
https://doi.org/10.3389/fmed.2023.1169562
https://doi.org/10.1001/jama.2020.6771
https://doi.org/10.1128/JVI.00193-19
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.3389/fimmu.2023.1098688
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1183/13993003.01398-2020
https://doi.org/10.1183/13993003.01398-2020
https://doi.org/10.1038/s41392-020-0148-4
https://doi.org/10.3389/fphar.2020.582003
https://doi.org/10.1038/s41420-022-01122-1
https://doi.org/10.3389/fcimb.2023.1280223
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Huang et al. 10.3389/fcimb.2023.1280223
Umakanthan, S., Sahu, P., Ranade, A. V., Bukelo, M. M., Rao, J. S., Abrahao-
Machado, L. F., et al. (2020). Origin, transmission, diagnosis and management of
coronavirus disease 2019 (COVID-19). Postgraduate Med. J. 96 (1142), 753–758.
doi: 10.1136/postgradmedj-2020-138234
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