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The identification of the first human polyomavirus BK (BKV) has been over half

century, The previous epidemiological and phylogenetic studies suggest that

BKV prevailed and co-evolved with humans, leading to high seroprevalence all

over the world. In general, BKV stays latent and symptomless reactivation in

healthy individuals. BKV has been mainly interlinked with BKV-associated

nephropathy (BKVAN) in kidney-transplant recipients and hemorrhagic cystitis

(HC) in hematopoietic stem cell transplant recipients (HSCTRs). However, the

mechanisms underlying BKV latency and reactivation are not fully understood

and lack of extensive debate. As Merkel cell polyomavirus (MCV) was identified as

a pathogenic agent of malignant cutaneous cancer Merkel cell carcinoma (MCC)

since 2008, linking BKV to tumorigenesis of urologic tumors raised concerns in

the scientific community. In this review, we mainly focus on advances of

mechanisms of BKV latency and reactivation, and BKV-associated diseases or

tumorigenesis with systematical review of formerly published papers following

the PRISMA guidelines. The potential tumorigenesis of BKV in two major types of

cancers, head and neck cancer and urologic cancer, was systematically updated

and discussed in depth. Besides, BKV may also play an infectious role

contributing to HIV-associated salivary gland disease (HIVSGD) presentation.

As more evidence indicates the key role of BKV in potential tumorigenesis, it is

important to pay more attention on its etiology and pathogenicity in vitro and

in vivo.
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1 Introduction

BK polyomavirus (BKV), the first human polyomavirus isolated

from an immunosuppressed kidney transplant recipient in 1971, is

a member of the Polyomaviridae family of double-stranded DNA

(dsDNA) viruses. “BK” is named after the initials of this patient

(Gardner et al., 1971). In the same year, JC polyomavirus (JCV) was

identified from specimens of brain pathology of a patient diagnosed

of progressive multifocal leukoencephalopathy (PML) (Padgett

et al., 1971). Identification of the first two viruses accelerated

understanding of the pathogenicity of human polyomaviruses.

For more than three decades, the BKV and JCV were the only

well-known polyomaviruses associated with clinical diseases in

specific groups of people. With the technological progress of

modern molecular methods and next-generation sequencing

technique, 13 polyomaviruses were included in the list of human

polyomaviruses during the past 20 years (Prezioso et al., 2021)

(Zhou et al., 2019). The previous epidemiological and phylogenetic

studies suggest that BKV prevailed and co-evolved with humans,

leading to its high seroprevalence all over the world (Viscidi et al.,

2011; Gaboriaud et al., 2018; Zhou et al., 2019; Zhou et al., 2020).

Based on genome sequence diversity, BKV has be divided into six

genotypes, in which genotype I is considered as the most frequent

worldwide (~80%), followed by genotype IV (15%) (Kotla et al.,

2021). BKV is ubiquitous around the globe, with up to 90% of adults

being seropositive, and the transmission routes of BKV were

speculated through direct contact or fecal-oral transmission

during childhood (Krajewski et al., 2020; Furmaga et al., 2021).

In general, BKV infection is self-limited and then remains latent

in the urinary tissue for life time among immunocompetent

individuals (Furmaga et al., 2021). Nevertheless, in some

immunocompromised patients, BKV can reactivate with high

level of viral replication. Most commonly, BKV reactivation leads

to BKV-associated nephropathy (BKVAN) in some kidney

transplant recipients (KTRs). And in some allogeneic

hematopoietic stem cell transplant recipients (HSCTRs), the

consequences of viral reactivation may be hemorrhagic cystitis

(HC) (Krajewski et al., 2020; Laskin et al., 2020). However, the

molecular mechanisms of BKV latency and pathogenicity after

reactivation are not comprehensively discussed. In addition, BKV

was also considered as a potential factor or co-factor of

tumorigenesis (Burger-Calderon and Webster-Cyriaque, 2015)

(Saber Amoli et al., 2021). And accumulated evidence links BKV

to urinary tumors such as prostate and bladder cancer (Mischitelli

et al., 2015; Vaezjalali et al., 2018; Villani et al., 2019). In addition,

BKV was also linked to HIV-associated salivary gland disease

(HIVSGD) in HIV-infected individuals, and HIVSGD is

associated with increased lymphoma incidence (Burger-Calderon

et al., 2016).

This review will focus on BKV latency, reactivation and the

associated diseases, especially concentrate studies on organ-

transplant recipients (OTRs), among whom viral reactivation

might cause fatal damage. Moreover, the latest studies on the

relationship between BKV and different types of cancers will be

addressed and discussed.
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2 BKV epidemiology

In general, primary BKV infection occurs during childhood, as

studies have shown that 60%-70% of children were seropositive of

anti-BKV IgG by the age of 10 (Krajewski et al., 2020; Furmaga

et al., 2021). BKV infection is considered to be transmitted through

direct human-to-human contact or fecal-oral route, and respiratory

route was also speculated to contribute to the high seroprevalence

(Furmaga et al., 2021). As most BKV infections are asymptomatic

and self-limited, it is not possible to confirm these transmission

routes. Serological studies support that primary exposure to BKV

occurs during early childhood, and then stay latent in most adult

(Viscidi et al., 2011; Prelog et al., 2013; Sroller et al., 2014). The anti-

BKV seroprevalence is low in children at their first 6 months with

the gradual weakening of protection from maternal antibodies and

reaches to 80%-90% among adults worldwide (Viscidi et al., 2011).

In the past decades, as the establishment of virus-like particle-based

ELISA and multiplex immunoassays, plus new members of human

PyVs were constantly identified, more attention was paid to human

PyVs and seroprevalence investigations on these viruses were

conducted in many countries (Supplementary Table 1) (Stolt

et al., 2003; Kean et al., 2009; Nicol et al., 2013; Prelog et al.,

2013; Sroller et al., 2014; Zhang et al., 2014; Fukumoto et al., 2015;

Laskin et al., 2015; Gaboriaud et al., 2018; Kamminga et al., 2018;

Laine et al., 2023). Overall, most sero-epidemiology studies were

conducted in developed countries in which BKV, and JCV were the

most concerned pathogens. Whereas limited seroprevalence data

was from low-income countries, indicating PyV-associated diseases

were relatively neglected in the developing world.
3 Mechanisms of BKV latency

In general, BKV, after primary infection, sustains a persistent

latent stage in epithelial cells of renal tubules or urothelium for life

time under normal conditions (McCaffrey et al., 2021). BKV entry

into host cells is mediated via caveolae, entry into the cell is then

driven by a caveola-mediated endocytic pathway (Eash et al., 2004).

After entering the nucleus, the BKV genome remains episomal in

human cells (Gorrill et al., 2006). In recent years, latency

mechanism behind viral genome of BKV that enables its

coexistence with human hosts aroused more concerns. BKV is a

small (diameter 40 nm) non-enveloped icosahedral virus (Furmaga

et al., 2021). BKV genome is a double-stranded DNA of

approximately 5,000 base pairs (bp) long and comprises three

major regions, early viral gene region (EVGR), late viral gene

region (LVGR) and noncoding control region (NCCR). The

EVGR codes for early T proteins, small t antigen (tAg) and large

T antigen (TAg), and LVGR codes for viral capsid proteins VP1,

VP2, VP3 and agnoprotein (Agno) (Figure 1A) (Blackard et al.,

2020). Based on sequence variation of VP1 gene, BKV has been

universally classified into four genotypes (genotype I- IV)

(Vaezjalali et al., 2018). As reported, genotype I of BKV are the

most frequent around the globe (80%), while genotype IV is mainly

reported from countries of Europe and northeastern Asia (Chen
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et al., 2006) (Hu et al., 2018). In addition to genotyping based on

BKV VP1 diversity, two other forms based on NCCR variations

were universally accepted for clinical isolates, namely, archetype

(ww) and rearranged (rr) variants such as Dunlop strain (Figure 1B)

(Henriksen et al., 2015). The BKV archetype contains a 376 bp

linear OPQRS block, in which O represents the start of replication

and PQRS represents promoters and regulatory regions of EVGR

and LVGR (Kotla et al., 2021) (Bethge et al., 2016). Whereas the

rearranged variants of BKV occur due to deletion and duplication in

the NCCR sequences during reactivation and persistent

replication (Figure 1B).

On the LVGR, BKV encodes one precursor miRNA

complementary to the 3′ coding end of the TAg mRNA (Seo

et al., 2008). Broekema and Imperiale found that miRNA plays a

key role in limiting replication of archetype BKV by targeting viral

early mRNA in an infection model using renal proximal tubule

epithelial cells (RPTE), suggesting a self-limiting replication

mechanism to remain life-time latency (Broekema and Imperiale,

2013). However, in rearranged NCCR (rr-NCCR) variants, as the

miRNA expressed in a low level, early mRNA are expressed in high

levels with enhanced early promoter activity (Broekema and

Imperiale, 2013). In addition, innate and adaptive immune

regulation on virus-host interaction also play an important role

for BKV to sustain persistent latency in humans. For instance, the

viral miRNA BKV-miR-B1-3p can target the stress-induced ligand

ULBP3, a protein recognized by the receptor natural killer group 2,

member D (NKG2D). Consequently , BKV-miR-B1-3p

downregulated expression level of ULBP3 to evade NKG2D

recognition, which leads to NKG2D-mediated elimination

(Bauman et al., 2011; Zeng et al., 2019). This immune regulation

mechanism of virus-host interaction has been extensively accepted.

Recently, miRNA of BKV was clinically used to monitor viral

reactivation in blood and urine of KTRs (Demey et al., 2021;

Demey et al., 2022).

Besides, a recent study found BKV agnoprotein is able to impair

innate immune signaling by disrupting the mitochondrial network

and then enhances mitophagy. Specifically, BKV agnoprotein

impairs IRF3 nuclear translocation and induces mitochondrial

fragmentation. Then the disrupted mitochondria are targeted for

SQSTM1/p62 (an autophagy receptor) mitophagy and impair
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innate immune signaling (Manzetti et al., 2020). Interestingly, a

few studies showed the agnoprotein were able to co-localize with

lipid‐droplets (LD) in vitro and the predicted a‐helical region

ranging from amino acids 22 to 42 of BKV agnoprotein is vital

for the localization (Unterstab et al., 2010). Besides, BKV

agnoprotein has potentially been involved in disrupting exocytosis

(Johannessen et al., 2011), inhibiting viral replication (Gerits et al.,

2015) and facilitating the virus egress (Panou et al., 2018).

Previous studies indicated that small t antigen (tAg) of

polyomaviruses involves in important pathways regulating viral

replication, the innate immune signaling, and transformation for

SV40, JCV and Merkel cell polyomavirus (MCV) (Chen et al., 2007;

Saribas et al., 2019). However, the regulation mechanism underlying

BKVtAghas been less focused.Zouand Imperiale found thatBKV tAg

downregulated viral DNA replication through similar mechanism of

SV40 tAg replacing the B’ regulatory subunit of protein phosphatase

2A (PP2A) to form a complex to promote cell cycle progression (Zou

and Imperiale, 2023).More studies elucidatingmolecularmechanisms

of tAg in regulating viral replication are needed.

Recently, Zhao and Imperiale established a novel cell model

mimicking viral latency and activation of BKV using a human

RPTE cel l l ine expressing human telomerase reverse

transcriptase (RPTE-hTERT) (Zhao and Imperiale, 2021).

They found that the archetype BKV can persist in vitro for

~100 days with random recombination checked by single-

molecule high-throughput sequencing. Eventually, the

accumulated recombination events could lead to rr-NCCR that

allows higher efficiency of BKV DNA replication (Zhao and

Imperiale, 2021). This study provides a useful in vitro model for

future studies of viral persistence and reactivation.

Taken together, there are several potential molecular or immune

mechanisms connected to BKV latency in association with NCCR,

miRNA, Agno and tAg regulation as summarized in Figure 2.
4 BKV reactivation and its
potential mechanisms

Latent infection of BKV might last for life-time for most

immunocompetent individuals. However, BVK predominantly
A B

FIGURE 1

Genome structure of BKV (A) and NCCR blocks of the archetype and Dunlop strain (B). Major TFBS Sp1 (red triangle), NF1 (blue triangle) and Ets-1
(orange circle) in the NCCR blocks of BKV.
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reactivates and causes diseases in immunocompromised population,

particularly the kidney transplant recipients (KTRs), hematopoietic

stem cell transplantation (HSCT) recipients and HIV/AIDS patients

(Nankivell et al., 2017; Pan et al., 2018; Hirsch and Randhawa, 2019;

Raupp et al., 2019; Wunderink et al., 2019) (Laskin et al., 2020).

Interestingly, over 80% of immunocompetent adults are seropositive

for BKV as previously reported (Supplementary Table 1), but BKVAN

occurs almost exclusively in KTRs, which raises concerns on the

underlying pathogenesis mechanisms and attracts mounting concern

as number of worldwide kidney transplants increases. BKVAN is

clinically confirmed by tissue biopsy, and then clinical management

through immunosuppression modulation is essential to balance

exacerbation of the disease and acute rejection (Chantziantoniou

et al., 2016). It was reported that about 60% of KTRs have detectable

BK viruria, and up to 10% of the patients develop BKVAN (Babel et al.,

2011; Chen et al., 2020). 15%-50% of the BKVAN patients will progress

to graft loss within 2-3 years in the absence of proper intervention

(Leeaphorn et al., 2020). Evidence indicated that the development of

BKVAN was linked to immunosuppressive regimens for KTRs

(Leeaphorn et al., 2020; Cheung and Tang, 2022). It has been found

that patients taking more powerful immunosuppressive drugs, such as

mycophenolate and tacrolimus, are more likely to develop BKVAN

(Mehrvar et al., 2021). Therefore, frequent monitoring on viral load of

BKV in the first year after transplantation, and timely adjustments or

rational reduction of immunosuppression are highly recommended

(Dalianis et al., 2019). However, reduction of immunosuppression

using immunosuppressant drugs has a double-edged sword effect on

clinical outcomes with increasing risk of acute rejection (Cheung and

Tang, 2022).

Generally, high viral load of BKV (>104 copies/ml plasma or >107

copies/ml urine) are considered as indications of viral reactivation
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(Marinic et al., 2014; Ambalathingal et al., 2017). With reactivation,

BKV potentially disrupt cell-cycle regulation and innate immune

response, then significantly increase the level of viral replication,

leading to cell necrosis and flaking. The exfoliated cells with viral

inclusions in urine specimens are termed “decoy cells” as they are easily

misdiagnosed as cancer cells (Chantziantoniou et al., 2016). Decoy cells

(DC) that can be detected in the fresh urine sediment usingmicroscopy

are used to prompt the early signs of BKV activation (Poloni et al.,

2016). Although DC can be identified on urine cytology, but it’s

positive predictive value for BKVAN diagnosis is low (Chen et al.,

2020) (Hirsch et al., 2002). Moreover, many of KTRs with positive

urinary DC did not develop BKVAN (Huang et al., 2013). Therefore,

optimizing diagnostic methods of accurate identification of BKV-

infected DC is valuable for clinical diagnosis and treatment decisions.

It is widely recognized that both rr-NCCR of BKV and

immunosuppression of the host jointly promote the development of

BKVAN. There are many kinds of transcription factor binding sites

(TFBS) in NCCR of archetype BKV, sequence variability of the TFBS

may contribute to viral activation, replication, and pathogenesis

(Blackard et al., 2020). In order to compare functional differences of

rr-NCCR, Olsen et al. reconstructed Dunlop strain of BKV by replacing

the NCCR from 12 BKV isolates of urine or renal biopsy specimen in

Vero cells, and observed impressive difference of replication efficiency

in RPTEs, indicating that sequence variability of NCCR has impact on

replication efficiency of BKV (Olsen et al., 2009).

BKV strains exhibit higher-level genetic diversity in the NCCR

than that in protein coding regions. Forms of rr-NCCR are

commonly identified from persons with BKV-associated diseases

(Cubitt, 2006). It is found that BKV isolates with rr-NCCR replicate

much more efficiently than archetype BKV, indicating NCCR

rearrangements regulate bidirectional gene expression levels (Gosert
FIGURE 2

Four possible regulating mechanisms of BKV latency regulated by viral genes.
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et al., 2008). An in vitro study finds that deletion or duplication in

different blocks of NCCR may lead to elevated or decreased viral

genome replication, indicating that rearrangements of NCCR

contribute to regulate viral protein expression (Helle et al., 2017).

The rr-NCCR caused by block deletion or duplication will alter the

distribution and composition ofTFBS,which in turn regulates the viral

gene expression (Bethge et al., 2016) (Bethge et al., 2015). Bethge et al.

identified Sp1 site in NCCR as a key regulator of gene expression of

EVGR and LVGR (Bethge et al., 2015). And the in vitro experiments

suggest that transcription factors Ets1, NF-1 and Sp1 (Figure 1B)

determine the strength toward early or late gene expression (Bethge

et al., 2015). This study provides new evidence on how different

composition of TFBS regulate early and late gene expression of BKV

and contribute to viral replication. Therefore, the potential anti-viral

therapeutic strategies based on specific transcription factors will be

promising for patients.
5 BKV-associated diseases and
potential tumorigenesis

High seroprevalence of human polyomaviruses indicate its

ubiquity in nature. The major human tissues harboring BKV are in

urinary system such as the kidney and bladder (Krajewski et al., 2020).

It is a complex network in pathogen-host interactions, which cause the

diverse clinical outcomes of BKV infection in humans (Babel et al.,

2011) (Nankivell et al., 2017). Anyway, BKV-associated diseases were

mainly linked to host immune dysfunction in transplant recipients

taking immunosuppressant drugs, patients undergoing cancer

treatment and HIV/AIDS patients with immunodeficiency

(Broekema et al., 2010; Mitterhofer et al., 2014). The most common

clinical outcome due to BKV reactivation in transplant recipients are

BKVAN, which can lead to graft loss in up to 60% of affected patients

(Babel et al., 2011). Other than that, BKV was also considered as a

potential factor or co-factor of tumorigenesis and diseases that were

much less discussed in the scientific community. Among the known

human oncogenic viruses, human papillomavirus (HPV) has similar

genomic structure with BKV, offering an excellent reference model to

understand the potential mechanisms of BKV-induced tumorigenesis

(Papadimitriou et al., 2016). Similar with HPVs, BKV, as its key

tumorigenesis mechanism, has an TAg-mediated disruption of the

tumor suppressor genes p53 and pRb, which consequently leads to

dysregulation of cell cycling and apoptosis (Trave and Zanier, 2016)

(Storey et al., 1998; Narisawa-Saito and Kiyono, 2007).
5.1 BKV-associated urologic tumors

BKV builds persistent latent infection in the genitourinary system

of humans for life time (McCaffrey et al., 2021). As a member of

human polyomaviruses, BKV shares similar genome structures with

oncogenic virus MCV that causes a malignant cutaneous cancer

Merkel cell carcinoma (MCC) (Helle et al., 2017). BKV was linked as

a potential etiological agent of urologic diseases or tumors such as

prostate and bladder cancer. As development of high throughput

sequencing, studies with the deep sequencing technology have
Frontiers in Cellular and Infection Microbiology 05
recently begun to understand the frequency and potential networks

of BKV-associated tumorigenesis (Starrett and Buck, 2019). Two

former studies of comprehensive molecular characterization of

bladder cancers on the basis of deep sequencing technique

observed that gene of BKV was integrated into the genome in 1 of

413 bladder tumors (Robertson et al., 2017) (Cancer Genome Atlas

Research N, 2014). The findings suggest low incidence of BKV gene

integration into bladder tumor genome in the immunocompetent

individuals. However, recent observations have revealed that KTRs

who develop BKV viremia or BKVAN have about 11-fold risk of

bladder cancer incidence in comparison to KTRs without signs of

BKV reactivation (Liu et al., 2017) (Gupta et al., 2018). These findings

specifically implicate that BKV reactivation is the precondition of

bladder cancerogenesis in immunosuppressed transplant recipients.

To our knowledge, prostate cancer is a popular urinary tumor in

the elderly of developed countries and disrupted p53 networks is

thought to be the major pathways for prostate cancer incidence

(Mischitelli et al., 2015). TAg of BKV is responsible for viral

transformation, evidence suggests that molecular mechanisms of

BKV tumorigenesis is linked to TAg-mediated p53 inhibition

(Harris et al., 1996). Recently, a case-control study conducted by

Gorish and colleagues observed that BKV TAg was identified

among 30% (n=55) tissue specimens of prostate cancer patients

but only in 7% (n=55) of the controls’ specimens (P=0.002 and Odd

ratio= 5.7), suggesting that BKV is a potently associated with higher

risk of prostate cancer (Gorish et al., 2019).
5.2 BKV-associated head and neck cancer

Head and neck cancers are a heterogeneous group of tumors

representing the 6th-7th most popular types of cancers around the

world (Mody et al., 2021). Approximately 90% of head and neck

cancers belong to squamous cell carcinomas (HNSCCs). And the

activated virus infections are one of major causative agents (Polz

et al., 2015) (Kitamura et al., 2023).

A recent study assessed the prevalence of BKV in Iranian

patients with brain malignancies, and found TAg sequences of

BKV were detected in 26 out of 58 (44.8%) brain tumor tissues,

indicating the possible pathogenic interlink between BKV

persistence and central nervous system (Saber Amoli et al.,

2021). Another study investigated the correlation of BKV and

the development of papillary thyroid carcinoma (PTC) in

Iranian PTC patients. Among 1057 PTC samples including 645

paraffin-embedded and 412 fresh biopsy samples, 48.3% were

positive for the BKV DNA with mean viral load of 0.5×104

copies/cell. Besides, TAg RNA expression was relatively higher

in fresh biopsy samples (Tarharoudi et al., 2022). Polz and

colleague analyzed the presence of BKV in paraffin-embedded

sections of oral squamous cell carcinomas (OSCC), and they

observed that BKV nucleic acid was detected in 18.5% (n=92) of

OSCC patients but much lower detection rate (3.3%) from the

controls (Polz et al., 2015). However, reports of BKV-associated

head and neck cancer are still too limited to determine its

etiological interlink with head and neck cancer. After all, BKV

is ubiquitous and life-long latent in humans.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1263983
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhou et al. 10.3389/fcimb.2023.1263983
5.3 BKV association in HIV-associated
salivary gland disease

After primary infection, BKV mainly disseminates and

predominantly colonizes into sites of kidney and urinary tracts

(Imperiale, 2000). Interestingly, BKV DNA was also detected from

saliva of HIV-infected individuals and HIV-negative controls, which

raised concerns of its pathogenicity in people living with HIV (Jeffers

and Webster-Cyriaque, 2011). HIV-associated salivary gland disease

(HIVSGD) is one of the most common salivary gland-associated

complications among HIV-infected population (Jeffers and Webster-

Cyriaque, 2011; Burger-Calderon et al., 2016). Generally, HIVSGD

presents xerostomia or/and diffused swelling. The incidence of

HIVSGD could reach up to 48% in HIV-positive individuals in

underdeveloped countries (McArthur et al., 2000). According to

Patton’s data observed during 1995-2008, HIV/AIDS patients were

much more likely to develop HIVSGD in the era of protease inhibitor

therapy (Pattonet al., 2000).AlthoughHIVSGDisgenerally thought to

be a benign lesion, some of them could progress to malignant

lymphoma under certain conditions like HIV infection (Ellis, 2007).

Notably, lymphomas account for a large portion of major salivary

glandmalignancies, inwhich salivary gland lymphomas occur in about

75–80% parotid gland, 5–20% submandibular gland, and less than 5%

small sublingual salivary glands (Barnes et al., 1998). With

accumulated evidence interlinking head and neck cancers with BKV,

question about whether BKV may contribute as co-factorial role

to tumorigenesis.

Since Jeffers et al. detected significantly higher BKV viral loads

in the saliva of patients diagnosed with HIVSGD as compared to HIV

negative patients, evidence linking BKV to HIVSGD has augmented

(Jeffers et al., 2009). The BKV NCCR rearrangement derived from

block duplications and/or deletions commonly occurs in

immunocompromised patients with BKV reactivation. Burger-

Calderon et al. found over 90% of the BKV NCCRs in HIVSGD

carried a block arrangement form “OPQPQQS” in throatwash samples

of the immunosuppressed individuals (Burger-Calderonet al., 2016). It

has been reported that rearrangements of NCCR potently enhanced

viral transformation and host-cell permissiveness (Gosert et al., 2008)

(Burger-Calderon et al., 2016). Taken together, BKV may play an

infectious role contributing toHIVSGDpresentation.However, future

studies will have to address the pathogenicity of BKV in vitro and in

vivo specifically.
6 Conclusions

BKV is a ubiquitous agent causing latent infection in over 80%

adults around the world. Most concern on this virus is BKVAN in

KTRs, among whom up to 60% eventually progress to graft loss in the

first 2-3 years in the absence of proper intervention. Thus, clinical

recommendations on management of BKV infection include: a)

frequently monitoring of viral load of BKV in blood is highly

recommended the first 12 months after kidney transplantation; b) in

order to the risk for BKVAN incidence, reducing the use of

immunosuppressants is recommended (Dalianis et al., 2019).

Generally, the BKV has a self-limiting regulating mechanism in
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association with miRNA that targets early mRNA to limit archetype

BKV replication. Theoretically, BKV is latent in archetype amongmost

immunocompetent individuals unless there is a sustained weakening of

the immune system caused by HIV infection or kidney transplant. The

activation of BKV is usually accompanied by block rearrangement of

NCCR in which TFBS deletion or insertion will regulate EVGR and

LVGR expression. Therefore, NCCR sequence could be an important

indicator to evaluate the BKV activation. Although human RPTE cell

are the major harboring sites for its life-long latency, BKV has tropism

for normal human brain tissue, human salivary gland cells and

pancreatic cells in vitro, which indicates BKV association with

various tumors in non-genitourinary tissues (Elsner and Dorries,

1992; Jeffers et al., 2009).

Approximately 12% of human cancers are related to viruses

such as Epstein-Barr virus (EBV), human papillomavirus (HPV),

hepatitis B virus (HBV), hepatitis C virus (HCV), Kaposi’s sarcoma

herpesvirus (KSHV) and MCV (White et al., 2014). The

accumulated evidence in the past two decades suggests that BKV

may cause urologic tumors and head and neck cancers as well,

posing new challenges to the immunosuppressed individuals in the

absence specific anti-viral drugs or vaccines. Altogether, figuring

out the pathogenic mechanisms causing BKV-associated diseases

and potential tumorigenesis is important, and the constant

improvement of rapid clinical diagnosis for BKV activation

is needed.
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