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Lung infections in Influenza-Like Illness (ILI) are triggered by a variety of

respiratory viruses. All human pandemics have been caused by the members

of two major virus families, namely Orthomyxoviridae (influenza A viruses

(IAVs); subtypes H1N1, H2N2, and H3N2) and Coronaviridae (severe acute

respiratory syndrome coronavirus 2, SARS−CoV−2). These viruses acquired

some adaptive changes in a known intermediate host including domestic birds

(IAVs) or unknown intermediate host (SARS-CoV-2) following transmission

from their natural reservoirs (e.g. migratory birds or bats, respectively). Verily,

these acquired adaptive substitutions facilitated crossing species barriers by

these viruses to infect humans in a phenomenon that is known as zoonosis.

Besides, these adaptive substitutions aided the variant strain to transmit

horizontally to other contact non-human animal species including pets and

wild animals (zooanthroponosis). Herein we discuss the main zoonotic and

reverse-zoonosis events that occurred during the last two pandemics of

influenza A/H1N1 and SARS-CoV-2. We also highlight the impact of

interspecies transmission of these pandemic viruses on virus evolution and

possible prophylactic and therapeutic interventions. Based on information

available and presented in this review article, it is important to close

monitoring viral zoonosis and viral reverse zoonosis of pandemic strains

within a One-Health and One-World approach to mitigate their unforeseen

risks, such as virus evolution and resistance to limited prophylactic and

therapeutic interventions.
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1 Introduction

Zoonotic viral pathogens are those pathogens that can escape

species barriers to transmit or jump from their non-human natural

reservoirs, including avian or mammalian species, to humans in a

process that is known as zoonosis. Most human infectious diseases

(60-75%) are derived from pathogens that originally circulated in

non-human animal species (Ellwanger and Chies, 2021). The ability

of the virus to escape species barriers and jump to infect humans is

always associated with hazardous consequences on individual and

public health due to the lack of pre-existing immunity to the

invading zoonotic virus, representing unforeseeable health

concern (Seal et al., 2021; Tomori and Oluwayelu, 2023).

Zoonotic viruses may occasionally infect humans and can cause

diseases in people ranging from mild to severe symptoms and even

death (Mostafa et al., 2018; Rahman et al., 2020). During this

century, the world has been confronted with the emergence of

two respiratory pandemics that were originally transmitted from

animals to human, specifically influenza A/H1N1 in 2009 and

coronavirus disease 2019 (COVID-19), caused by the 2009

influenza H1N1 virus (A/H1N1pdm09) and severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively.

In this narrative review article, we review these human respiratory

virus pandemics, their frequent host-jumping events between

human and non-human animal species, and the molecular

determinants that ease viral transmission or improve viral fitness

in domestic pets and wildlife animals, including the potential of

establishing new vessels for virus evolution and spreading. In

addition, the ability of influenza A/H1N1pdm09 virus and SARS-

CoV-2 to infect other hosts with diverse biological factors is usually

associated with the emergence of immune escape or drug-resistant

variant(s). Hereafter, we also discuss the impact of the interspecies

circulation of the two pandemic viruses on the currently available

medical interventions.
2 Origin and zoonotic potential of
influenza and coronaviruses

Influenza viruses are single-stranded, negative-sense segmented

enveloped RNA viruses that belong to the family Orthomyxoviridae

in the order Mononegavirales (Webster et al., 1992), and are divided

in four types: A, B, C, and D. While influenza A (IAV) and B (IBV)

viruses infect humans and induce seasonal epidemics with

occasional pandemics, influenza C viruses (ICV) can infrequently

infect humans with mild cold-like symptoms especially in young

children (Calvo et al., 2006), and influenza D viruses (IDV) mainly

infect cattle, pigs (Liu et al., 2020), and occasionally poultry species

(Bailey et al., 2020), with few recently reported human cases in dairy

farm workers (Leibler et al., 2023).

Genetically, the IAV particle is composed of a host-derived lipid

bilayer envelope with protruding surface glycoproteins, namely

hemagglutinin (HA) and neuraminidase (NA), that are encoded

by viral segments 4 and 6, respectively. The viral segment 7 encodes
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two viral proteins, the matrix protein 1 (M1, lining the inner surface

of the viral particle) and the matrix protein 2 (M2, transmembrane

channels). The core of the viral virion is made of the eight viral

ribonucleoprotein complexes (vRNPs) consisting of each viral RNA

segment encapsulated by the viral nucleoprotein (NP, encoded by

viral segment 5), and containing the three polymerase subunits

(polymerase basic 2 (PB2, encoded by viral segment 1), polymerase

basic 1 (PB1, encoded by viral segment 2), and polymerase acidic

(PA, encoded by viral segment 3)). The 8th viral segment encodes

two viral proteins, namely the non-structural protein 1 (NS1) and

the nuclear export protein (NEP), or non-structural protein (NS2)

(Mostafa et al., 2018).

IAVs have a wide host range including humans, equine, canine,

swine, and domestic and wild birds (Figure 1A). Wild aquatic birds

are the major natural reservoirs of IAVs (Mostafa et al., 2018;

Rahman et al., 2020). Based on the antigenicity of the two outer

surface glycoproteins (HA and NA), avian IAVs (AIVs) are classified

into 16 HA and 9 NA subtypes, in addition to two other subtypes

H17N10 and H18N11 identified in bats (Figure 1A) (Webster et al.,

1982; Yang et al., 2021). Due to the complexity in its ecology and

genetic nature, IAVs continuously undergo viral evolution that

includes both gradual minor (antigenic drift) and sudden major

(antigenic shift) changes in the viral genome (Kim et al., 2018).

To date, several zoonotic IAVs were able to cross the species

barriers and result in human infections. For instance, IAVs

circulating in birds, the so-called AIVs, of H5N1 (Chan, 2002),

H5N6 (WHO, 2022), H5N8 (Pyankova et al., 2021), H6N1, H7N2

(Philippon et al., 2020), H7N3 (Freidl et al., 2014), H7N4 (WHO,

2022), H7N7 (Freidl et al., 2014), H7N9 (Petersen et al., 2018;

WHO, 2022), H9N2 (Peacock et al., 2019), H10N3 (WHO, 2023a),

H10N7, and H10N8 (Philippon et al., 2020) subtypes were reported

to infect humans. Unlike AIVs, neither equine influenza virus

(EIV), including H3N8 or H7N7 subtypes (Yondon et al., 2014;

Chambers, 2022), nor canine influenza virus (CIV) H3N8 or H3N2

subtypes (Martinez-Sobrido et al., 2020) were isolated from

humans. However, several serological evidence for equine-to-

human transmissions have been reported in humans in different

countries (Khurelbaatar et al., 2014; Xie et al., 2016). On the same

hand, avian-origin reassortant influenza A/H3N8, expressing the

internal proteins-encoding segments from Eurasian lineage A/

H9N2 poultry viruses, has been recently detected in an infected

boy from China (Bao et al., 2022; Yang et al., 2022). More recently,

three human infections with avian influenza A/H3N8 were reported

to the World Health Organization (WHO) from China

(WHO, 2023b).

Another major host for zoonotic potential is swine which is

considered as a mixing vessel for the generation of new genotypes/

phenotypes of IAVs. Binding to the correct host cell receptor is the

key of establishing virus infection (Schmier et al., 2015). While

AIVs and human IAVs preferentially bind to sialic acid (SA) a-
linked at C2 to a galactose of cellular glycoprotein at C3 (a2-3 SA)

or C6 (a2-6 SA) receptors, respectively, swine has both avian and

human receptors whereby it can be infected with both IAVs and

generate new subtypes through genetic reassortment between IAVs

from different origins (Rogers and D'Souza, 1989). The influenza
frontiersin.or
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virus pandemic in 2009 is a paradigm of the genetic reassortment

where the genetic segments of IAVs from different sources (human,

avian, and swine) mixed in swine to generate the swine-origin IAV

(referred to as influenza A/H1N1pdm09 virus) to which humans

had no pre-existing immunity (Figure 1B) (Smith et al., 2009). To

this point, the molecular features and host adaptive substitutions of

the influenza A/H1N1pdm09 virus are variable due to the

complexity in the genotyping of the emerged virus that resulted

from the intermixing of different genes from the North American

triple reassortant swine influenza viruses (SIVs) and European

avian-like SIVs. For instance, in influenza A/H1N1pdm09 virus,

the PB2 and PA genes are from avian origin, the PB1 from human-

origin, and the HA, NP, and NS from classical SIVs that altogether

came from North American triple reassortant swine influenza;

whereas the NA and M genes were acquired from the European

avian-like SIV (Figure 1B) (Smith et al., 2009). To cross species

barrier, several adaptive substitutions were acquired in influenza A/

H1N1pdm09 virus to be transmitted from swine and induce

infection in humans; then other adaptive substitutions were

acquired while circulating in humans. Herein, we provide insights

on the different adaptive substitutions in different genes of influenza

A/H1N1pdm09 virus that render human infection and continuous

circulation. During the first year of virus circulation, influenza A/

H1N1pdm09 virus was responsible of 151,700 – 575,400 deaths
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worldwide (Juvet et al., 2021). Currently, influenza A/H1N1pdm09

viruses circulate and induce epidemics in humans as one of the

seasonal influenza virus strains.

Coronaviruses (CoVs) are single-stranded, positive-sense

enveloped RNA viruses that belong to the family Coronaviridae

in the order Nidovirales (Weiss and Navas-Martin, 2005). CoVs are

classified based on differences in protein sequences into four genera:

alphacoronavirus (alpha-CoV), betacoronavirus (beta-CoV),

gammacoronavirus (gamma-CoV), and deltacoronavirus (delta-

CoV). Beta-CoV are further subdivided into four subgroups (A,

B, C, and D) (Su et al., 2016). Based on phylogenetic analysis,

rodents are considered the reservoir for many alpha-CoV and beta-

CoV, while birds are the main reservoir for gamma-CoV and delta-

CoV (Su et al., 2016). To date, seven CoVs jumped the species

barriers to induce human infections (Figure 2). Two of them

belonged to the alpha-CoV genera (HCoV-229E and HCoV-

NL63) while the other five CoVs [HCoV-OC43, HCoV-HKU1,

severe acute respiratory syndrome (SARS-CoV), Middle East

respiratory syndrome (MERS), and SARS-CoV-2] are beta-CoV

(Figure 2) (Cui et al., 2019; Mostafa et al., 2020). The natural

reservoirs of these seven CoVs are bats and rodents where the virus

is replicating asymptomatically before spilling over to intermediate

mammals to acquire adaptive substitutions that facilitate zoonotic

transmission to humans (Figure 2).
FIGURE 1

Ecology of influenza A viruses (IAVs) and origin of the 2009 pandemic influenza virus (A/H1N1pdm09). (A) IAVs are categorized according to their
intermediate or ancestor animal host species into avian influenza viruses (AIVs), equine influenza viruses (EIVs), canine influenza viruses (CIVs), swine
influenza viruses (SIVs) or bat-origin influenza-like viruses (BIVs). Unlike all AIVs, EIVs, CIVs and SIVs that can bind sialic acid (SA) receptors on the
surface of the host cell and lead to upper respiratory tract (URT) and severe lower respiratory tract (LRT) infections in humans, BIVs do not have the
ability to bind SA receptors and rather utilize the major histocompatibility complex class II (MHC-II) human leukocyte antigen DR isotype (HLA-DR)
as an entry determinant to the host cells (Karakus et al., 2019). (B) Schematic illustration of the reassortments events that lead to the origin of
influenza A/H1N1pdm09 virus with unique genetic constellation. Question marks indicate the unknown intermediate host organism or the human
organ system most impacted. This figure was created with BioRender.com.
frontiersin.org
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In late December 2019, SARS-CoV-2 emerged in Wuhan, China

and induced clusters of pneumonia cases which promptly transmitted

around the globe to cause the COVID-19 pandemic (Al-Karmalawy

et al., 2021). Although the exact zoonotic transmission pathway of

SARS-CoV-2 is still under investigation, most of the genetic and

phylogenetic analysis indicated that bats might be the origin of SARS-

CoV-2. In fact, SARS-CoV-2 and a bat CoV (RaTG13) share 96.2%

nucleotide identity, however, the receptor binding domain (RBD),

which is critical for virus-receptor binding, of these viruses are

divergent (Zhou et al., 2020). These findings suggest that bats

might not be the immediate origin of SARS-CoV-2, and there

might be an intermediate host where the virus could replicate and

adapt to easily infect humans.

Based on metagenomic analysis, several studies identified SARS-

CoV-2-like viruses that shared 85-92% nucleotide identity with SARS-

CoV-2 in small mammals known as pangolin (Manis javanica) (Lam

et al., 2020). Albeit the low percentage of nucleotide identity between

pangolin-SARS-CoV-2 and human-isolated SARS-CoV-2, their RBDs

showed 97.4% homology. Thus, pangolin cannot be excluded as a

potential intermediate host for SARS-CoV-2.

SARS-CoV-2 is composed of four structural proteins: spike (S),

envelope (E), membrane (M), and nucleocapsid (N). These proteins

share high sequence similarity to the sequence of the corresponding
Frontiers in Cellular and Infection Microbiology 04
protein of SARS-CoV, and MERS-CoV. The virus entry is mediated

by recognition and binding of the S protein to the cellular

angiotensin-converting enzyme 2 (ACE2) receptor (Zhang et al.,

2020). SARS-CoV-2 genome also encodes two polyproteins (pp1a

and pp1ab) from the ORF1a and ORF1ab, respectively, that are

further processed by the viral proteases papain-like protease

(PLpro) and main protease (Mpro or CLpro) into 16

nonstructural proteins (Nsp1-16) that are essential determinants

of innate immunity antagonism, replication efficiency and viral

pathogenicity (Jahirul Islam et al., 2023). At the 3′ end of the SARS-
CoV-2 genome, there are coding regions for several accessory open

reading frame (ORF) proteins, including ORF3a, ORF3b, ORF6,

ORF7a, ORF7b, ORF8b, ORF9b, and ORF10 (Zandi et al., 2022).
3 Reverse zoonosis of influenza
A/H1N1pdm09 viruses and its
molecular determinants

Since the emergence of influenza A/H1N1pdm09 virus in 2009

in North America, the first influenza pandemic in the twenty-first

century in humans, influenza A/H1N1pdm09 virus has been
FIGURE 2

Ecology of human coronaviruses (CoVs). Seven CoVs that belong to alpha-CoVs (229E and NL63) and beta-CoVs (OC43, HKU1, SARS-CoV, MERS-
CoV, and SARS-CoV-2) genera could escape species barriers to infect humans following non-hygienic contact with the intermediate host. These
CoVs can establish upper respiratory tract (URT) mild infection via binding to different host cell receptors including the amino peptidase N (APN)
receptor for 229E; the angiotensin converting enzyme 2 (ACE2) for NL63, SARS-CoV, and SARS-CoV-2; the 9-O-acetylated sialic acid (9-O-Ac-Sia)
receptor for OC43 and HKU1; and the dipeptidyl peptidase-4 (DPP4) for MERS-CoV. In severe infections like severe acute respiratory syndrome CoV
(SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), or Coronavirus Disease 2019 (COVID-19), a lower respiratory tract (LRT) infection
can also be developed leading to severe pneumonia and acute respiratory distress syndrome (ARDS). Question marks indicate the unknown
intermediate host organisms. This figure was created with BioRender.com.
frontiersin.org
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circulating and established among humans as one of the seasonal

influenza viruses (Smith et al., 2009). On the other hand, several

transmissions of the same virus lineage from humans to other

species have been determined (Abdelwhab and Mettenleiter, 2023).

Such transmission from humans to other mammals are so-called

reverse zoonoses. Since 2009, influenza A/H1N1pdm09 virus has

been frequently isolated worldwide from pigs, the mixing vessel

host for reassortment of influenza viruses, indicating the re-

introduction to swine populations (Howden et al., 2009; Moreno

et al., 2010; Pasma and Joseph, 2010; Pereda et al., 2010; Song et al.,

2010; Sreta et al., 2010; Welsh et al., 2010; Holyoake et al., 2011; Kim

et al., 2011). Intriguingly, the evolution pattern of the HA genes

from A/H1N1pdm09 viruses circulating in humans and pigs are

substantially different (Khalil et al., 2021), indicating the different

impact of the ecology of both swine and human influenza

A/H1N1pdm09 viruses. Also, this suggests the importance of

continuous surveillance activities of SIVs in pigs to prevent the

re-introduction of antigenically different variants from pigs

to humans.

In addition to swine, reverse zoonotic events of the influenza

A/H1N1pdm09 virus were detected in other mammalian species
Frontiers in Cellular and Infection Microbiology 05
(Figure 3). In brief, reverse zoonoses of influenza A/H1N1pdm09

virus were detected in captive giant panda in Hong Kong in 2019

(Martelli et al., 2019); and striped skunk in 2009/2010, 2013/2014,

and 2015/2016 winter seasons (Britton et al., 2019) in Canada (Usui

et al., 2021). Clinical and subclinical infections in cats and dogs with

influenza A/H1N1pdm09 were also documented in different studies

(Fiorentini et al., 2011; Su et al., 2014). Furthermore, serum

antibodies against influenza A/H1N1pdm09 viruses were detected

in pets (dogs and cats) in 2021 in Kyiv, Ukraine (Kovalenko et al.,

2021). Beside its detection in domestic ferrets and giant anteaters

(Nofs et al., 2009), the influenza A/H1N1pdm09 virus has been also

detected in several wildlife species including Bornean binturong,

American badger, and black-footed ferret (Schrenzel et al., 2011).

The influenza A/H1N1pdm09 virus was also detected in mink in

Europe, North America, and China (Åkerstedt et al., 2012; Clayton

et al., 2022). In 2019, influenza A/H1N1pdm09 virus was detected

via RT-PCR in captive cheetah showing respiratory signs of

infection in a zoo in Japan (Usui et al., 2021). Serological and

molecular detections of influenza A/H1N1pdm09 virus in domestic

Asian elephants and non-human primates were reported in

different countries (Karlsson et al., 2012; Paungpin et al., 2017).
FIGURE 3

Origin of influenza A/H1N1pdm09 virus and reverse zoonosis in domestic and wildlife animals. Except for the BIVs, all IAVs are circulating in
migratory birds as their natural reservoir that transmit the virus (green color virus) to the terrestrial and domestic birds at their stopover sites (dotted
oval shape). Furthermore, the virus acquires essential adaptive mutations (red color virus) to cross species barriers and infect contact animals and
humans (green arrows). In the case of influenza A/H1N1pdm09, the virus has been generated in swine following a multiple reassortment events
between avian, human and swine influenza viruses (Figure 1) with distinct genetic constellation that enabled the virus to infect human causing a
devastating pandemic and further transmit to contact domestic and wildlife animals. Red solid arrows refer to active virus detection. The dotted red
arrow refers to serological evidence to virus exposure. This figure was created with BioRender.com.
frontiersin.org
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Interestingly, influenza A/H1N1pdm09 virus infections were also

detected in domestic avian species (e.g. turkeys) in two breeder

premises in the United Kingdom (UK) in late 2010 and early 2011

(Reid et al., 2012). This emphasizes the perspective that influenza A/

H1N1pdm09 virus shifting towards mammalian hosts via

improving its ability to bind or replicate in mammalian cells does

not affect its ability to bind or replicate in avian cells.

Overall, these reverse zoonotic events imply the wide

susceptible host range of infuenza A/H1N1pdm09 virus

transmissions and diversity of virus evolution in different

domestic and free-living wildlife host species. To enable influenza

virus transmission from their ancestral natural reservoir or

intermediate hosts to infect humans and further disseminate the

human-to-human transmissible virus to other non-human animal

species, the virus demands the acquisition of distinct and specific

genetic markers. These adaptive changes improve the viral fitness in

variable mammalian biological systems and their corresponding

natural variations including body temperatures. Herein we

highlight documented adaptive amino acid (aa) substitutions in

the different viral proteins of influenza A/H1N1pdm09 virus

responsible for adaptation to mammalian host(s).
3.1 Adaptive substitutions in polymerase
basic 2 subunit

PB2 is one of the main components of the influenza vRNP

complex made of PB2, PB1, PA, and NP that are essential for virus

genome replication and gene transcription processes (Webster et al.,

1992). The PB2 is the cap-binding subunit polymerase that enables

the methylation and thus transcription of virus mRNA through

acquiring the host messenger (m)RNA cap in a process called “Cap

Snatching” (Guilligay et al., 2008). Additionally, PB2 has been

known as a fundamental gene for influenza virus host adaptation.

PB2 E627K is a main determinant host adaptive substitution that

regulates virus polymerase activity, virus replication, and

temperature sensitivity in a species-specific fashion. Glutamic acid

(E) at position 627 in PB2 is an avian influenza virus signature that

enables efficient virus polymerase activity, virus replication, and

dynamics in avian species, whereas lysine (K) correlates with

enhanced virus activities in mammalian species (Subbarao et al.,

1993). Strikingly, the influenza A/H1N1pdm09 virus, even after

continuous circulation in humans, still contains the avian signature

E627 in PB2 which normally correlates with impaired virus

replication in human cells (Fraser et al., 2009). Nevertheless,

other adaptive substitutions have been acquired for compensating

the absence of PB2 E627K aa substitution in influenza A/

H1N1pdm09 virus (Mehle and Doudna, 2009). For instance, two

aa substitutions in the PB2 of influenza A/H1N1pdm09 virus; serine

(S) at position 590 and arginine (R) at position 591, called the SR

polymorphism, were identified to be responsible for efficient

polymerase activity and virus replication of influenza A/

H1N1pdm09 virus in human cells (Mehle and Doudna, 2009).

This SR polymorphism was identified in >20% of the sequences of

SIV isolates in pigs but only after the emergence of a triple

reassortant SIV in 1998-1999 (Webby et al., 2000; Olsen et al.,
Frontiers in Cellular and Infection Microbiology 06
2006). Additionally, the SR polymorphism was determined to be

only occurring when there is a E at position 627, which correlated

with the PB2 E627 present in the influenza A/H1N1pdm09 virus

(Mehle and Doudna, 2009).
3.2 Adaptive substitutions in polymerase
basic 1 subunit

PB1 is the second component of the vRNP complex and is mainly

responsible for polymerase extension during influenza virus replication

(Perez and Donis, 2001). Several aa substitutions have been determined

to enhance AIV adaptation in human and mammalian cells including,

among others 336I, 361R, 486K, and 584Q into PB1; and 27I in PB1-F2

(Giria and Rebelo de Andrade, 2014). Also, aa substitutions 618D and

638D in PB1 have been described to promote PB1 activity after the

genetic reassortment in the North American triple reassortant and

influenza A/H1N1pdm09 viruses, respectively. Additionally, L298I,

R386K, and I/A517V substitutions in PB1 have been described to

putatively ameliorate the adaptation of influenza A/H1N1pdm09 virus

in humans (Santos et al., 2023).
3.3 Adaptive substitutions in polymerase
acidic subunit

PA is the third element of the influenza vRNP complex which

has an imperative role in virus endonuclease activity that is essential

in the Cap-snatching process and virus replication/transcription

(Perez and Donis, 2001). Several aa substitutions, including A36T,

T85I, G186S, L336M, E349G, and T552S, have been shown to

enhance virus polymerase activity and replication in mammalian

cells (Lutz et al., 2022). Also, aa substitutions T85I, G186S, and

L336M have been described to increase virus adaptation in

mammals through enhancing the PA binding to host RNA-

binding protein (GRSF-1) that regulates viral mRNA cytosolic

accumulation and translation efficiency (Lutz et al., 2022).

Additionally, PA N321K substitution has been shown to enhance

viral polymerase activity in human cells (Elderfield et al., 2014). In

addition, the PA-X protein, produced from a ribosomal frameshift

(+1) in the PA of IAV, contributes to improved viral replication and

suppression of the host immune responses via enhancing virus-

induced host shutoff activity (Gaucherand et al., 2019). Briefly,

PA-X modulates the host immune response through the

endonucleolytic domain that degrades the host mRNAs and thus

suppresses the host gene expression (Clark et al., 2017; Nogales

et al., 2017; Nogales et al., 2018b; Nogales et al., 2018a). Molecular

studies showed that PA-X of early circulating influenza A/

H1N1pdm09 viruses induced shut off to host gene expression,

while this feature waned in the PA-X of recent circulating

influenza A/H1N1pdm09 viruses (Nogales et al., 2018a). Genomic

analysis of the PA-X from both early and recent influenza A/

H1N1pdm09 viruses revealed four aa substitutions (V100I,

N204S, R221Q, and L229S) in the PA-X of recent influenza A/

H1N1pdm09 viruses that were responsible for affecting the shutoff

activity induced by PA-X (Nogales et al., 2018a). Nevertheless, other
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compensatory substitutions in the NS1 of recent influenza

A/H1N1pdm09 strains were described to allow the NS1 of

influenza A/H1N1pdm09 virus to shutoff host gene expression,

an function not present in viruses at the beginning of the pandemic,

and therefore, compensate the lack of this function in the PA-X of

recent influenza A/H1N1pdm09 viral isolates (see section 3.7)

(Clark et al., 2017; Nogales et al., 2017; Nogales et al., 2018b;

Nogales et al., 2018a).
3.4 Adaptive substitutions in
hemagglutinin protein

HA glycoprotein is the main antigenic component of IAV that

elicits the induction of host immune response and is responsible for

binding to the host receptor and mediating virus entry to

susceptible cells (Nerome et al., 1983). HA0 (neutral pH

structure) is known as a typical class I fusion protein in which

acid-induced refolding is irreversible (Parker et al., 2019), and is

made of the HA1 subunit that contains the receptor binding

domain (RBD), and the HA2 subunit that contains the fusion

peptide. Following viral particle binding to host cell, the viral

particle is internalized via endocytosis into the host cell

cytoplasm. To initiate uncoating process and release the vRNP

complexes into the cytosol, and then to the nucleus, the interior of

the endosomes have a mildly acidic pH (pH 5–6) (Aganovic, 2023),

causing protonation and resulting in a major conformational

change in the viral HA, allowing the fusion of the HA2 subunit to

fuse the membrane of the endosome with the membrane of the

virus, resulting in the release of the viral genome into the cytoplasm

of the infected cells (Di Lella et al., 2016). To this point, pH

stabilization of HA is crucial for assessing viral host adaptation

parameters including viral replication, pathogenesis, and

transmissibility (Russell et al., 2018; Singanayagam et al., 2019;

Aganovic, 2023; Tosheva et al., 2023). Moreover, HA stability has

been recently investigated as a novel trait associated with the ability

of IAVs to cross species barriers (Russell et al., 2018).

Species-specific aa substitutions are required to facilitate the

entry of IAV to host cells and mediate low endosomal pH to allow

membrane fusion (Vanderlinden and Naesens, 2014). The aa

substitutions I32L, D97N, S185T, E374K, and S451N have been

shown to enhance the affinity of influenza A/H1N1pdm09 HA

glycoprotein to human a2-6 sialic acid receptors (Elderfield et al.,

2014). Also, the E374K substitution enhances pH stabilization of

influenza A/H1N1pdm09 virus HA in human cells (Yang et al.,

2014). Overall, the evolution pattern of influenza A/H1N1pdm09

HA has been shown to render virus stability rather than antigenicity

in human populations (Castelán-Vega et al., 2014).
3.5 Adaptive substitutions in the
viral nucleoprotein

NP is one of the major structural proteins of IAVs and one of the

main components of the vRNP complexes, in addition to its critical role

in switching virus replication/transcription (Mostafa et al., 2018).
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Although NP is a relatively highly conserved protein among IAVs,

several adaptive substitutions in NP have been shown to have a critical

role in overcoming virus species barriers and rendering resistance to

the host immune response (Mänz et al., 2013).

The myxovirus resistance protein 1 (Mx1/MxA), an interferon-

induced GTPase that belongs to the dynamin superfamily of large

GTPases, is one of the host-cell innate immune response mediators

that has antiviral activity against several RNA viruses, including

influenza (Haller and Kochs, 2011). During influenza virus

infection, MxA forms tetramers and oligomers that assemble as

barrier rings in the cytoplasm and hinder the translocation and

function of vRNP complexes (Nigg and Pavlovic, 2015). The NP of

influenza A/H1N1pdm09 virus has been shown to harbor aa

substitutions, including E53D, R100V, P283L, Y289H, R305K,

F313V, I316M, T350K, R351K, V353I, and Q357K; that confer

virus resistance to MxA and, therefore, allow influenza A/

H1N1pdm09 virus to evade host innate immune antiviral

responses (Mänz et al., 2013).
3.6 Adaptive substitutions in
neuraminidase protein

NA glycoprotein is the second major dominant antigenic

component of IAVs influenza virus that is responsible for the

release of progeny virions from infected cells through its NA

activity. The aa substitutions V106I and N248D in the NA

glycoprotein of influenza A/H1N1pdm09 virus have been shown

to enhance viral stability through modifications in the pH tolerance

(Elderfield et al., 2014).
3.7 Adaptive substitutions in viral
non-structural protein 1

NS1 is the non-structural protein of IAVs, and it has two main

functional domains: the N-terminal RNA binding domain, involved

in binding to RNA; and the C-terminal effector domain that

regulates multiple functions including antagonizing the host

antiviral immune IFN responses through many pathways (Kochs

et al., 2007; Nacken et al., 2014; Petersen et al., 2018). Binding to the

cleavage and polyadenylation specificity factor 30 (CPSF30) is the

one of the main pathways used by IAV NS1 to block host mRNA

transcription, including IFN-induced genes encoding for different

proteins with antiviral activity (Ramos et al., 2013). Notably, the

NS1 of influenza A/H1N1pdm09 virus lacks the ability of binding to

the CSPF30 (Hale et al., 2010). However, certain aa substitutions

(R108K and G189D) have been shown to allow NS1 binding to

CSPF30 and thus inhibit host mRNA nuclear export. Intriguingly,

although the majority of influenza A/H1N1pdm09 viruses encode R

and G residues at positions 108 and 189, respectively, 108K and

189D were also encoded to a lesser extent in the influenza A/

H1N1pdm09 viruses (Huang et al., 2021). Notably, influenza A/

H1N1pdm09 viruses found later during the pandemic were shown

to contain aa substitutions, including E55K, L90I, I123V, E125D,

K131E, and N205S; that allow NS1-mediated inhibition of host gene
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expression (Clark et al., 2017). These aa changes allow later

influenza A/H1N1pdm09 viruses in the pandemic to induce

cellular shutoff to compensate those affecting the ability of PA-X

of later pandemic influenza A/H1N1pdm09 strains (see section 3.3)

(Clark et al., 2017; Nogales et al., 2017; Nogales et al., 2018b;

Nogales et al., 2018a). These findings suggest that inhibition of host

gene expression by influenza A/H1N1pdm09 virus, and most likely

other IAVs, is most likely subject to a balance between NS1 and

PA-X which can determine virus pathogenesis and fitness. Notably,

manipulating the ability of influenza NS1 and PA-X to induce

cellular shutoff could be explored to generate attenuated forms of

the virus for their potential use as live-attenuated vaccines (Nogales

et al., 2017).
4 Reverse zoonosis events of
pandemic SARS-CoV-2 and
molecular determinants of its
zooanthroponotic potential

Since its emergence in late 2019, SARS-CoV-2 was subjected to

multiple evolutionary events resulting in the emergence of several

variants of concern (VOC) with remarkable positively selected aa

substitutions in the surface S protein (Table 1). In March 2023, the

devastating scale of VOC was narrowed by the European Centre for

Disease Prevention and Control (ECDC) after de-escalating the

rarely circulating variants (BA.2-BA.5) (Table 1) (Cocherie et al.,

2022; ECDC, 2023). Currently, a few variants that are either variants

of interest (VOI) or variants under monitoring (VUM) are

circulating with comparable impact on transmissibility, immunity,

and virulence to the ancestor omicron variants (Table 1).

Meanwhile, SARS-CoV-2 could transmit from infected humans to

a variety of pets and wildlife animal species, including cats, dogs,

mink, lions, tigers, and others (Figure 4). This wide host range

tropism of SARS-CoV-2 suggests that the virus is already well-

adapted to infect different mammalian species and it can further

acquire distinct species-specific substitutions following its human-

to-animal transmission to fulfill new host adaptation requirements

and improve viral fitness (Damas et al., 2020; Tan et al., 2022).

SARS-CoV-2 binds primarily to the ACE2 receptor on the surface

of the host cell via its S protein (Damas et al., 2020). Remarkably,

the ACE2 receptor is highly conserved among different mammalian

species (Damas et al., 2020; Lan et al., 2020). Consequently, the aa

substitutions that enhance receptor binding affinity in human might

reflect comparable effects in other mammalian species (Table 1).

Unlike mammalian ACE2 that demonstrate high similarity to

human, avian species ACE2 has remarkable number of variations in

the functional sites to bind SARS-CoV-2 S protein (Zhai et al.,

2020). This finding is consistent with the experimental data

showing that poultry are not susceptible to SARS-CoV-2 infection

(Frazzini et al., 2022). In the same line, limited or rare surveillance

programs for SARS-CoV-2 infections in contact animals and

particularly wildlife during pandemics made it hard to conclude

about possible aa substitutions that are supposed to facilitate the

household transmission of the virus into pets and other wildlife
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mammals. Nevertheless, the transmissibility of the virus into these

contact species could be affected by different individual variations

including animal family group, age, health status, frequency of

contact, and viral load in infected contact person; rather than

specific aa substitutions in the virus (Hobbs and Reid, 2021;

Meisner et al., 2022).

Throughout the pandemic and the evolution of hundreds of

SARS-CoV-2 variants, the S protein acquired several aa

substitutions to potentially enhanced the binding affinity of the

virus to the ACE2 receptor and consequently facilitated cross-

species virus transmissibility (Table 1). For instance, the D614G

substitution that emerged at early stages of the COVID-19

pandemic, could increase the transmissibility of the virus among

humans, and it’s possible it could also have similar effects from

humans to other mammals. Various VOC and VOI, including alpha

(B.1.1.7), Beta (B.1.351), gamma (P.1), delta (B.1.617.2), and the

most prevalent omicron variants (BA.1-BA.2.86), accumulated

multiple substitutions in their S protein that have been associated

with increased transmissibility among humans (Table 1). The

documented aa substitutions and their overall impact on virus

transmission that may in turn affect the reverse zoonotic

transmission of these variants from human to other contact

animals are summarized in Table 1.

Within the 3.5 years of the COVID-19 pandemic, SARS-CoV-2

infections have been documented in dogs, cats, deer, hippopotamus,

sea and river otter, manatees, spotted hyena, Canadian lynx, tiger,

lion, snow leopard, puma, black-tailed marmoset, pangolin, coati,

giant anteater, skunks, ferret, hamster, and minks (Figure 4)

(Bosco-Lauth et al., 2020; Chandler et al., 2021; Mathavarajah

et al., 2021; Melo et al., 2022; Padilla-Blanco et al., 2022; Klestova,

2023; Michelitsch et al., 2023; Vercammen et al., 2023). In an

experimental study, authors demonstrated that both dogs and cats

can be infected with SARS-CoV-2, although dogs do not seem to

spread the virus as efficiently as cats (Bosco-Lauth et al., 2020). This

suggests that some pets like cats could potentially play a role in

spreading SARS-CoV-2. A more recent study suggested that the

interspecies transmission of SARS-CoV-2 between humans and

their household pet animals occurs on a regular basis (Michelitsch

et al., 2023), and that SARS-CoV-2 infections in dogs, cats and pet

Syrian hamsters are usually asymptomatic without remarkable

clinical signs, making it difficult for the contact humans to

observe pets being infected (Yen et al., 2022; Michelitsch et al.,

2023). Therefore, basic hygiene measurements must be

implemented while dealing with domestic cats or dogs during the

COVID-19 pandemic to avoid potential mutual SARS-CoV-2

infections. At the molecular level, a recent genome-wide

association study revealed that no single nucleotide variants

(SNVs) were significantly associated with cats and dogs,

potentially due to small sample sizes (Naderi et al., 2023). Despite

a broad host range of permissive animals to SARS-CoV-2 infection,

only three animal species are known to effectively transmit the

virus: Syrian hamsters, mink and white-tailed deer (Markov et al.,

2023). Until now, no animal-specific aa adaptations have been

identified in the viral genome of SARS-CoV-2 circulating in

Syrian hamsters (Markov et al., 2023). Nevertheless, an aa

substitution in SARS-CoV-2 S protein, L18F, arose during a
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TABLE 1 SARS-CoV-2 variants and their distinct aa substitutions in the S protein from 2020 until May 2023.

Strain/Variant
Country
of origin

Year
of

detection
Maker S aa substitutions

Impact
on

transmission

Current
Status

Reference
WHO Lineage

Alpha B.1.1.7 UK 2020 N501Y; D614G; P681H; E484K Increased

De-
escalated
variant

(Davies
et al., 2021)

Beta B.1.351 South Africa 2020 K417N; E484K; N501Y; P384L; E516Q;
D614G; A701V

Increased (Tegally
et al., 2021)

Gamma P.1 Brazil 2020 K417N; E484K; N501Y; D614G; H655Y Increased (Faria
et al., 2021)

Epsilon B.1.427 USA 2020 L452R; D614G ND (Deng
et al., 2021)

Eta B.1.525 Nigeria 2020 E484K; D614G; Q677H ND (Jangra et al.,
2021; Zhao
et al., 2021)

ND C16 Unknown 2020 L452R; D614G ND (Jangra
et al., 2021)

Iota B.1.526 USA 2020 L452R; D614G, S477N; E484K; A701V ND (Jangra
et al., 2021)

Delta B.1.617.2 India
and UK

2020 L452R; T478K; K417N; D614G; P681R; E484X;
Q613H; Q677H

Increased (Kemp
et al., 2022)

Lambda C.37 Peru 2020 L452Q; F490S; D614G ND (Romero
Pedro

et al., 2021)

ND C.36 Egypt 2020 L452R; D614G; Q677H ND (Deng
et al., 2021)

ND A.23.1 UK 2020 V367F; E484K; Q613H ND (Jangra
et al., 2021)

ND A.27 Unknown 2020 L452R; N501Y, A653V; H655Y Increased (Davies
et al., 2021)

ND A.28 Unknown 2020 E484K; N501T; H655Y ND (Jangra
et al., 2021)

ND B.1.1.519 Mexico 2020 T478K; D614G ND (Deng
et al., 2021)

Zeta P.2 Brazil 2021 E484K; D614G ND (Jangra
et al., 2021)

Theta P.3 The
Philippines

2021 E484K; N501Y; D614G; P681H Increased (Davies
et al., 2021)

ND B.1.616 France 2021 V483A; D614G; H655Y; G669S ND (Fillâtre
et al., 2022)

Kappa B.1.617.1 India 2020 L452R; E484K; D614G; P681R Increased (Pascarella
et al., 2021)

ND B.1.617.3 India 2021 L452R; E484Q; D614G; P681R Increased (Davies
et al., 2021)

ND B.1.620 Unknown 2021 S477N; E484K; D614G; P681R ND (Jangra
et al., 2021)

Mu B.1.621 Colombia 2021 R346K; E484K; N501Y; D614G; P681H ND (Jangra
et al., 2021)

ND B.1.1.7 UK 2021 L452R; S494P; N501Y; D614G; P681H Increased (Davies
et al., 2021)

ND B.1.1.318 Unknown 2021 E484K; D614G; P681H ND (Jangra
et al., 2021)

(Continued)
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hamster outbreak in a warehouse in Hong Kong (Yen et al., 2022),

with an ability to reduce antibody neutralization of the SARS-CoV-

2 gamma variant infecting humans (McCallum et al., 2021).

The first occurrence of SARS-CoV-2 in mink occurred in two

separate farms in the Netherlands between April and May 2020
Frontiers in Cellular and Infection Microbiology 10
(Oreshkova et al., 2020). Since then, multiple COVID-19 outbreaks

were reported among minks in Europe and North America (Lu

et al., 2021; Oude Munnink et al., 2021; Porter et al., 2023). In

Denmark, the largest mink fur producer in the world, several

outbreaks in minks were identified, resulting in the emergence of
TABLE 1 Continued

Strain/Variant
Country
of origin

Year
of

detection
Maker S aa substitutions

Impact
on

transmission

Current
Status

Reference
WHO Lineage

ND AT.1 Russia 2021 E484K; D614G; N679K; Ins679GIAL ND (Jangra
et al., 2021)

ND AV.1 UK 2021 N439K; E484K; D614G; P681H ND

De-
escalated
variant

(Jangra
et al., 2021)

ND AY.4.2 UK 2021 L452R; T478K; D614G; P681R; A222V; Y145H Increased (Angeletti
et al., 2022)

ND C.1.2 South Africa 2021 D614G; E484K; H655Y; N501Y; N679K; Y449H Increased (Davies
et al., 2021)

ND B.1.640 Congo 2021 D614G; F490R; N394S; N501Y; P681H; R346S;
Y449N; D137-145

ND (Galmiche
et al., 2023)

Omicron BA.1 South Africa 2021 Pan-omicron substitutions (POS) including
G143D; G339D; S373P; S375F; K417N; N440K;
S477N; T478K; E484A; Q493R; Q498R; N501Y;
Y505H; D614G; H655Y; N679K; P681H; N764K;

D796Y; Q954K; N969K
(+) BA.1 specific S substitutions including A67V;
D69-70; T95I; D143-145; D211/L212I/ins214EPE;
S371L; G446S; G496S; T547K; N856K; L981F

Increased (Hui et al.,
2022; Lyngse
et al., 2022)

BA.2 South Africa 2021 POS (+) BA.2 specific S substitutions including
T19I; L24S; D25-27; V213G; S371F; T376A;

D405N; L452X; R408S

Increased (Lyngse
et al., 2022)

BA.3 South Africa 2022 NSM ND (Desingu
et al., 2022)

BA.4 South Africa 2022 BA.2 (+) D69-70; L452R; F486V; R493Q Increased (Mohapatra
et al., 2022;

Tallei
et al., 2023)

BA.5 South Africa 2022 BA.2 (+) D69-70; L452R; F486V; R493Q Increased (Mohapatra
et al., 2022;

Tallei
et al., 2023)

BA.2.75 India 2022 BA.2 (+) W152R; F157L; I210V; G257S; D339H,
G446S; N460K; Q493

ND VOI (Cao
et al., 2022)

CH.1.1 ND 2022 BA.2.75 (+) R346T; K444T; L452R; F486S ND VUM (Uraki
et al., 2023)

XBB.1.5 USA 2022 BA.2 (+) Q183E; N460K; S486P; F490S Increased VUM (Yue et al.,
2023;

WHO, 2023c)

XBB.1.16 ND 2022 BA.2 (+) E180V; T478R; F486P Increased VOI (Harris, 2023;
WHO, 2023c)

EG.5 ND 2023 XBB.1.5 (+) F456L and Q52H Increased VOI (Parums,
2023;

WHO, 2023c)

BA.2.86 ND 2023 XBB.1.5 (+) I332V, K356T, V445H, N450D,
N481K, A484K, and D483

Increased VOI (Yang et al.,
2023;

WHO, 2023c)
ND, Not determined; WHO, World health organization; Ins, Insertion; POS, Pan-omicron substitutions; NSM, No unique spike substitutions; substitutions were documented in structural and
nonstructural viral proteins; (+): plus or in addition to.
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different SARS-CoV-2 clusters/variants (Krammer, 2020; Larsen

and Paludan, 2020; Bayarri-Olmos et al., 2021). One variant

“Cluster 5” of these Denmark mink SARS-CoV-2 variants

attracted more attention because it was reported in humans

within the mink outbreak region (Larsen and Paludan, 2020).

This variant was characterized by five distinct aa substitutions in

S protein, including Y453F, 69-70 deletion (D69-70), I692V,

M1229I, and S1147L (Larsen and Paludan, 2020; Clayton et al.,

2022). The Y453F substitution located in the RBD domain of SARS-

CoV-2 S protein was found to be fundamental for efficient binding

of the viral S protein and the mink ACE2 receptor (Ren et al., 2021).

In the United States of America (USA), the Animal and Plant

Health Inspection Service (APHIS) has documented SARS-CoV-2

outbreaks in 18 mink farms from August 2020 to November 2023,

using PCR (16 farms) or immunological antibody (2 farms) tests

(Eckstrand et al., 2021; APHIS, 2023). In Europe, a COVID-19

outbreak in Danish mink farms was documented in June 2020,

suggesting that minks can transmit the virus to contact uninfected

minks (Boklund et al., 2021). By characterizing the SARS-CoV-2 in

mink and contact humans, data suggests that infected minks could

transmit the virus readily to contact minks and farm personnel

(Oude Munnink et al., 2021). The SARS-CoV-2 in this mink

outbreak was found to carry five distinct substitutions/deletion in
Frontiers in Cellular and Infection Microbiology 11
the S protein (DH69-V70, Y453F, D614G, I692V, M1229I)

(Hoffmann et al., 2021). By comparing the genomic landscapes of

SARS-CoV-2 isolated from animal species to that in humans, one

study identified 5 animal-specific S and non-S adapted substitutions

in minks: NSP9_G37E, S_F486L, S_N501T, S_Y453F, and

ORF3a_L219V (Tan et al., 2022). Fortunately, the mink-

adaptative substitutions in the S protein were unlikely to increase

viral pathogenicity in humans, as Y453F attenuates the replication

of the virus in human cells and could only lead to minimal antigenic

impact or partial immune escape potential (Tan et al., 2022; Zhou

et al., 2022). From January 2021 to July 2021, SARS-CoV-2 was

identified in fourteen Polish mink farms. These mink farms were

infected with four different SARS-CoV-2 variants (Domańska-

Blicharz et al., 2021; Domańska-Blicharz et al., 2022). The

etiologic agents of these outbreaks belong to eight different

variants including 20B (two farms), alpha (one farm) delta (eight

farms), and omicron (one farm) (Domańska-Blicharz et al., 2023).

Between September 2022 and January 2023, another three mink

farms were reported positive for SARS-CoV-2 (Domańska-Blicharz

et al., 2023). The mink’s SARS-CoV-2 genome in this outbreak were

characterized by aa substitutions in S proteins, including W64L,

F486L, N501T, T572I, S929I, and D140–143 (Domańska-Blicharz

et al., 2023). Interestingly, aa substitutions F486L and N501T have
FIGURE 4

Origin of SARS-CoV-2 and documented reverse-zoonotic events. Following the transmission of SARS-CoV-2 into humans via uncertain intermediate
host (?), most likely pangolins, the virus circulated in the human population acquiring adaptive substitutions to improve human-to-human
transmission (a main criterion for a pandemic, dotted oval shape) and further transmitted to various contact domestic mammals, and free-living
wildlife animals. Red arrows indicate SARS-CoV-2 reverse zoonotic/zooanthroponosis events. This figure was created with BioRender.com.
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been previously reported as animal-specific changes associated with

SARS-CoV-2 circulation in minks (Tan et al., 2022; Domańska-

Blicharz et al., 2023). The high evolutionary rates of SARS-CoV-2 in

minks in response to greater selective pressures in the new host are

more than any other farmed animal species and could permit viral

transmission among humans and other contact animals on mink

farms (Peacock and Barclay, 2023; Porter et al., 2023). However, no

clear evidence suggests that these adaptive aa substitutions may be a

significant factor in SARS-CoV-2 zoonosis and transmission from

minks to contact humans. A recent study revealed that the

zooanthroponotic transmission of SARS-CoV-2 was associated

with three SNVs (non-synonymous mutations) in minks,

including ORF3a_L219V, Nsp9_G37E and S_N501T (Naderi

et al., 2023).

In parallel, multiple outbreaks of SARS-CoV-2 among wild

white-tailed deer (WTD) have been documented initially in the

USA as a wildlife host for SARS-CoV-2 with 40% seroprevalence

among sampled free-ranging WTD across four states (Chandler

et al., 2021; Hale et al., 2022; Kuchipudi et al., 2022). Shortly after,

active viral infections with different SARS-CoV-2 variants and high

seroprevalence among free-ranging deer were detected in different

localities in the USA (Hale et al., 2022; Roundy et al., 2022;

Vandegrift et al., 2022; Caserta et al., 2023; McBride et al., 2023).

Interestingly, the viral genome sequences from WTD are highly

divergent from human-derived SARS-CoV-2 sequences with large

nucleotide sequence variations across the genome, probably due to

virus circulation and evolution within the deer population as a

response to host adaptation (Caserta et al., 2023). Interestingly,

several studies have revealed higher C-to-T bias in the SARS-CoV-2

genome from infected deer, which may reflect an evolutionary

adaptation to APOBEC1 (Pickering et al., 2022; McBride et al.,

2023; Naderi et al., 2023), a family of evolutionarily conserved

cytidine deaminases that deaminates deoxycytidine in single-

stranded DNA (ssDNA) and edits messenger RNAs (C-to-U

editing) (Salter et al., 2016; Naderi et al., 2023).

The evolutionary rates of alpha and delta SARS-CoV-2 variants in

WTD were shown to be faster and higher by 3 and 2.7 times than in

humans, respectively (McBride et al., 2023). WTD infections with

SARS-CoV-2 were associated with several aa substitutions in structural,

non-structural and accessory ORF proteins including the variant

specific recurrent substitutions in the S protein, such as the distinct

L18F (delta), H69Y, N501Y (alpha, beta, gamma, omicron, mu) and

T29I (alpha and delta) (McBride et al., 2023). Analysis of the whole

genome sequences of alpha SARS-CoV-2 variants from infected WTD

revealed that the zooanthroponotic transmission of SARS-CoV-2 in

WTD was statistically associated with 26 SNVs (five intergenic

mutations within the 5′ and 3′ UTRs, 12 synonymous mutations,

and 9 non-synonymous mutations, including Nsp3_P822L,

Nsp3_L1035F, Nsp3_S1437F, Nsp4_S386F, Nsp12_N507I,

Nsp13_P77L, ORF5/M_I82T, ORF7a_T120I, and ORF10_L37F

(Naderi et al., 2023). Consistently, other studies have identified the

non-S aa substitution NSP3_L1035F as a more significantly deer-

associated substitution (Tan et al., 2022), highlighting the importance

of SARS-CoV-2 Nsp for virus fitness in the new host.

The phyloproteomic analysis of SARS-CoV-2 proteome sequences

to investigate the variations in 16 non-human hosts (mink, cat, deer,
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dog, hyena, tiger, lion, gorilla, green monkey, Syrian hamster, leopard

cat, fishing cat, bear cat, coati, ferret, and snow leopard) from 18

countries led to seven major divergent country-specific SARS-CoV-2

clades (Naderi et al., 2023). This study reported a number of high

recurring (HR) aa substitutions in non-human hosts, including S_T19R,

S_DH69-V70, S_G142D, S_E156G, S_DF157-R158, S_T478K,

S_L452R, S_Y453F, S_F486L, S_N501T, S_D614G, S_P681R,

S_D950N, N_D63G, N_S194L, N_R203K, N_G204R, N_G215C,

N_D377Y, M_I82T, Nsp1_DM85, Nsp2_T85I, Nsp2_A192V,

Nsp3_A488S, Nsp3_P1228L, Nsp3_L1244F, Nsp3_DN1263,

Nsp3_P1469S, Nsp4_V167L, Nsp4_T492I, Nsp6_T77A, Nsp9_G37E,

Nsp12_P323L, Nsp12_T739I, Nsp12_G671S, Nsp13_P77L,

Nsp14_A394V, ORF3a_H182Y, ORF3a_Q57H, ORF3a_L219V,

ORF3a_S26L, ORF7a_V82A, ORF7a_T120I, and ORF7b_T40I

(Naderi et al., 2023). The contributing role of the substitutions in

non-S proteins including the Orf1ab-derived Nsps, structural proteins,

and accessory ORF genes in mediating virus zooanthroponotic and

zoonotic potential is still unclear. Interestingly, this study could provide

evidence that the occurrence of the non-human SARS-CoV-2 variants

in humans is possible, emphasizing the zooanthroponotic and zoonotic

transmission events between human and non-human hosts (Naderi

et al., 2023).
5 Adverse impacts of reverse zoonosis
on potential prophylactic, therapeutic
interventions, and virus evolution

Zoonotic viruses transmit among hosts and can undergo strong

and stringent adaptive selection to improve their fitness in their new

niche (Mostafa et al., 2018; Mostafa et al., 2020; Al-Karmalawy et al.,

2021; Markov et al., 2023). Although susceptible mammalian hosts

have host cell receptor similarities in type, affinity, and abundance,

the gradual improvement of viral fitness and transmission ability

could be associated with a continuous evolution of antigenicity

resulting in altered vaccine efficacy and resistance to limited

antiviral treatment (Morris et al., 2020; Markov et al., 2023;

Wong and Lal, 2023).

The seasonal human influenza vaccines are either propagated in

specific-pathogen free (SPF) chicken embryonated eggs (avian-

origin) or certified cell culture cell lines, including Madin-Darby

canine kidney (MDCK) and African green monkey (Vero) cells with

predominant a2,3-linked (avian-type) sialic acid receptor (Mostafa

et al., 2016; Mostafa et al., 2018). The passaging of human influenza

vaccine strains with an absolute affinity towards a2,6-linked
(mammalian-type) sialic acid receptor in avian or avian-like

mammalian systems is occasionally associated with low vaccine

effectiveness due to adaptive aa substitutions in or around

important antigenic sites of the immunogenic viral surface

proteins HA and NA (Mostafa and Pleschka, 2018; Skowronski

and De Serres, 2018; Liang et al., 2022).

In addition, the detection of AIV of H5-, H7-, and H9-subtypes

in poultry carrying human adaptive aa substitutions in their PB2

segments, including G590S/Q591R and E627K, together with

antiviral resistance markers that confer resistance to NA
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inhibitors, including H275Y and N295S, or M2 blockers (e.g. S31N)

without apparent prior adaptation into mammals (Hossain et al.,

2021), suggest possible reverse zoonotic transmission of these AIV

strains from infected humans or mammals to poultry. This may

explain the increasing abundance of antiviral resistance to

adamantanes (M2) and neuraminidase (NA) inhibitors, and the

high risk to human public health in possible outbreaks and/or

potential pandemic situations (Lampejo, 2020; Jones et al., 2023).

Following influenza virus transmission from human to infect

contact and wildlife animal species, moving through various

biological systems, the new host animal will act as an additional

reservoir for the virus that may yield an increased rate of adaptive aa

substitutions or provide a new vessel (e.g. swine) to mix the genetic

materials of two invading viruses (Chastagner et al., 2019; Rajao

et al., 2019; Abdelwhab and Mettenleiter, 2023). This bidirectional

transmission of influenza virus ends up with new virus variant(s)

with unprecedented characteristics in humans.

Similarly, the transmission of SARS-CoV-2 between animal

species could be associated with an increased rate of aa

substitutions to adapt to the new hosts, resulting in adverse

impacts on currently available vaccines and/or approved antiviral

therapies (Hoffmann et al., 2021). In addition, CoVs have been

shown to have high probability of recombination (Focosi and

Maggi, 2022). Therefore, the wide host range of SARS-CoV-2

circulation among animal species with other CoVs might facilitate

virus recombination with any of these CoVs following co-infection

of the same host cell (Focosi and Maggi, 2022).
6 Conclusion

The wide spectrum of pandemic viruses, including influenza A/

H1N1pdm09 virus and SARS-CoV-2, is alarming national and

international health organizations to carefully follow up and

control animal-to-human, human-to-human, as well as

bidirectional human-to-animal zooanthroponosis transmission

events. Pets and other animals that share household with infected

humans, or farm animals, including minks, could be a persistent

reservoir of these viral infections upon establishment of mild or

non-asymptomatic infections, giving rise to potential new genetic

reassortment, recombination, and evolution events, in addition to

drug resistant and immune-escape variants. For these reasons,

contact animals that are exposed to viral reverse zoonosis must be

closely monitored in households, during transportation, and in

wildlife since they could represent a new source of new zoonotic

events to humans. Importantly, one of the major limitations in

controlling viral pathogen zoonosis and zooanthroponosis includes

the lack of a “One Health” concept, hindering an effective

collaboration or coordination between animal and human health

sectors in some areas with unusual habits with domestic pets and

undomesticated animal species. Until now, we do not have solid
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background about the molecular determinant(s) of the

zooanthroponosis of new emerging pandemic SARS-CoV-2

strains in most documented non-human hosts due to shortage in

surveillance and the limited sample sizes. One Health surveillance

strategy throughout different continents is more efficient and more

sustainable than scattered efforts to monitor zoonosis and

zooanthroponosis and control them at their first instance.

Eventually, new and effective prophylactic and therapeutic

countermeasures against newly emerging viral variants due to

recurrent zoonosis and zooanthroponosis events must be

developed and readily available. One limitation of this review is

that most of the discussed data were mainly derived from European

and North American countries where they have facilities and

knowledge to follow up and characterize zoonosis and

zooanthroponosis events.
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