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Mucormycosis (MCR) is an emerging and frequently lethal fungal infection caused

by the Mucorales family, with Rhizopus, Mucor, and Lichtheimia, accounting for >

90% of all cases. MCR is seen in patients with severe immunosuppression such as

those with hematologic malignancy or transplantation, Diabetes Mellitus (DM) and

diabetic ketoacidosis (DKA) and immunocompetent patients with severe wounds.

The recent SARS COV2 epidemy in India has resulted in a tremendous increase in

MCR cases, typically seen in the setting of uncontrolled DM and corticosteroid use.

In addition to the diversity of affected hosts, MCR has pleiotropic clinical

presentations, with rhino-orbital/rhino-cerebral, sino-pulmonary and necrotizing

cutaneous forms being the predominant manifestations. Major insights in MCR

pathogenesis have brought into focus the host receptors (GRP78) and signaling

pathways (EGFR activation cascade) as well as the adhesins used by Mucorales for

invasion. Furthermore, studies have expanded on the importance of iron availability

and the complex regulation of iron homeostasis, as well as the pivotal role of

mycotoxins as key factors for tissue invasion. The molecular toolbox to study

Mucorales pathogenesis remains underdeveloped, but promise is brought by RNAi

and CRISPR/Cas9 approaches. Important recent advancements have been made

in early, culture-independentmolecular diagnosis of MCR. However, development

of new potent antifungals against Mucorales remains an unmet need. Therapy of

MCR is multidisciplinary and requires a high index of suspicion for initiation of early

Mucorales-active antifungals. Reversal of underlying immunosuppression, if

feasible, rapid DKA correction and in selected patients, surgical debulking are

crucial for improved outcomes.
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Introduction

Fungi are ubiquitously found in many environments, and have

important roles in the ecosystem and biodiversity as they are essential

in nutrient cycling and recycling of waste (Frac̨ et al., 2018). It is

estimated that there are 1.5 million different types of fungi, from

which only 300 are known to cause illness (Centers for Disease

Control and Prevention, https://www.cdc.gov/fungal/diseases/

index.html). In this review, we focus on Mucorales, a group of

commercially and increasingly medically significant molds.

Specifically, we provide an overview of the pathogenesis, along with

epidemiology (in view of the recent major outbreak of COVID-19

associated mucormycosis in India), pathology and molecular

diagnosis, and current therapeutic advances in mucormycosis (MCR).

The importance of Mucorales fungi has been established as

multifaceted because of their capacity to release a range of

commercially used lytic enzymes including amylases, lipases, and

proteases, as well as production of essential medical and

pharmacological substances such as steroids and terpenoids as

well (Morin-Sardin et al., 2017). However, since its first

description by Paltauf in 1885 MCR, the invasive disease caused

by a variety of Mucorales has come to central stage in modern

mycology and infectious diseases. MCR is a severe and frequently

lethal infection which can affect a pleiad of different

immunosuppressed patients such as those who have received

organ transplants and immunocompetent hosts who are trauma

victims of natural disasters (Spellberg et al., 2005a; Warkentien

et al., 2012; Tribble et al., 2013; Warkentien et al., 2015; Weintrob

et al., 2015; Spellberg and Ibrahim, 2018) (Figure 1A).
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Nomenclature and frequency of
Mucorales as causes of MCR and
burden of the disease

MCR is caused by fungi belonging to the order Mucorales.

Rhizopus, Mucor, and Lichtheimia (formerly Absidia) species are

the most common members of the order Mucorales that cause

mucormycosis, accounting for >90% of all cases (Uppuluri et al.,

2021). Rhizopus species, are the dominant cause of MCR in the

entire world responsible for >70% of all cases of MCR (Ribes et al.,

2000; Roden et al., 2005; Spellberg et al., 2005a). In contrast,

Cunninghamella, Apophysomyces, Saksenaea, Rhizomucor,

Cokeromyces, Actinomucor, and Syncephalastrum species

individually are responsible for fewer than 1 to 5% of reported

MCR cases (Gomes et al., 2011) (Figure 1B). Thus, Mucor species,

including M. lusitanicus (formerly Mucor circinelloides f.

lusitanicus) (Wagner et al., 2020), and Lichtheimia are the

secondary cause of infection in the Americas and Europe,

respectively. However, Apophysomyces are the secondary cause of

infection in India (Skiada et al., 2018; Nucci et al., 2019).

Although it is not possible to determine the exact burden of

MCR worldwide, there has been an alarming increase in cases in the

last three decades. Over the past 15 years cases have more than

doubled at the MD Anderson and Fred-Hutchinson Cancer Centers

(Kontoyiannis et al., 2000; Marr et al., 2002). According to a

scientific study conducted in France, there was a significant

increase of 70% between 1997 and 2006. Additionally, there was a

substantial rise of 175% in the prevalence of the condition between

the years 1988-2006 compared to the period from 2007-2015
A B

C

FIGURE 1

Frequency of mucormycosis manifestation in susceptible hosts and the etiologic agents of the disease. (A) Frequency of mucormycosis by
underlaying predisposing host condition. (B) Etiological agents of mucormycosis. (C) Frequency of different types of mucormycosis reported.
* Data adapted from Roden M et al. CID 2005 (Roden et al., 2005).
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(Roden et al., 2005). Also, a medical center in Switzerland reported

>10-fold increase in MCR cases among admitted patients after 2003

(Ambrosioni et al., 2010). Cases in Iran more than doubled between

2008-2014 (Dolatabadi et al., 2018). In hematopoietic and allogenic

stem cell transplant recipients, MCR is currently the third most

prevalent invasive fungal infection, after candidiasis and

aspergillosis (Kontoyiannis et al., 2000; Petrikkos et al., 2012).

That increase in MCR incidence at many transplant centers has

been linked to the introduction and widespread use of voriconazole

prophylaxis in these high-risk populations. However, it is not

known if this association reflects a true epidemiological link or

represents a marker of changing immunosuppression occurring in

parallel with the evolution of transplant practices and

immunosuppression strategies (Pongas et al., 2009).

Before the onset of the COVID-19 era, India was recognized as

hyper-endemic for MCR, a fungal infection. The estimated disease

burden in India was approximately 70 times higher than the global

average, with predicted cases exceeding 200,000 per year. These

cases accounted for approximately 24% of all invasive mold

infections (Chakrabarti and Singh, 2014; Chakrabarti et al., 2019;

Prakash and Chakrabarti, 2021).
Morphogenesis

Mucorales fungi can reproduce through both sexual and asexual

means. Asexual reproduction involves the formation of spherical

structures called sporangiospores, which are located at the tip of the

sporangium (as depicted in Figure 2A). These sporangiospores can

be released and spread, eventually germinating into hyphae. On the

other hand, the sexual cycle of most Mucorales fungi begins with

the fusion of two opposing types, denoted as (–) and (+), which
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leads to the formation of zygospores (Lee et al., 2010). These

zygospores then germinate and develop into a sporangium at the

apex, resulting in the production of sexual meiospores (Lee et al.,

2010). Because the sexual life cycle for sporangiospore generation is

protracted, anecdotal evidence suggests that asexual

sporangiospores may be the primary source of initiation,

propagation and spread of infection.
Host immune responses

Host barrier cells

Inhalation of spores from the environment causes rhino-

orbital/cerebral, sino-pulmonary MCR, the two most common

disease manifestations. Cutaneous MCR is the disease’s third

most prevalent presentation, and it usually the consequence of

inoculation of Mucorales spores to skin/subcutaneous tissues

following severe trauma or abrasions on the skin (Sugar, 2005;

Ibrahim et al., 2011) (Figure 1C). As MCR is characterized by

extensive tissue invasion and tissue destruction and is the most

angioinvasive of all fungal diseases, dissemination is very common

(Ben-Ami et al., 2009).

Mucorales invade nasal and alveolar epithelial cells through

binding to host cell glucose-regulated protein 78 kDa (GRP78) and

integrin a3b1, respectively (Alqarihi et al., 2020). Watkins et al.,

2018 used transcriptome sequencing (RNA-seq) to assess host

transcriptional response during early stages of R. delemar

infection to gain insight into governed Mucorales-host airway

epithelial cell early interactions (Watkins et al., 2018). The host

epidermal growth factor receptor (EGFR) signaling was activated

during infection, and the alveolar epithelial cell EGFR (using A549
A B

FIGURE 2

(A) Morphology of Rhizopus delemar. Sporangia form at the apices of sporangiophores and contain the asexual sporangiospores. Germinated spores
seen in the sporangium magnified box can be an overlay of the sporangium on released and germinated spores. (B) Under normal circumstance,
alveolar macrophages (AMS) are able to phagocytize fungi and killing through LC3-associated phagocytosis (LAP+). While AMS are able to
phagocytize Mucorales spores, spore melanin is able to arrest LAP to prevent phagosome maturation. However, spores are unable to grow and
germinate due to iron restriction (Frąc et al., 2018). In the presence of abnormal nutritional immunity (i.e. excessive iron) spores are able to
germinate and kill Ams (Andrianaki et al., 2018). Courtesy of Dr. Georgios Chamilos. “Created with BioRender.com”.
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cell line) was also phosphorylated when interacting with several

Mucorales organisms. Furthermore, the EGFR co-localized with R.

delemar spores during invasion of alveolar epithelial cells (Alqarihi

et al., 2020). EGFR inhibitors cetuximab and gefitinib protected

airway epithelial cells from R. delemar invasion and injury in vitro.

These findings identified EGFR activation cascade as a critical

pathway in inducing invasion of alveolar epithelial cells by

Mucorales and suggested that adjunctive therapy such as gefitinib

can be useful in the treatment of pulmonary MCR (Watkins et al.,

2018). Finally, Mucorales fungi appear to hematogenously

disseminate by engaging the endothelial GRP78 receptor (Liu

et al., 2010).
Innate immunity

The first line of effector immune cells against inhaled Mucorales

spores are alveolar macrophages (Aberdein et al., 2013; Ibrahim and

Voelz, 2017). Immunocompetent mice have macrophages which are

efficient in phagocytizing Mucorales spores and preventing their

germination (Diamond and Erickson, 1982; Waldorf et al., 1984a;

Waldorf et al., 1984b; Waldorf, 1989). Contrasting to Aspergillus

fumigatus conidia, macrophages from immunocompetent

individuals are unable to kill phagocytized Mucorales spores,

despite being able to adhere to Mucorales hyphae and damage

them by oxidative and non-oxidative mechanisms (Diamond and

Clark, 1982; Waldorf et al., 1984b; Waldorf, 1989; Lee et al., 2015).

In contrast to macrophage from immunocompetent hosts,

macrophages from diabetic mice cannot prevent spore

germination, thereby resulting in established infection and

lethality in infected mice (Waldorf et al., 1984b). Unraveling the

enigma of alveolar macrophages’ enduring presence and their

resilience against destruction could be essential in formulating

innovative approaches for combating infections. Andrianaki et al.,

2018 discovered that alveolar macrophages-phagocytized

Mucorales spores retain melanin on their surface and therefore

are able to halt phagosome maturation through inhibition of LC3-

associated phagocytosis (Andrianaki et al., 2018). Furthermore,

research employing transcriptome, iron supplementation, and

genetic modification of iron acquisition genes revealed that iron

restriction inside macrophages modulates immunity against

Rhizopus and suppresses fungus germination (Figure 2B)

(Andrianaki et al., 2018). Future studies are destined to shed

more light into the important role of nutritional immunity to

control Mucorales.

Mucorales are resistant to innate immune cells with

hyperglycemia impairing chemotaxis and killing activities of

polymorphonuclear cells, including neutrophils in the DKA

settings (Chinn and Diamond, 1982). As acidosis impairs

transferrin’s ability to efficiently chelate iron (Artis et al., 1982;

Ibrahim et al., 2008b; Kontoyiannis et al., 2012; Gebremariam et al.,

2016), the released iron causes further functional impairment in

phagocytes (Cantinieaux et al., 1999; Guo et al., 2002). Immune cells

from mice fed excessive amounts of iron secrete a reduced amount

of interferon-gamma (IFN-g) (Omara and Blakley, 1994), a
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signature cytokine that orchestrates Mucorales fungal death by

effector immune cells (Gil-Lamaignere et al., 2005). IFN-g and

granulocyte-macrophage-colony-stimulating factor (GM-CSF)

have specifically, either alone or combined, shown to improve

neutrophils’ ability to damage and kill Mucorales hyphae ex vivo

by increasing oxidative burst and TNF-a release (Gil-Lamaignere

et al., 2005).
Adaptive immunity

The role of adaptive immunity in MCR patients has not been

extensively investigated. Similar to the interaction with Aspergillus,

the exposure to b-glucan during the germination process of

Mucorales fungi triggers dectin-1 signaling in human dendritic

cells. This signaling pathway leads to the strong activation of IL-23

and Th-17 responses, similar to the immune responses observed in

the presence of Aspergillus (Chamilos et al., 2010). Hyphae can be

destroyed in patients who elicit Mucorales-specific T-cells (Potenza

et al., 2011; Schmidt et al., 2013). Consistent with these results, T-

cells that have been pulsed with Rhizopus extract and stimulated

with IL-2/IL-7 produce Mucorales-specific T cells with CD4+ cells

(Castillo et al., 2018). Instead of non-specific signaling, these cells

can produce IFN-g, IL-5, IL-10, IL-13, and TNF-a and detect

fungus antigens processed by HLA-II molecules (Castillo et al.,

2018). In addition, emerging evidence points out of the potential

role of the benefit of adjunct immune checkpoint inhibitors (ICIs)

to treat MCR. In a proof-of-concept study, Wurster et al. studied the

effects of PD-1 and PD-L1 inhibitors outcomes and

immunopa tho logy o f i nv a s i v e pu lmona ry MCR in

cyclophosphamide- and cortisone acetate-immunosuppressed

mice. R. arrhizus-infected mice receiving either of the both PD-1

but even more so by PD-L1-inhibitor (without concomitant

antifungals) had significantly improved survival, less morbidity,

and lower fungal burden compared to isotype-treated infected mice

(Wurster et al., 2022). As inhibition of the PD-1/PD-L1 pathway is

not without the potential for immune-related adverse events, future

careful dose-effect studies are needed to define the “sweet spot”

between ICI-induced augmentation of Mucorales immunity and

potential immunotoxicities.
Pathogenicity factors

Hyphal formation

In response to environmental stimuli, Mucorales can rapidly

switch their morphogenetic programs between spores, and mycelia

(Orlowski, 1991). Yeast-like form development in Mucor spp. are

promoted by the presence of fermentable hexose and Anaerobiosis,

whereas oxygen and nutrient constraint promote hyphal growth

(Wolff et al., 2002). Gene targets that modulate morphogenesis were

identified with gene deletion homologous recombination

techniques with autotrophic markers, and this information has

led to intriguing therapeutic candidates. specifically, the
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calcineurin pathway, for example, was found to govern yeast to

mycelium transition and influenced pathogenicity in M. lusitanicus

(Lee et al., 2015). Specifically, the chemical inhibition of calcineurin

or the disruption of the regulatory subunit gene of calcineurin

(CnbR) traps the yeast-form, specifically, making it substantially

less virulent in mice.

In addition to calcineurin, cyclic AMP (cAMP) and its target

protein kinase A (PKA) are thought to have a role in morphogenesis

control. A cross-talk between these two regulatory mechanisms is

implied, calcineurin inhibits PKA (Lee et al., 2013). Further gene

deletions uncovered other proteins involved in the control of M.

circinelloides dimorphism, such as heterotrimeric G proteins and

ADP-ribosylation factors (Arfs) (Patiño-Medina et al., 2018).

Finally, a role in pathogenicity is thought to be played by the size

of Mucor spores. Specifically, in Galleria mellonella larvae MCR

model large multinucleate spores germinate faster and are more

virulent than small mononucleate spores (Li et al., 2011). Small

spores are phagocytized more avidly, whereas larger spores can

geminate inside macrophages and overpower them.
Effect of iron homeostasis

Like all pathogens, iron is crucial for Mucorales survival in the

host. Mammalian cells store iron bound to iron-carrying proteins

such as ferritin, lactoferrin and transferrin (Howard, 1999). DKA or

other types of acidosis, elevated blood glucose and low blood pH, in

patients with hypoglycemia, disturb the avidity of these host

proteins to bind iron, resulting in an increase in serum free iron

concentration (Artis et al., 1982; Ibrahim, 2014; Gebremariam et al.,

2016). Increased availability of serum free iron levels in the host can

enhance the ability of Mucorales to produce a rapidly invasive

infection (Boelaert, 1994; Boelaert et al., 1994; Ibrahim et al., 2007).

A high-affinity iron absorption system and the production of

siderophores are used by Mucorales to acquire exogenous iron by

these two mechanisms (Carroll et al., 2017; Navarro-Mendoza et al.,

2018; Lax et al., 2020). A family of iron reductases (Fre), a

ferroxidase (Fet3), and a high affinity iron permease (Ftr1) make

up the high-affinity iron acquisition system (Navarro-Mendoza

et al., 2018). In R. delemar (Fu et al., 2004; Ibrahim, 2010; Liu

et al., 2015),M. circinelloides (Navarro-Mendoza et al., 2018), and L.

corymbifera, low iron availability stimulates the development of the

high-affinity iron absorption system (Schwartze et al., 2014). The

functions of genes related with the iron uptake in Mucorales was

explored using the RNAi gene silencing, particularly in R. delemar

(formerly identified as R. oryzae), which is less amenable to

mutagenesis than M. circinelloides (Ibrahim, 2010). In mice with

DKA, reduction of the copy number of the FTR1 gene or inhibition

of expression by RNAi impairs R. delemar’s ability to accumulate

iron in vitro and lower its pathogenicity (Ibrahim, 2010).

Historically, patients on hemodialysis taking deferoxamine to

treat iron overload toxicity had a very high risk for disseminated

and frequently lethal MCR (Boelaert et al., 1987; Boelaert et al.,

1989; Boelaert et al., 1991; Boelaert, 1994). For its growth, R.

delemar uses iron from ferrioxamine as a siderophore (the iron
Frontiers in Cellular and Infection Microbiology 05
rich form of deferoxamine). According to biochemical and genetic

investigations (by RNAi-mediated gene silencing) R. delemar has

two surface receptors (Fob1 and Fob2) that bind ferrioxamine and

enhance iron intake via a reductase/Ftr-1 mediated pathway (Liu

et al., 2015). In addition, three ferroxidase encoding-genes have

been identified in M. circinelloides: fet3a, fet3b, and fet3c (Navarro-

Mendoza et al., 2018). All three M. circinelloides genes are

overexpressed in the lungs of infected mice, and they are

regulated by iron availability in the culture media. In addition,

there is a relationship of the expression of the different ferroxidase

with the fungal dimorphic state, a key virulence factor for

Mucorales invasion. Specifically, during aerobic growth, fet3a is

expressed specifically in yeast-like growth, while fet3b and fet3c are

expressed in hyphae (Navarro-Mendoza et al., 2018). As proof of

concept, gene deletion studies revealed that fet3c plays a major role

in M. circinelloides virulence in vivo (Navarro-Mendoza

et al., 2018).

In addition to using the bacterial deferoxamine as a

xenosiderophore, Rhizopus species are known to synthesize and

secrete their own Rhizoferrin siderophore (Carroll et al., 2017). This

siderophore supplies Rhizopus with iron through a receptor-

mediated, and energy dependent process (Thieken and

Winkelmann, 1992; de Locht et al., 1994). A R. delemar

rhizoferrin synthetase (SfnaD), a gene that has homology to the

bacterial NRPS-independent siderophore (NIS) protein has been

identified in a study (Carroll et al., 2017). The SfnaD contains the C-

terminus conserved ferric iron reductase FhuF-like transporter

domain. In addition, growing the fungus in iron-rich conditions

inhibited the expression of SfnaD in R. delemar, while heterologous

expression of this gene allowed E. coli to synthesize the siderophore

from citrate and diaminobutane, thereby confirming its identity as a

NRPS-independent siderophore protein. It is important to mention

that rhizoferrin was shown to be inefficient in chelating iron from

serum (Boelaert et al., 1993; Boelaert et al., 1994). Consequently, the

role of rhizoferrin in Rhizopus virulence might be limited in hosts

that do not have excess free-iron, while this siderophore could be

operative in hosts with elevated free-iron such as DKA patients. In

fact, iron regulation is quite complex in Mucorales. It depends on

the specific Mucorales genus and species and the particular context

(low or high iron availability).

Finally, the genome project of Mucorales fungi revealed the

presence of gene orthologs to heme oxygenase which were shown to

be important in acquiring iron from haemin in several fungi

(Worsham and Goldman, 1988; Santos et al., 2003). It is possible

that these heme oxygenase genes are involved in acquiring iron

from host hemoglobin and might explain the angioinvasive nature

of the disease (Ibrahim et al., 2008b; Garcıá-Carnero and Mora-

Montes, 2022).
CotH significant role in invasion

Mucorales interact actively with epithelial cells and the

endothelium lining blood vessels to promote initiation of

infection and angioinvasion, respectively. Among the fungal
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kingdom found only in Mucorales are spore coating proteins

(CotH) family members, which are kinase-like proteins

(Chibucos et al., 2016; Gebremariam et al., 2016; Nguyen et al.,

2016). CotH proteins were first described in Bacillus subtilis in

which it is involved in endospore formation. The function of CotH

proteins in Mucorales is to mediate invasion of host cells,

including epithelial and endothelial cells (Gebremariam et al.,

2014; Gebremariam et al., 2016; Alqarihi et al., 2020). CotH

proteins were also found to be required for normal spore

formation and virulence in M. lusitanicus (Szebenyi et al., 2023).

The number of CotH genes is correlated to the pathogenic

potential of agents of MCR, with the genera most implicated in

invasive infections (Rhizopus, Mucor , and Lichtheimia)

(Warkentien et al., 2012; Warkentien et al., 2015; Weintrob

et al., 2015) having multiple copies of the CotH (Chibucos et al.,

2016). CotH3 and CotH7 (called collectively “invasins”) promote

invasion of nasal and alveolar epithelial cells through binding to

host cell GRP78 and integrin a3b1, respectively (Alqarihi et al.,

2020). The mechanism by which CotH7 binds to integrin a3b1 on
alveolar epithelial cells initiates invasion of the host is believed to

be related to activation of EGFR which initiates a cascade of events

involved in endocytosis (Watkins et al., 2018).

In addition to epithelia, CotH3 is also involved in promotion of

angioinvasion through attaching to GRP78 on endothelial cells

(Gebremariam et al., 2014; Gebremariam et al., 2016). GRP78 is a

heat-shock protein belonging to the HSP70 family that is expressed

on the mammalian cell membrane in response to various stressors

(Lee, 2007; Alqarihi et al., 2020). Furthermore, serum iron increases

in availability, when key host conditions were encountered in DKA

such as hyperglycemia and the presence of ketone bodies (e.g., b-
hydroxy butyrate), have all been shown to create a “perfect storm”

of increased and rapid invasion and robustly increase the expression

of both GRP78 and CotH3 in the target organs of mice with DKA

(Liu et al., 2010; Gebremariam et al., 2016; Alqarihi et al., 2020).

Furthermore, the density of GRP78 receptors is richer in sites where

MCR is most common. Thus, GRP78 high expression on invaded

endothelial cells and macrophages in necrotic tissues were revealed

through the immunohistochemistry of the ethmoidal sinus tissue of

a patient with rhino-cerebral MCR (Shumilov et al., 2018).

Interestingly, R. delemar’s capacity to invade and damage

endothelial cells in vitro and reduce disease severity in mice is

diminished by the activity of CotH3 proteins blocking their activity,

either by using anti-CotH monoclonal antibodies or by genetically

attenuating CotH3 expression (Gebremariam et al., 2016). As a

result, the distinctive susceptibility of patients with DKA to MCR is

explained by the unique and concomitant amplification of

interaction between CotH3 and GRP78 under hyperglycemic/

ketoacedotic settings.

Of critical importance is the ability of an anti-CotH3

monoclonal antibody to block host cell invasion and ameliorate

the disease in mice when given alone after infection. Further, this

antibody demonstrates synergy when given with antifungal drugs to

treat severe murine MCR (Gebremariam et al., 2019). A humanized

version of the antibody was also shown to equally protect against

the disease in mice and is currently in manufacturing (Gu

et al., 2021).
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The first evidence of the presence of toxins in Mucorales came

from the observation that even killed Mucorales spores were able to

cause significant damage to host cells (Ibrahim et al., 2005b). This

was followed by a study connecting food poisoning outbreak with

Chobani yogurt to M. circinelloides (Lee et al., 2014). Recently,

Soliman et al. revealed that Mucorales harbor a ricin-like toxin

protein of 17 kDa that is expressed during hyphal formation. The

toxin has structural similarity to ricin B chain and functionally

resembled ricin A chain in blocking host protein synthesis through

ribosomal inactivation. Thus, this toxin was named “mucoricin”,

and was shown to be critical for MCR pathogenesis in mice. In

addition, mucoricin was found to be expressed in lung tissues from

a patient with pulmonary MCR (Soliman et al., 2021). Importantly,

polyclonal antibodies targeting mucoricin were shown to protect

mice from MCR (Soliman et al., 2021) suggesting that further

development of immunotherapies against the toxin are likely to

aid in managing patients with MCR. Other unidentified toxins are

likely to exist, since attenuation of mucoricin expression reduced,

but not abrogated, the ability of Rhizopus to damage host cells

(Soliman et al., 2021). Figure 3 summarizes pathogenicity events

involved in host cell invasion and tissue damage during MCR.
FIGURE 3

Postulated events that lead to adhesion and invasion and host cell
death. 1) Inhaled spores bind to epithelial via CotH/integrin a3b1
followed by germination. Germlings produce mucoricin. 2)
Considerable disruption of the epithelium due to invasion of the
spores within hours of infection. 3) Mucoricin causes host cell death
within 48 h of infection. 4) Angioinvasion of hyphae and sporulated
cells occur via CotH and endothelial cell GRP78 interactions, 5)
endothelial cell injury occurs after infection with R. delemar spores
resulting in tissue necrosis. 6) Hematogenous dissemination results
in organ seeding. Tissue edema and organ failure are the results of
excessive vascular leak. “Created with BioRender.com”.
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Genomic structure and
genetic manipulation to
understand pathogenicity

The availability of restricted tools for genetic manipulation has

been a major hindrance to the in-depth research of Mucorales

fungus genes and signaling cascades. Early in the Mucormycotina

lineage, a whole-genome duplication occurred, and the duplication

of genes may have produced novel proteins, so expanding the

sensory and signaling pathways (Ma et al., 2009; Schwartze et al.,

2014; Garcia et al., 2018). When sexually reproducing, Mucorales

are known to be haploid and display zygotic meiosis (Morin-Sardin

et al., 2017). Mucor, and Rhizopus, and Lichtheimia species are the

only Mucorales known so far to be amenable to genetic

manipulation. Due to the paucity of dominant selection markers,

genetic experimentation even with these two fungi is difficult, the

limited transportation efficiency, and the rarity of chromosomal

integration. RNA interference (RNAi) is the most often used

approach as a result, rather than disrupting genes (Ibrahim et al.,

2010; Calo et al., 2014; Liu et al., 2015; Trieu et al., 2017). Genes

involved in virulence and resistance to treatment have been

identified by researchers through gene silencing. However, a

major drawback of the RNAi includes the possibility of having

false positive outcomes due to off-target effects (Schmitt, 2012). In

Mucor, gene deletion mutants are achieved by targeted integration

using either dominant selection or auxotrophic markers (Appel

et al., 2004; Larsen et al., 2004; Nicolas-Molina et al., 2008).

Vital information on the involvement of the calcineurin

pathway in MCR pathogenesis has been yielded through gene

disruption by homologous recombination effectively applied in M.

circineloides (Lee et al., 2013; Lee et al., 2015). The CRISPR/Cas9

system for gene editing of genomic DNA is the most recent

advancement in molecular tool development. In order to disrupt

a toxin-encoding gene in R. delemar utilizing a single plasmid with

pyrF as a marker and the biolistic delivery system this approach was

first used in Mucorales (Baldin et al., 2017). Southern blot analysis,

abrogation of toxin expression, and a dramatic reduction in R.

delemar’s ability to kill host cells all verified gene disruption (Baldin

et al., 2017). Consistent with CRISPR-Cas9- induced gene mutation

by non-homologous end joining (NHEJ) the CRISPR/Cas9 has been

utilized to create R. delemar pyrF mutants with a single nucleotide

deletion at the fourth nucleotide before the protospacer adjacent

motif (PAM) sequence (Bruni et al., 2019). The CRISPR-Cas9

targeted integration method was also recently adapted to reliably

and stably transform protoplasts of R. microsporus (Lax et al., 2021;

Lax et al., 2022). In M. lusitanicus, the CRISPR-Cas9 system has

been successfully employed in a plasmid-free way to disrupt two

genes: carB, which encodes phytoene dehydrogenase, and hmgR2,

which encodes 3-hydroxy-3-methylglutaryl-CoA reductase (Nagy

et al., 2017). More recently, uracil auxotrohic strains of Lichtheimia

corymbifera were obtained by targeted mutagenesis using CRISPR-

Cas9 (Ibragimova et al. 2020) These tools show promise in

deciphering the role of various regulatory genes during host-

pathogen interactions.
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Diagnosis

Early diagnosis ofMCR remains a major unmet need as clinical &

radiologic predictors lack sensitivity and specificity (Farmakiotis and

Kontoyiannis, 2016). Cultures are often negative in tissues (up to 55-

75% (Tarrand et al., 2005) as is often immunohistochemistry (IHC)/

in situ hybridization (Lockhart et al., 2021). There are limited

promising new antifungals with Mucorales activity (Lamoth et al.,

2022). Thinking of the disease and having a low threshold of

initiating therapy that has activity against Mucorales is very

important. In patients with hematological malignancies, delaying

amphotericin B-based therapy beyond 5 days after onset of

symptoms doubles 12-week mortality (Chamilos et al., 2008). Early

detection of MCR is critical for timely treatment implementation as a

result (Spellberg et al., 2012c). The traditional diagnosis ofMCR relies

on culturing the organism from normally sterile body locations and/

or tissue histology because there is currently no serology test for

diagnosis of MCR (Spellberg et al., 2005a; Ibrahim et al., 2012;

Cornely et al., 2019). Fungal elements are usually stained with

Gomori methenamine-silver, hematoxylin and eosin (H&E),

periodic acid-Schiff (PAS), or calcofluor white stain and Mucorales

can be isolated on Sabouraud-dextrose agar incubated at 25–37 °C

(Lass-Flörl, 2009). However, these procedures are insufficiently

sensitive and frequently result in a misdiagnosis due to: 1) possible

contamination of the plates, given the widespread nature of

Mucorales fungi, cultures can result in false positives; and 2) lack

of growth as a result of laboratory mishandling of specimens (e.g.

homogenization can damage hyphal components and kill the fungus)

resulting in false negatives (Spellberg and Ibrahim, 2015). The

paradox of the poor recovery of Zygomycetes hyphae from tissue

specimens remains unclear, and it may result from failure of current

culture methods to mimic physiologic conditions found in hyphae-

laden infected. Experimental evidence suggests that simulating

Mucorales growth under necrotic or semi-anaerobic tissue

conditions enhances culture yield (Kontoyiannis et al., 2007). Even

the “gold standard” that of histopathology detection of the

characteristic nature of the board ribbon-like aseptate Mucorales

hyphae is far from perfect. Minimal influence on the outcome of

therapy can be achieved with definitive histologic identification based

on morphology which can lead to error and often occur at a late stage

of the infection (Dadwal and Kontoyiannis, 2018). Radiological clues,

in the appropriate clinical context, make the early suspicion of MCR

possible in patient with hematologic cancer. The illness may be

distinguished from invasive pulmonary aspergillosis through the

radiological clues in chest CT along with the presence of a reversed

halo sign in patients with a hematologic malignancy or neutropenia

that have a strong predictive value for MCR (Chamilos et al., 2005;

Spellberg et al., 2005a; Georgiadou et al., 2011; Legouge et al., 2014;

Jung et al., 2015). Thus, the development of polymerase chain

reaction (PCR)-based technologies and Matrix Assisted Laser

Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-

TOF MS) which are recent advancements in molecular diagnostics,

have generated significant excitement the potential to speed up both

the diagnosis and treatment of MCR (see below).
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Molecular diagnostics

A potential useful tool for diagnosing MCR are real-time PCR-

based approaches, particularly in lung infections caused by

Lichtheimia, Mucor, Rhizopus, and Rhizomucor spp (McCarthy

and Walsh, 2016; McCarthy et al., 2017). PCR based diagnosis is

particularly promising, in view of the early and rapid dissemination

of MCR (in contrast to Aspergillus) The PCR amplification of

CotH3, a Mucorales-specific protein, has demonstrated to be

specific and sensitive for MCR diagnosis (Baldin et al., 2018).

CotH3 was not effectively amplified from urine, plasma, and

bronchoalveolar lavage collected from mice infected with

Aspergillus fumigatus but was effectively amplified in Mucorales

fungi-infected mice (Baldin et al., 2018). To identify DNA from the

most common MCR agents a multiplex real-time PCR (MRT-PCR)

technology has also been created (Nagao et al., 2005; Walsh, 2012).

Several studies showed significant inter-laboratory standardization

and several supportive retrospective studies and preclinical data

correlating MCR burden with qPCR kinetics (Millon et al., 2013;

Caillot et al., 2016; Millon et al., 2016; Springer et al., 2016). The

nucleotide sequence of the ITS1 ribosomal DNA region from strains

belonging to R. oryzae and R. microsporus, as well as the sequence of

the ITS2 region for Mucor spp. belonging to M. circinelloides, M.

racemosus, M. plumbeus, andM. velutinosus (Bernal-Martinez et al.,

2013), were used to design primers and molecular probes (Springer

et al., 2016). In tissue and serum samples from patients with

rhinoorbital/cerebral MCR, a semi-nested PCR-based technique

amplifying the 18S region of rDNA unique to Mucorales was

shown to be more reliable than ITS2 PCR in identifying infection

(Zaman et al., 2017). For circulating Mucorales identification in

patients with provenMCR, other quantitative PCR approaches have

investigated a mix of hydrolysis probes targeting Mucor, Rhizopus,

Lichtheimia, and Rhizomucor (Millon et al., 2013). In 9 out of 10

blood samples from individuals diagnosed with the condition

Mucorales DNA was found, which indicates that quantitative

PCR might be a valuable screening technique in high-risk patients

(Caillot et al., 2016). These data have been further validated in a

recent multicenter Study (MODIMUCOR study) (Millon et al.,

2022). Mucorales have been identified using other promising

technologies such as MALDI-TOF MS (Yaman et al., 2012).

However, MALDI-TOF MS has yet to be proven as a reliable

method for detecting MCR in clinical samples. As a diagnostic

tool the requirement for fungus culture prior to identification, as

well as the lack of substantial libraries for uncommon Mucorales

has been restricted (Cornely et al., 2019). Other emerging

technologies are multiplex pan mold PCR (Alanio and Bretagne,

2017), and a sequence-based identification/shot gun metagenomics

(Hoang et al., 2022).
Treatment of MCR

Reversal of underlying poor prognostic factors such as

neutropenia, hyperglycemia, low threshold of suspicion and early

initiation of effective antifungal therapy and in selected cases,

surgical debridement of affected tissues, and antifungal therapy,
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are the cornerstones in the management of MCR (Kontoyiannis and

Lewis, 2011; Chitasombat and Kontoyiannis, 2016).
Surgical intervention

To resect all necrotic regions, surgical debridement should be

carried out as soon as feasible and should be thorough. In cases of

rhino-orbital/cerebral infection surgeries sometimes deformity can

result (Vironneau et al., 2014). Better outcomes have been

associated with extensive and repeat surgical debridement of the

rhino-orbital/cerebral MCR which have been shown by many

uncontrolled investigations (Gil-Lamaignere et al., 2005; Chamilos

et al., 2010; Potenza et al., 2011). After radical surgery, 90% of

patients achieved local infection control, compared to 41.6% in

patients who underwent less extensive surgery (Vironneau et al.,

2014). However, in modern times, such disfiguring surgeries are

much less common in the era of early rhinoscopic evaluation of the

sinuses (Davoudi et al., 2015). In pulmonary MCR, although patient

selection also plays a role (patients with terminal underlying disease

are typically excluded from surgery), studies have shown that

patients treated with a combined medical-surgical approach had a

better outcome than patients who did not undergo surgery (Lee

et al., 1999).
Treatment with antifungal drugs

In vitro data indicate that a limited number of FDA-approved

antifungals (amphotericin B-based formulations, and the triazoles

posaconazole. isavuconazole and possibly itraconazole) have

activity against Mucorales and that there are species-specific

differences in susceptibility to azoles (e.g., high posaconazole

minimum inhibitory concentrations [MICs] in some Mucor

species, high MIC to isavuconazole in Rhizomucor, multidrug

resistance [MDR] in Cunninghamella and in some Rhizopus spp.)

(Almyroudis et al., 2007; Lamoth and Kontoyiannis, 2019; Borman

et al., 2021). However, despite the useful information of in vitro

studies the in vitro/in vivo correlation in the management of

complicated opportunistic mold infections in humans such is

MCR remains problematic (Lamoth et al., 2020).

Most of the treatment experience is derived from amphotericin

B-based therapy. The therapy of choice has become Lipid

amphotericin B formulations (e.g. liposomal amphotericin B [L-

AMB], and amphotericin B lipid complex [ABLC]) since they can

be given in higher doses than amphotericin B-deoxycholate and

have improved nephrotoxicity index (Fera et al., 2009; Vehreschild

et al., 2013; Cornely et al., 2019). As a “step-down” treatment

following the primary therapy with L-AMB, the broad-spectrum

oral triazoles of posaconazole and isavuconazole can be used

(Kontoyiannis and Lewis, 2011; Allen et al., 2015; Marty et al.,

2016). There are no randomized clinical trials evaluating the

effectiveness of antifungal medications since MCR is an

uncommon condition, affecting many host groups, presenting

with different clinical syndromes, and caused by a variety of

Mucorales (Figure 1). However, a multicenter open-label single-
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arm research (VITAL study) including 37 patients with MCR found

that isavuconazole monotherapy is as effective as L-AMB or L-AMB

plus posaconazole (Marty et al., 2016). In fact, clinically relevant

dosages of isavuconazole, which is licensed by the FDA and the

European Medicines Agency for the treatment of MCR patients

were equated to tissue clearance and survival in mice (Gebremariam

et al., 2020). Figure 4 introduces an algorithm for MCR treatment.

The poor outcomes of MCRwith currently available monotherapy,

particularly in patients with hematologic malignancies, has stimulated

interest in studying various combinations of antifungal agents

(Spellberg et al., 2012b). In contrast to L-AMB + posaconazole

combination (Ibrahim et al., 2009), comparative effectiveness of

isavuconazole + L-AMB in treating diabetic mice, showed synergy in

treating mice infected with either R. delemar or M. circinelloides

(Gebremariam et al., 2021). Given the lack of easy extrapolation

from experimental models to the complexity of human MCR, the

synergy between L-AMB and isavuconazole therapy is yet to be

determined in clinical trials.

Despite harboring the echinocandin-target enzyme glucan

synthase (FKS) needed for 1,3-b-glucan production (Ma et al.

2009), Mucorales species show innate in vitro resistance to

echinocandins because glucans are not a major component of the

Mucorales cell wall (Ibrahim et al., 2005a). However, a synergistic

relationship between echinocandins and lipid formulation

amphotericin B was observed in DKA mice infected with Rhizopus

showing enhanced survival when compared to monotherapy

(Spellberg et al., 2005b; Ibrahim et al., 2008a). These experimental

studies are consistent with data obtained from a retrospective study

employing limited 41 diabetic patients with rhino-orbital MCR.

Specifically, patients treated with a combination of caspofungin and

amphotericin B-based drugs had better survival than those treated

with amphotericin B-based drugs alone (Reed et al., 2008). It is

thought that immune detention and phagocytosis of invading hyphae

is allowed when immunological epitopes on Mucorales cell wall,
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which are unmasked by echinocandins inhibition of b-glucan
synthesis (Reed et al., 2008). However, in MCR patients with

hematologic malignancies and hematopoietic cell transplant

recipients, a retrospective cohort study using propensity score

analysis found that the combination L-AMB with posaconazole

(suspension) or with echinocandins, or posaconazole with

echinocandins resulted in no differences in 6-week mortality

between monotherapy and combination treatment (Kyvernitakis

et al., 2016). It was revealed that L-AMB + micafungin treatment

provided little enhancement in survival of neutropenic mice versus

L-AMB monotherapy which are in line with data obtained in

neutropenic patients (Ibrahim et al., 2008a). Overall, a combination

of lipid formulation amphotericin B and echinocandins have been

shown by the human retrospective and murine experimental results

to help patients with DKA than those with hematologic malignancies

or hematopoietic cell transplant recipients. It would be of interest to

revisit the merits of combination therapy, with other conventional or

investigational antifungals.
Antifungal drugs in development

Some investigational drugs are currently in development with

demonstrated in vitro activity against Mucorales and in

experimental models of MCR. In a delayed treatment model of

immunosuppressed mice infected with R. arrhizus var. arrhizus, the

1-tetrazole fungal-specific 14 a-lanosterol demethylase (CYP51)

inhibitor VT-1161 demonstrated equivalent effectiveness to high

dosage L-AMB (Gebremariam et al., 2015). When administered as

prophylaxis, both VT-1161 and posaconazole enhanced lifespan

and reduced tissue fungal load in immunosuppressed mice infected

with R. arrhizus var. arrhizus. Furthermore, VT-1161 was superior

to posaconazole in terms of extending mice survival time when used

as a continuous treatment (Gebremariam et al., 2015). Future
FIGURE 4

An Algorithm for Mucormycosis Treatment.
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clinical studies are needed to evaluate the therapeutic impact of

tetrazoles in human MCR.

Manogepix (formerly APX001A and E1210) is a first-in-class

antifungal drug with good activity against several fungal pathogens

including Mucorales fungi (Shaw and Ibrahim, 2020; Lamoth et al.,

2022). The fungal Gwt1 enzyme which catalyzed inositol

acylation is inhibited by manogepix, an early step in the

glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway

(Umemura et al., 2003). Treatment with fosmanogepix (the

prodrug of manogepix) substantially enhanced and prolonged

median survival time of mice infected with either R. arrihzus var.

arrhizus or R. arrihzus var. R. delemar, when compared to placebo.

Furthermore, a 1-2 log decrease in both lung and kidney fungal loads

resulted from fosmanogepix treatment (Gebremariam et al., 2020).

Further, a combination of fosmanogepix and L-AMB was found to be

superior to monotherapy in treating immunosuppressed mice

infected with R. arrihzus var. R. delemar with enhanced survival,

tissue fungal clearance and histology improvement of infected lungs

(Gebremariam et al., 2022). Beyond mice studies, no clinical data

exist regarding the efficacy of manogepix, given alone or in

combination for primary or salvage therapy of MCR. Recently, it

was shown that Rhizopus hyphae killing can be enhanced by

delivering sub-micromolar concentrations of amphotericin B

through liposomes targeted to the fungal hyphae by the inclusion

of dectin-1 receptor which binds to fungal b-glucans (Choudhury

et al., 2022). These exciting results of enhancing the amphotericin B

therapeutic index with lower and less toxic concentration are yet to be

verified in animal models or clinical trials.
Adjunctive therapies

Adjunctive therapies are crucial in managing mucormycosis. A

promising adjunctive therapy is iron chelation, specifically with

deferasirox, which has demonstrated potential in inhibiting the

growth of Mucorales fungi by reducing the availability of iron, an

essential nutrient for their proliferation (Ibrahim, 2006).

Additionally, immune modulation therapies such as granulocyte

transfusions and cytokine therapies are being studied to enhance

the host’s immune response against Mucorales infections

(Lanternier et al., 2015). While these adjunctive therapies show

promise, further research and clinical trials are necessary to

determine their optimal use and effectiveness. In individuals with

DKA suspected of having MCR, the restoration of the host’s ability

to chelate iron resulted in enhanced activity of neutrophils in killing

Mucorales ex vivo (Gebremariam et al., 2016). This was achieved by

reversing acidemia (acidosis) with sodium bicarbonate. Further, the

administration of sodium bicarbonate partially prevented the

capacity of R. delemar to invade endothelial cells (Gebremariam

et al., 2016). Moreover, in a mouse model of ketoacidosis, treatment

with sodium bicarbonate protected against invasive lung infection

(Gebremariam et al., 2016). These findings suggest that individuals

with DKA suspected of having Mucorales infection may benefit

from the rapid correction of hyperglycemia and acidemia using

insulin and sodium bicarbonate, respectively, to improve the host’s

defense mechanisms (Gebremariam et al., 2016).
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Restriction of available serum iron with new generation of

xenosiderophores, inhibits fungal growth and protects DKA mice

against MCR (Ibrahim, 2006; Ibrahim et al., 2007). In patients with

DM it is suggested in case reports that it is beneficial to use iron

chelation therapy as an adjunctive treatment (Spellberg, 2009).

Adding deferasirox to L-AMB treatment was found to be harmful

primarily in patients with hematologic malignancies in a small (20

patient) multi-center, placebo controlled, double-blind study

(DEFEAT Mucor) (Spellberg et al., 2012a). The data do not

support the use of deferasirox as an initial supplementary therapy

for MCR in hematologic malignancies patients although the

population imbalances in this small phase II study make

generalizable inferences problematic. These findings are not

surprising since hematologic malignancies patients generally do

not suffer from iron overload due to acidosis or hyperglycemia.

The use of hyperbaric oxygen (HBO) is another therapy that is

likely to be useful in conjunction with surgery and antifungal therapy.

HBO therapy raises blood oxygen levels and boosts neutrophil

activity (Lerche et al., 2022). Adjunctive HBO proved promising in

diabetic patients (94% survival), but not in those with hematologic

malignancies or bone marrow transplants (33% survival; p 0.02)

(Price and Stevens, 1980; Ferguson et al., 1988; Kajs-Wyllie, 1995;

Barratt et al., 2001; John et al., 2005). A better rate of survival was

linked to prolonged courses of HBO (John et al., 2005).

Based on limited in vitro data and anecdotal case reports, strategies

that boost the immune system, such as the administration of

granulocyte (macrophage) colony stimulating factor or interferon-g,
or possibly check point inhibitors or their combination have been

advocated as adjuvant therapy (Abzug and Walsh, 2004; Gil-

Lamaignere et al., 2005). A combination of Interferon-g with

nivolumab (a monoclonal antibody that reduces programmed death-

1 [PD-1] expression on T-cells) was found to be effective in an

immunocompromised patient with intractable MCR in a recent case

report (Grimaldi et al., 2017).
MCR in the era of COVID-19

COVID-19-associated (CAM) MCR has recently emerged as an

important superinfection among COVID-19 patients with

documented cases from various regions of the world, and most

notably in India (Raut and Huy, 2021; Ravani et al., 2021). Between

May and August of 2021, more than 47,000 cases were reported,

among mainly diabetic patients suffering from COVID-19 infection

in India alone forcing the government to declare MCR as an

epidemic. Whether COVID-19 infection by itself predisposes

patients to MCR is not clear. Both in India and the rest of the

world, the vast majority of excess cases of MCR during the COVID-

19 pandemic have likely been attributable to a combination of DM

and corticosteroid (John et al., 2021; Raut and Huy, 2021; Ravani

et al., 2021; Singh et al., 2021). Almost 1/3 of the recent reported

Indian MCR cases were among non-COVID-19 infected patients

(Patel et al., 2021; Ravani et al., 2021), thereby underscoring the

high baseline rate of infection in this country which was previously

estimated to be 70-fold higher than any other part of the world

(Patel et al., 2021). Furthermore, the large majority of MCR cases in
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COVID-19 patients in India have been of the rhino-orbital-cerebral

(ROC) type (Ravani et al., 2021; Singh et al., 2021), and pulmonary

infection has been rare. The pathogenesis of CAM remains an

enigma. It is possible that COVID-19 predispose patients to newly

onset DM or the ones with preexisting DM to experience worsening

of glycemic control or full blown DKA, as SARS CoV-2 infection is

associated with high expression of angiotensin-converting enzyme 2

(ACE2) receptor in pancreatic islets (potentially destroying these

cells), along with increased insulin resistance due to cytokine storm

(Kothandaraman et al., 2021). Interestingly, high expression of

GRP78 in COVID-19 patients has been reported, possibly as a

result of the viral-induced endoplasmic reticulum stress cascade

(Sabirli et al., 2021). It was also recently shown that GRP78 forms a

complex with ACE2 to act as an auxiliary receptor to the SARS

COV-2 (Carlos et al., 2021). Thus, with GRP78 being a receptor to

Mucorales fungi (Gebremariam et al., 2014; Gebremariam et al.,

2016; Alqarihi et al., 2020), there is an increased probability that the

presence of elevated GRP78 levels in COVID-19 patients

specifically predispose to MCR.
Summary

Despite advances in risk stratification, dissection of pathogenesis

of the disease, imaging and increasingly the introduction of non-

culture-based diagnostics, MCR continues to be associated with high

rates of death and disability. Further improvements in molecular

diagnostics and the establishment of large patient registries are key

components of ongoing efforts. We believe that disease outcomes will

further improve by the combination of much earlier diagnostics

(surveillance vs. adjunct diagnostics), immuno-restoration/

immunotherapeutic strategies, and the introduction of potent new

antifungals. Further investments on developing pathophysiologically

appropriate and phylogenetically disparate model systems of MCR

(e.g. flies (Shirazi et al., 2014), Galleria mellonella (Maurer et al.,

2019), zebra fish (Wurster et al., 2021) and mice (Jacobsen, 2019;

Stevens et al., 2020)), along with advances in the molecular toolbox

systems would further shed lights on the complex pathophysiology of

this important disease.
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