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Mycobacterium marinum (M. marinum) is a non-tuberculous mycobacterium

(NTM) that can cause infectious diseases in aquatic animals and humans.

Culture-based pathogen detection is the gold standard for diagnosing NTM

infection. However, this method is time-consuming and has low positivity rates

for fastidious organisms. Oxford Nanopore MinION sequencing is an emerging

third-generation sequencing technology that can sequence DNA or RNA directly

in a culture-independent manner and offers rapid microbial identification.

Further benefits include low cost, short turnaround time, long read lengths,

and small equipment size. Nanopore sequencing plays a crucial role in assessing

drug resistance, clinical identification of microbes, and monitoring infectious

diseases. Some reports on Mycobacterium tuberculosis (MTB) using nanopore

sequencing have been published, however, there are few reports on NTM, such

as M. marinum. Here, we report the use of nanopore sequencing for the

diagnosis of M. marinum.
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1 Introduction

Mycobacterium marinum (M. marinum) is a slow-growing, non-tuberculous

mycobacterium (NTM) and the leading cause of extra-respiratory NTM infections

worldwide. It was first isolated from fish in 1926 (Streit et al., 2006; Ackleh et al., 2015).

The first human case ofM. marinum infection was reported in 1951 by Norden and Linell

(Hashish et al., 2018), the infection presents as a nodular granulomatous disease (Johnson

and Stout, 2015). M. marinum culture is time-consuming and has a low positivity rate
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(70%) (Yu et al., 2023) for pathogen detection. M. marinum is a

photochromogen that produces yellow pigment after exposure to

light. Ziehl-Neelsen staining of specimens is rarely positive (Akram

and Aboobacker, 2022), and even positive smear microscopy

analysis cannot distinguish M. marinum from other mycobacteria

(Aubry et al., 2017). Traditionally, M. marinum infections have

been diagnosed in the laboratory using culture-based detection

which requires a significant amount of time to isolate the

bacterium from the clinical specimens and identify the species. M.

marinum grows best at 30 °C but is inhibited at 37 °C (Aubry et al.,

2017). Therefore, microscopic and culture-based results are often

negative in clinical microbiological studies. PCR and serological

assays are rapid and culture-independent techniques; however, both

require prior knowledge of the types of pathogenic microorganisms.

Moreover, these methods focus on individual pathogens rather than

entire populations (Rajapaksha et al., 2019). Fortunately, recent

technological advances in nanopore sequencing by Oxford

Nanopore Technologies (ONT) have the potential to address

these challenges.

Pocket-sized MinION was the first commercially available

third-generation nanopore sequencing device developed by ONT

in 2014 (Reuter et al., 2015). which is powered directly by a USB

port from a laptop computer. The basic working principle of

nanopore sequencing is to monitor electrical current changes

caused by nucleic acids passing through a nanopore protein.

Subsequently, the resulting signals are decoded to provide a

specific DNA or RNA sequence (Wang et al., 2015). This new

sequencing technology has many advantages, including short

sequencing time, long read length, and low cost (Walter et al.,

2017; Taylor et al., 2019a). The maximum turnaround time from

sample collection to the delivery of the results is 6 h (Greninger

et al., 2015), with data acquisition completed within 10 min once

the sample is loaded onto the MinION (Greninger et al., 2015).

Because of its portability, a MinION nanopore sequencer can be
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taken directly to the patient’s bedside and used to detect pathogens

in many different environments (Reuter et al., 2015). In addition,

nanopore sequencing is becoming more clinically viable owing to

continued improvements in its accuracy and throughput. This

technology has made nanopore sequencing an attractive

diagnostic technique that produces longer reads to improve the

clinical diagnosis, research, and epidemiological tracking of

infectious diseases. Many studies have reported on the analysis of

Mycobacterium tuberculosis (MTB) using nanopore sequencing

(Smith et al., 2020; Gliddon et al., 2021; Dippenaar et al., 2022);

however, there are few reports on NTM, such asM. marinum (Xing

et al., 2022). Here, we report the use of third-generation nanopore

sequencing to diagnose a case of M. marinum.
2 Case description

2.1 Patient and clinical findings

A 67-year-old man was admitted with a history of chronic pain in

the left hand that had reduced his mobility and dexterity for more

than four months. The initial injury had occurred when a crab bit his

left index finger. Topical disinfection was not performed. This

resulted in the spread of the infection and severe swelling of the

left palm and wrist. Resection of the wrist lesion revealed that finger

flexor tendons 1-5 were covered with yellow granulation and an

extensive, localized yellow purulent discharge (Figure 1A). The focal

tissue of the left wrist was excised and sent for pathological

examination. B-scan ultrasonography revealed infectious lesions in

the flexor tendon sheaths of the left lower forearm, left wrist, and left

index finger (Figure 1B). Computed tomography of the left wrist

showed fluid accumulation around the tendons of the thumb and

flexor carpi; therefore, tenosynovitis was suspected (Figure 1C).

Pathological examination revealed chronic granulomatous
FIGURE 1

(A) The left wrist was wrapped with yellow granulation and extensive, localized yellow purulent discharge. (B) B-scan ultrasonography revealed
infectious lesions in the flexor tendon sheaths of the left lower forearm, left wrist, and left index finger. (C) Computed tomography of the left wrist
showed fluid accumulation around the tendons of the thumb and flexor carpi. (D) Pathological examination revealed chronic granulomatous
inflammation (H&E; ×200). (E) Ziehl-Neelsen staining for AFB was positive. (F) The fluorescence staining for AFB was strongly positive.
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inflammation with small necrotic foci (Figure 1D). Routine

laboratory tests yielded negative results for MTB and NTM DNA.

Nomycobacterial growth was observed after 42 days of culture. Ziehl-

Neelsen staining for AFB was positive (Figure 1E). The fluorescence

staining for AFB was strongly positive (Figure 1F). Therefore, it was

necessary to further distinguish between NTM and MTB.
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2.2 Nanopore sequencing

To further characterize the pathogen, nanopore MinION

sequencing was performed to accurately identify the infectious

agent. The protocol for using MinION is described below and

shown in Figure 2A.
B C

A

FIGURE 2

(A) Flow chart of nanopore sequencing. An abscess sample was collected in a sterile tube, DNA from sample was extracted. The extracted DNA was
used for PCR amplification. The PCR products were used for library preparation. The purified libraries were loaded onto a flow cell on MinION
platform. The Guppy convert FAST5 files to FASTQ for data analysis. Reads under 200 bp and Human DNA reads were filtered. Sequenced reads
were analyzed by the What’s In My Pot workflow via EPI2ME. Finally, the remaining reads were aligned to the NCBI Microorganism Genome
Database. (B) The read length distribution histogram. (C) Quality analysis of MinION sequencing.
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2.2.1 Sample collection
First, an abscess sample was collected from the patient’s left

hand into a sterile tube. The samples met the criteria for clinical

examination. The samples were processed immediately, unless

otherwise specified.

2.2.2 DNA extraction and amplification
The sample and an equal volume of DTT solution were digested

with 10 mLproteinase K and 5 mL lysozyme and ground using

0.05 mm zirconia grinding beads. The grinding was performed

using a grinder. The nucleic acid was extracted from the ground

sample with magnetic beads using the QIAamp DNA Microbiome

Kit (Cat. No.51707, Qiagen, Hilden, Germany) according to the

manufacturer’s protocol. The concentration of the extracted DNA

was determined. PCR amplification was performed to detect

bacterial 16S rRNA genes. The primers used for PCR

amplification are listed in Supplementary Table 1. PCR

amplification was performed using an ABI 2720 Thermal Cycler

(Cat. No. 435659; ABI, California, CA, USA) under the following

conditions: an initiation denaturation step at 95°C× 3 min, then six

cycles at 95°C × 30 s/64°C × 30 s/72°C × 60 s, and a final extension

step at 72°C × 3 min. The PCR amplification products were ranged

from 200 to 850 bp. The PCR amplification products were purified

and quantified using Qubit 4 and agarose gel electrophoresis for

subsequent library preparation and nanopore sequencing.

2.2.3 Library preparation and
nanopore sequencing

The nanopore barcode PCR products were purified with 0.6 ×

AMPure beads, and each purified barcode PCR product was pooled

in equal amounts for nanopore library preparation. which was

constructed using a ligation sequencing kit (Cat. No. SQK-LSK109,

Oxford Nanopore Technologies, Oxford, UK) according to the

manufacturer’s instructions. Next, 100ng of the final prepared

library was loaded onto a flow cell (R9.4.1) and inserted into a

sequencer connected to a computer. The GridION platform was

used for sequencing, and MinKNOW software was used to output

the base-calling data. Barcode demultiplexing was performed using

Porechop (version. 0.2.4). During MinION sequencing, the current

signal as the nucleic acid molecules passed through the nanopore

was detected, and the data were stored in a FAST5 format file. Then,

Guppy (version 3.2.1, ONT, Oxford, UK) was used to convert

FAST5 files to FASTQ for data analysis.

2.2.4 Pathogen identification
First, quality filtering of original sequencing reads was

performed, followed by follow-up analysis and sequencing reads

for bacterial classification were analyzed using theWhat’s In My Pot

(WIMP) workflow via the EPI2ME platform (version 3.2.2, ONT,

Oxford, UK). EPI2ME is a set of real-time analytical tools that

includes species identification and reads quality control. Reads of <

200 bp were filtered. Human DNA reads were removed via

alignment with the human reference genome. Finally, the

remaining reads were aligned to the NCBI Microorganism
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Genome Database. Pathogens were classified at the species level

based on percentage coverage and identity. Generally, the top 10

microorganisms, ranked by aligned reads and with a relative

abundance score > 0.5%, were classified as pathogens and

subjected to further evaluation. Potential pathogen(s) were

reported if the number of reads accounted for ≥ 1% of microbial

reads and had a WIMP alignment score ≥ 20 (Charalampous et al.,

2018). The time required for identification was 16–17 h from the

start of the test to the delivery of the test results. The quality filter

was Q7. A total of 19,872 reads were obtained, including 16,918

high-quality reads; the average length of all reads was 2686 bp

(range: 200 to 3554 bp, Figures 2B, C). The M. marinum sequence

(accession:GCA_000723425.2) was ultimately used for

identification. The positive threshold of effective reads for analysis

was set to coverage ≥ 85% and identity ≥ 90%. Finally, nanopore

sequencing detected M. marinum in purulent secretion samples.

The number of reads was 4176 (Supplementary Table 2), and the

relative abundance was 92.37%. The patient received combination

therapy with ethambutol (750 mg/day, oral), rifampin (450 mg/day,

oral), and isoniazid (300 mg/day, oral). Eventually, he experienced

full resolution of his symptoms, and no relapse was observed during

the six-month follow-up period.
3 Discussion

Both NTM and MTB belong to the genus Mycobacterium and

have similar pathogenic mechanisms and clinical manifestations,

which often result in misdiagnosis. Culture-based detection is a

conventional method for diagnosing NTM infections. However, M.

marinum is a slow-growing microorganism that is difficult to

culture. Typically, it takes over two weeks to grow, and optimal

growth requires low temperatures (approx. 30 °C) (Aubry et al.,

2017). The isolation culture-based detection is generally performed

at 37°C; therefore, a risk of culture-negative infections misdiagnosis

emerges. In addition,M. marinum andM. ulcerans share more than

98% of their genomes, and no current PCR techniques can

distinguish between them (Aubry et al., 2017). Next generation

sequencing (NGS) platforms can identify all microorganisms in a

sample within 24 h (Naccache et al., 2014; van Dijk et al., 2014).

However, short sequencing reads make it difficult to parse the

complex genomic structures of microorganisms. In addition, the

high cost, lengthy and tedious processes, and large equipment size

remain major deterrents to its routine use in clinical settings.

Therefore, there is an urgent need to develop rapid and accurate

methods to detect pathogenic microorganisms. Nanopore

sequencing is increasingly recognized for its advantageous

characteristics, including short turnaround time (< 6 h), long read

lengths, small equipment size, and affordability, making it a valuable

asset in a clinical microbiology laboratory (Jain et al., 2016; Petersen

et al., 2019). Recently nanopore sequencing has enabled the

sequencing of bacterial, viral, and fungal genomes (Ashton et al.,

2015; Loman et al., 2015; Istace et al., 2017).

In our case, the patient had abscesses with yellow pus and

granulomas that were visible on pathological examination,
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suggesting a possible MTB or NTM infection. Ziehl-Neelsen and

fluorescent staining for AFB were positive. However, microscopy

alone cannot distinguish between cases of MTB and NTM, and it

was difficult to determine which microorganism was responsible for

the primary infections. MTB DNA and NTM DNA tests were

negative in our study. No microorganisms were observed to grow in

the culture medium. Nanopore sequencing was used to identify the

infectious agent accurately. Fortunately, nanopore sequencing

confirmed that the infection was caused by M. marinum. These

findings indicate that Nanopore MinION sequencing can be used as

a rapid diagnostic tool for infectious diseases.

Nanopore sequencing is a valuable sequencing technology, in

which different nucleotide bases are distinguished by changes in the

current when an ionic current is passes across the flow cell during

sequencing (Laver et al., 2015). High-throughput sequencing is used

in various clinical fields, such as identification, characterization, and

surveillance of pathogenic microorganisms; detection of drug

resistance genes and evaluation of the resistance phenotype; and

description of disease-related microbial community (Zhang et al.,

2022). This method offers many solutions to the current challenges

in genome sequencing. However, a major limitation of this

approach is its read accuracy, which can be compromised by a

high error rate and insufficient sequencing depth when the

technology is used repeatedly on the same sequence (Petersen

et al., 2019; Taylor et al., 2019a). In addition, there is no genus-

level identification of an organism, and the utility and diagnostic

yield of metagenomic sequencing is considerably reduced in other

clinical situations. Most software developed to interpret nanopore

sequences requires relatively high bioinformatics skills, which are

unavailable to most biologists. With continued improvements in the

accuracy and throughput of nanopore sequencing platforms, the

sequencing error rate has reached a clinically acceptable range

(Taylor et al., 2019b). In conclusion, nanopore sequencing is a

reliable method for the rapid detection of pathogens in suspected

infections. We believe that nanopore sequencing will become a

routine diagnostic tool in the field of clinical infectious disease

diagnosis and healthcare surveillance in the near future.
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