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infection by diet-modulated
gut microbiota

Vivian Tieu †, Sedra Tibi † and Jun Ling*

Department of Medical Education, California University of Science and Medicine, School of Medicine,
Colton, CA, United States
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection has

claimed millions of lives since late 2019, yet there are still many unexplored

areas in its pathogenesis and clinical outcomes. COVID-19 is a disease that can

affects multiple systems, some of which are overlapped with those modulated by

gut microbiota, especially the immune system, thus leading to our concentration

on analyzing the roles of microbiota in COVID-19 pathogenesis through the gut-

lung axis. Dysbiosis of the commensal intestinal microbes and their metabolites

(e.g., SCFAs) as well as the expression and activity of ACE2 in the gut could

influence the host’s immune system in COVID-19 patients. Moreover, it has been

known that the elderly and individuals diagnosed with comorbidities (e.g.,

hypertension, type 2 diabetes mellitus, cardiovascular disease, etc.) are more

susceptible to gut flora alterations, SARS-CoV-2 infection, and death. Thus, in

this review we will focus on analyzing how the gut microbiota regulates the

immune system that leads to different responses to SARS-CoV-2 infection. Since

diet is a major factor to modulate the status of gut microbiota, dietary influence

on COVID-19 pathogenesis will be also discussed, aiming to shed light on how

diet-modulated gut microbiota regulates the susceptibility, severity, and

treatment of SARS-CoV-2 infection.
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Introduction

After nearly 3 years since the start of the SARS-CoV-2 global pandemic in 2019, there

have been over 663 million cases and over 6.7 million COVID-19 related deaths worldwide

(WHO). Common clinical presentations of SARS-CoV-2 infection often involve the upper

and lower respiratory tract, including fever, cough, dyspnea, sputum production, shortness

of breath and respiratory failure. Although less commonly, patients may also have

gastrointestinal symptoms ranging from diarrhea, nausea, vomiting, anorexia, ageusia,

and hyposmia (Alimohamadi et al., 2020; CDC). In addition, patients infected with SARS-

CoV-2 may present as asymptomatic or manifest with a variety of symptoms involving the

renal, musculoskeletal, and cardiovascular systems (Alimohamadi et al., 2020; CDC). The
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large variation of COVID-19 symptoms is attributed to the high

transmission and mutation rates as well as the unique targeting of

ACE2 by SARS-CoV-2.

The immune system plays fundamental roles in protecting the

host from foreign pathogens. However, the hyperactivation of the

immune system can become problematic as seen in autoimmune

disorders and other inflammatory states. Particularly, the pathogenesis

of COVID-19 and the severity of its symptoms are highly associated

with the “cytokine storm”. Cross talk between the microbiome of the

gastrointestinal and respiratory systems referred to as the “gut-lung

axis” also plays an important role in the SARS-CoV-2 pathogenesis

(Batah and Fabro, 2021; Sencio et al., 2021a). The dysbiosis of the gut-

lung axis may be critical to understand how acute respiratory distress

syndrome (ARDS) develops in COVID-19 patients.

Comorbid diseases associated with increased risk of coronavirus

infection include hypertension, chronic obstructive pulmonary disease

(COPD), cardiovascular disease (CVD), hepatic diseases, diabetes

mellitus (Types 1 and 2), malignancy, and obesity (Ejaz et al., 2020).

Evidence also suggests that the elderly and minority ethnic groups

constitute a majority of the COVID-19 patients and also have been

diagnosed with the risk factors mentioned above (Kopel et al., 2020).

Moreover, it has been recognized that “non-Western” diets, such as the

Mediterranean diet, can shape the diversity and composition of the gut

microbiome in patients with obesity, CVD, cognitive impairments (e.g.,

Alzheimer’s disease), and Type 2 Diabetes Mellitus (T2D) (Nagpal

et al., 2019; Meslier et al., 2020; Breuninger et al., 2021; Rinott et al.,

2022). This opens a possibility of utilizing nutritional and lifestyle

interventions as preventative and treatment alternatives for COVID-19

considering the effects of comorbidities.

In this review, we focus on the connection between gut

microbiota and the pathogenesis of SARS-CoV-2. Essential

microbiome-derived metabolites such as short chain fatty acids

(SCFAs) and ACE2 expression are key factors in regulating immune

responses and the cytokine storm that leads to systemic

inflammation (Zhang et al., 2022). Dysbiosis of the gut

microbiome has been linked to the elderly population as well as

in patients with T2D and CVD, comorbidities that have been tied to

increased SARS-CoV-2 susceptibility and severity (Zhang et al.,

2021). Thus, improvement of gut microbiome health through

dietary interventions can serve as a preventative measure and an

alternative treatment to minimize the severity of COVID-19

patients, especially for those who are considered “high-risk”.
Dysregulation of innate and adaptive
immune systems by SARS-CoV-2

SARS-CoV-2 can evade and/or downregulate the human innate

immune system. The non-structural proteins (NSPs) of the

coronavirus, such as NSP16 and NSP1, play a role in

antagonizing PRR antigen recognition and the production of

proinflammatory cytokines (Schultze and Aschenbrenner, 2021).

Notably, there are decreased levels of the cytokines, Interferon Type

I (IFN-a, IFN-b, IFN-ϵ, IFN-w, and IFN-k) and Interferon Type III

(IFN-I) (Bastard et al., 2020). Additionally, patients with severe
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COVID-19 infections also produce neutralizing antibodies against

Interferon Type I, specifically against IFN-a, IFN-w, or both.

Another study comparing the interferon levels of 155 COVID-19

patients found significantly elevated levels of IFN-Is and IFN-IIIs in

the lower airways of patients (Sposito et al., 2021). The elevated IFN

values have been associated with increased apoptosis and decreased

cellular proliferation by activating pro-apoptotic p53 transcription

factor, contributing to SARS-CoV-2 pathogenesis and cytokine

storm. Interestingly, critically ill patients expressed markedly

elevated IFN levels but reduced induction of protective IFN-

stimulated genes (ISGs). In addition, there is a delayed induction

and response of protective ISGs in elderly patients (≥70 years),

thereby contributing to the increased risk of developing severe

infection in this population.

The dysregulation of PRRs and IFNs prevent early detection of

the SARS-CoV-2 virus by the immune system, allowing its

unhindered replication and dissemination. However, it is

important to recognize that a defect of the innate immune system

is patient-specific and differs between mild/asymptomatic and life-

threatening cases. It is also significant to consider that certain

populations such as the elderly and the immunocompromised are

especially vulnerable to SARS-CoV-2 infection with increased

susceptibility and severity (Sette and Crotty, 2021). Furthermore,

without a robust innate immune system, the host’s ability to prime

its adaptive immune system is also diminished.

Several studies have shown how CD4+, CD8+, and regulatory T

cells are significantly impaired in severe cases of infection (Paces

et al., 2020). However, others have also demonstrated that in acute

cases, CD4+ and CD8+ T cell levels are elevated and have been

shown to be produced at a more rapid rate than in a healthy patient

(Sette and Crotty, 2021). T-cell response is critical in clearing viral

infection, which is correlated with an observation that more life-

threatening cases are associated with decreased levels of SARS-

CoV-2 CD4+ T cells. Depletion of CD4+ T cells in severe infections

signifies the immune system’s inability to mediate antibody and

CD8+ T cell responses, effector cell differentiation, and tissue repair.

The trends observed with T cell levels and COVID-19 severity

suggest that SARS-CoV-2 exhibits immunoevasive ability through

disrupting normal antigen-presenting function via MHCs and

downregulating T cell activity. Thus, the evasion of the immune

system makes this novel coronavirus so deadly. Moreover, the

dysregulation of both immune systems is responsible for the

cytokine storm seen in severe cases.
Cytokine storm

The cytokine storm is defined as an aggressive proinflammatory

state of the host’s immune system and is associated with systemic

complications. As a result of systemic inflammation, patients may

present with overarching symptoms ranging from constitutional

symptoms to vascular, renal, gastrointestinal, neuropsychiatric,

cardiac, and respiratory symptoms. The severity and poor patient

prognosis of COVID-19 is attributed to the cytokine storm. The

increased levels of cytokines, chemokines, and inflammatory cells
frontiersin.org
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are responsible for the leading cause of death in COVID-19

patients: acute respiratory distress syndrome (ARDS). ARDS is

characterized as a severe lung injury with alveolar damage,

pulmonary edema, and progressive respiratory failure

(Hashemian et al., 2021; Sadeghi et al., 2021). There have been

increased efforts to prevent cytokine storm through antibody and

stem cell treatment, aiming to decrease lung injury due to ARDS in

patients (Galván-Román et al., 2021).

Since SARS CoV-2 can downregulate both innate and adaptive

immune systems as described above, the imbalance of the host’s

immune system is likely a mechanism to trigger the subsequent

hyperinflammatory events in patients to “overcompensate” the

initial downregulation of the immune system, thereby combating

the continuously increasing viral load (Batah and Fabro, 2021).

Although the cytokine storm can be considered as an attempt to

restore immune function and balance, it is a significant contributor

to COVID-19 severity and death. As a result, cytokine profiling is

practically important to assist diagnosis and treatment, collectively

improving the survival rates of COVID-19 patients.

An early study compared the cytokine levels in 41 COVID-19

patients. It was found that there were elevated plasma levels of IL1B,

IL1RA, IL7, IL8, IL9, IL10, basic FGF, GCSF, GMCSF, IFNg, IP10,
MCP1, MIP1A, MIP1B, PDGF, TNFa, and VEGF in infected

patients versus healthy controls (Huang et al., 2020). Moreover,

the plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and

TNFa were increased when comparing more severe (ICU) cases

with non-ICU cases. Additional studies have also revealed that

patients with severe COVID-19 have a significantly elevated

cytokine profile of IL-2, IL-6, IL-7, IL-10, IP-10, MCP-1, TNF-a,
macrophage inflammatory protein 1 alpha, and granulocyte-CSF

compared to patients with mild to moderate COVID-19 (Hu et al.,

2021). The marked increase in these cytokines is closely related with

the inflammatory damage induced by SARS-CoV-2. Thus, they can

serve as the targets for intervention before ARDS development.

A retrospective study examined 146 COVID-19 patients to

determine if IL-6 is a sensitive and specific marker for disease

severity (Galván-Román et al., 2021). The results demonstrated that

patients with elevated IL-6 levels (>30 pg/mL) required mechanical

ventilation and early Tocilizumab (anti-IL-6R antibody) treatment,

suggesting that IL-6 is a suitable prognostic marker. It is also

important to note that a majority of the patients included in this

study were of an older demographic; most of them were diagnosed

with other comorbidities such as cancer, CVD, hypertension, and

diabetes mellitus. Another clinical study also showed increased

levels of IL-6 and IL-10 amongst 32 COVID-19 patients who are

now deceased due to SARS-CoV-2 infection compared to those who

survived (Varchetta et al., 2021). IL-6, a pleiotropic cytokine, is

broadly involved in the regulation of the immune system and is

responsible for the activation of other cytokines and inflammatory

processes. Elevated levels of IL-6 increase C-reactive protein

synthesis and disrupt T-cell regulation and macrophage response,

making it an important biomarker in determining the severity of

COVID-19. Although there are elevated levels of anti-inflammatory

cytokines such as IL-10, the outcompeting pro-inflammatory

response during the cytokine storm curbs the immune system’s

attempts back to homeostasis. The imbalanced cytokine profile in
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severe cases sheds light on the pathogenic role of pro-inflammatory

cytokines in COVID-19 and the dangers when there are no effective

regulatory mechanisms to keep the hyperinflammatory state in

check. Thus, the unique cytokine profiling of healthy controls

versus COVID-19 patients and severe COVID-19 cases versus

mild to moderate cases provides insights into targeting the

cytokine storm as a significant turning point in the treatment and

management of COVID-19 patients.
Gut-lung axis in COVID-19

The healthy gut microbiota population primarily consists of the

Firmicutes (e.g., Lactobacillus, Bacillus, and Clostridium) and the

Bacteroidetes species (e.g., Bacteroides) (Sencio et al., 2021a). The

relationship between the gut microbiome and the host’s health

status has been shown to be symbiotic. As a result, any disruption in

this relationship may have diverse and profound effects as studied in

cardiovascular disease, diabetes mellitus, malignancies, Alzheimer’s

disease, cystic fibrosis, and upper respiratory infections such as

COVID-19. Dysbiosis of the microbial population may provide

insight into the pathogenesis of these disorders and offer alternative

ways to treat them.

The gut-lung axis is the bidirectional crosstalk between the

microbial community and the respiratory system. Any disruptions

to the gut and/or lung will have consequences on both systems

(Sencio et al., 2021a). Respiratory inflammation and damage may

disrupt intestinal microbiota, and changes to the gut microbial

composition may impact the function and mucosal immunity of the

lungs (de Oliveira et al., 2021). It has been shown that the ratio

between pro- and anti-inflammatory gut flora plays an important

role in modulating immune homeostasis of the body (Wu

et al., 2021).

Emerging studies now aim to investigate the specific

mechanisms in which the gut microbiota contributes to

establishing appropriate immune responses (immunomodulation)

and homeostasis in the lungs. Gut-derived metabolic by-products

and compounds such as Short Chain Fatty Acids (SCFAs) and the

expression of Angiotensin Converting Enzyme 2 (ACE2) are

considered key players in directing communication between gut

microbiota and the lung immunity (Sencio et al., 2021a).
Immunological effects of gut microbiota
derived SCFAs

SCFAs are a group of fatty acid metabolites produced by gut

microbiota during the anaerobic fermentation of indigestible

polysaccharides. Acetate, butyrate, and propionate are the three

main SCFAs absorbed by intestinal epithelial cells and distributed to

the rest of the body (Valdes et al., 2018). SCFAs are involved in a

variety of processes including hepatic glucose and lipid

homeostasis, and appetite modulation. In the gut, SCFAs

maintain intestinal barrier integrity by regulating inflammatory

chemotaxis, differentiation, and proliferation as well as the

production of cytokines, such as IL-8 which supports
frontiersin.org
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inflammation and facilitates epithelial integrity (Corrêa-Oliveira

et al., 2016). In particular, therapeutic levels of SCFAs play a

significant role in regulating inflammatory response, for which a

healthy set of commensal microbiota is essential. Gut dysbiosis is

associated with disrupted levels of SCFAs (Valdes et al., 2018),

further affecting diverse immunological disorders or conditions

ranging from autoimmune diseases to microbial infections (Erny

et al., 2021; Liu et al., 2021; Yip et al., 2021).

Butyrate has been observed to stimulate regulatory T cell (Treg)

production (Akimova et al., 2012), a key player in suppressing

immune overactivation and maintaining self-tolerance (Scheinecker

et al., 2020). Disruptions to Treg cell function or quantity have been

associated with several autoimmune disorders (Miyara et al., 2011).

A study by Arpaia et al. (2013) found that mice with a normal set of

commensal bacteria had increased levels of butyrate and

propionate, leading to the increased extrathymic differentiation of

Treg cells compared to antibiotic-treated and germ-free mice.

Treatment with butyrate in drinking water resulted in an increase

in peripheral Treg cells in antibiotic-treated mice. Further studies

found consistent associations between SCFAs and Treg cell

homeostasis (Coutzac et al., 2020; Su et al., 2020).

SCFAs are also believed to promote the expression of IFN-b, a
cytokine that enhances the expression of anti-inflammatory IL-10

and transcription of antiviral genes (e.g., MHC II, TLR-induced

cytokines), to decrease levels of proinflammatory markers (e.g., IL-

6, IL-12) in the lung, and to provide defense against Respiratory

Syncytial Virus (RSV) infection (Karimi et al., 2020). Antunes et al.

(2022) observed that treatment of human pulmonary epithelial cells

with acetate showed protection against RSV. This finding is

supported by another study which observed probiotic mice

having increased levels of acetate in circulation and increased

production of IFN-b by alveolar macrophages compared to non-

treated mice (Ji et al., 2021). These studies demonstrate that the gut

derived SCFAs can exert an anti-inflammatory effect to prevent the

overreaction of immune responses.
ACE2 expression

The Angiotensin Converting Enzyme 2 (ACE2) is a protein

located on the plasma membrane of many cells in the kidneys,

heart, testes (Tipnis et al., 2000), lungs (Kuba et al., 2005), and small

intestine (Hashimoto et al., 2012). In the cardiovascular and kidney

systems, ACE2 plays an important role in regulating blood pressure

by cleaving and deactivating Angiotensin II as part of the Renin-

Angiotensin-Aldosterone System (RAAS) (Perlot and Penninger,

2013). ACE2 expression in the gastrointestinal tract is believed to

play an important role in regulating gut microbiota and enhancing

innate immunity. Studies have demonstrated the link between

ACE2 and several immunological disorders including systemic

sclerosis (Miziolek et al., 2021) and Diabetes Mellitus Type 1

(Roca-Ho et al., 2020).

The functions of ACE2 in the immune system and in the

regulation of gut-lung axis have been extensively studied.

Intestinal ACE2 is involved in maintaining gut microbial

homeostasis via regulation of dietary amino acid digestion
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(Camargo et al., 2020) and amino acid transporters (Penninger

et al., 2021). Specifically, ACE2 facilitates the uptake of dietary

amino acids such as tryptophan, glutamine, and phenylalanine;

these amino acids are further processed by gut microbiota.

These ACE2 metabolites play crucial roles in attenuating

excessive immune responses by downregulating pro-inflammatory

cytokines, promoting tight junction formation between gut

epithelial cells, and modulating mucosal cell autophagy (Obukhov

et al., 2020). In a study conducted on mice, plasma levels of glycine,

tryptophan, and other neutral amino acids were decreased in ace2

null mice compared to wildtype mice (Singer et al., 2012). A study

by Hashimoto et al. (2012) demonstrated that dietary tryptophan

absorbed in an ACE2-dependent pathway uses mTOR signaling to

regulate the expression of antimicrobial peptides in the intestines,

and ACE2 deficiency was associated with higher risk for colitis. In

the same study, findings also revealed that ACE2-mutant mice had a

remarkably altered gut microbiome, markedly reduced serum levels

of tryptophan, and a correlated susceptibility to intestinal

inflammation compared to the wildtype mice. A tryptophan diet

for ACE2-deficient mice reverted the composition of the intestinal

microbiome closer to that of the wildtype mice with observed

inductions of intestinal antimicrobial peptides. Intestinal

antimicrobial peptides play a role in maintaining microbial

homeostasis in the intestines (Salzman et al., 2010). These

findings suggest the critical functions of ACE2 metabolites in

regulating gut microbial homeostasis and modulating the local

and systemic immune systems.
Effects of SCFAs and ACE2 on COVID-19

As stated earlier, cytokine storm largely contributes to SARS-

CoV-2 related ARDS, severity, treatment, and outcome of COVID-

19. As a part of the gut-lung axis, SCFAs and ACE2 play a key role

in modulating the immune response during severe respiratory

disease and reducing the risk for cytokine storm and ARDS. In

several studies, COVID-19 patients with digestive symptoms were

more likely to develop severe illness and ARDS that required

mechanical ventilation compared to patients without digestive

symptoms (Guan et al., 2020; Jin et al., 2020). This suggests the

significance of gastrointestinal components in COVID-

19 progression.

Enhanced plasma levels of SCFAs have been correlated to

improved lung protection and immune response under

respiratory infections by influenza (Sencio et al., 2021b),

Streptococcus pneumoniae (Machado et al., 2022), and respiratory

syncytial virus (Antunes et al., 2022). SCFAs have also been

observed to minimize the repercussions of severe COVID-19

infection by potentially mitigating the cytokine storm (Reinold

et al., 2021; Vignesh et al., 2021). Alterations in gut microbiome

have been associated with COVID-19 infection, notably a decrease

in butyrate-producing bacteria such as Ruminococcaceae and

Lachnospiraceae families; these changes persist after the recovery

of COVID-19 (Gu et al., 2020; Zuo et al., 2020). A study by Zhang

et al. (2022) found that decreased abundance of SCFA-producing

bacteria, such as Bifidobacterium and Faecalibacterium, was
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observed in more severe COVID-19 cases with deficient levels of

SCFAs during infection that continued beyond 30 days after

resolution. Findings by Li J et al. (2021) suggested that butyrate

regulates gene expression through the deacetylation by histone-

deacetylase (HDAC). These genes include the downregulation of

high-mobility group protein-1 (HMGB1) that is essential for SARS-

CoV-2 infection and replication (Bruchez et al., 2020) and the

upregulation of antiviral gene pathways via toll-like receptor

signaling and MHC class-II transactivator (CIITA), the latter of

which is known for disrupting endosomal entry of the virus into gut

epithelial cells (Bruchez et al., 2020). Butyrate's effect on histone

arginine-demethylase Jmjd6 and chromatin-remodeling complex

members Smarca4 and Arid1a reduces SARS-CoV-2 induced cell

death, suggesting a protective role for gut epithelial cells. Further

studies had similar findings in which depletions of SCFA-producing

bacteria including Faecalibacterium (Zuo et al., 2020), Roseburia

and Bifidobacterium (Yeoh et al., 2021) were associated with

increased pro-inflammatory cell markers, lower levels of CD8+ T

cells, and more severe COVID-19 infection (Reinold et al., 2021;

Yeoh et al., 2021). Notably, reductions in SCFA-producing bacteria

were found to be significantly correlated to increased pro-

inflammatory cytokines, blood markers, and severity in COVID-

19 patients (Yeoh et al., 2021).

The effect of COVID-19 on ACE2 expression in the gut may

contribute to disease progression and outcome. After SARS-CoV-2

binds to the ACE2 receptor, it causes ACE2 degradation through

viral internalization and replication (Hoffmann et al., 2020;

Penninger et al., 2021), hindering its normal function in the

uptake of dietary amino acids, most notably tryptophan (Qin

et al., 2021). Reduced ACE2 expression decreases the levels of its
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free amino acid metabolites, leading to disruptions in the gut barrier

and causing a “leaky gut” which allows bacterial lipopolysaccharides

and peptidoglycan to enter systemic circulation. This further

provokes the immune system during infection and contributes to

the cytokine storm observed in severe COVID-19 patients

(Penninger et al., 2021). When the gut-lung axis is disrupted by

the downregulation of intestinal ACE2 under COVID-19, cytokine

storm is more likely to arise that leads to ARDS and severe

symptoms in the lungs. In summary, the gut microbiota derived

SCFAs and the state of intestinal ACE2 are the two relatively well

studied regulators in the gut-lung axis to modulate the immune

responses against COVID-19. The whole immune response process

and mechanisms for gut microbiota to regulate COVID-19

outcomes are summarized in Figure 1.
Underlying comorbidities and
gut dysbiosis as a part of
COVID-19 pathogenesis

A study has found that COVID-19 morbidity and mortality are

correlated with older age, diabetes mellitus type 2 (T2DM), and

hypertension (Zhang, J et al., 2021). Interestingly, these same

populations are predisposed to having alterations in gut

microbial composition.

Gut microbial changes associated with the natural aging process

could play a role in the development of immunosenescence. A study

by Hopkins, et al. (2001) observed consistent patterns in the shift of

gut microbiota composition in the elderly age group (aged 67-88
FIGURE 1

Regulation of COVID-19 progression and outcome by immunological interaction through gut-lung axis. The early event of immune evasion of
SARS-CoV-2, the generation of dysbiosis of the gut microbiota, and synergistic effects between lung and gut on cytokine storm and T cell mediated
immunity are summarized. MHC, major histocompatibility complex; PRR: pattern recognition receptor; IFN: interferon; CTL: cytotoxic T lymphocyte;
Treg, regulatory T cell; MALT, mucosa-associated lymphoid tissue; LN, lymph node; ARDS, acute respiratory distress syndrome; SCFA, short chain
fatty acid; ACE2, angiotensin converting enzyme 2. The Figure was created using BioRender software (https://www.biorender.com/).
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years), notably a decrease in SCFA-producing bacteria

(Lactobacillus, Bifidobacteria) compared to the young adult group

(aged 21-34 years). Woodmansey et al. (2004) found a significant

decrease of acetate and butyrate in healthy elderly compared to

antibiotic-treated elderly patients. This supports the use of

probiotics in the elderly to enhance natural killer cell activity and

quantity (Gui et al., 2020) and decrease IL-6, IL-8, and C-reactive

protein (Costabile et al., 2017). A randomized trial found that

COVID-19 patients who took probiotics had shorter duration of

symptoms, lower viral loads, and a higher rate of complete

remission compared to COVID-19 patients in the placebo group

(Gutiérrez-Castrellón et al., 2022).

Individuals with T2DM have a higher risk for morbidity and

mortality under many respiratory infections such as influenza (Lau

et al., 2014), community-acquired pneumonia (Di Yacovo et al.,

2013), and COVID-19. A metagenomic analysis found that gut

dysbiosis in T2DM exhibited decreased levels of butyrate-producing

bacteria, increased opportunistic strains, and increased oxidative

stress (Qin et al., 2012). Probiotic supplementation in diabetic

patients was found to restore acetate and propionate levels and

moderately improve levels of SCFA-producing bacteria

Bifidobacteria (Birkeland et al., 2020). Another study by Tonucci

et al. (2017) found that replenished acetate levels in diabetic patients

under probiotic supplementation were correlated reduction of pro-

inflammatory and oxidative stress factors such as TNF-a, LDL-
cholesterol, and HbA1c. When encountering an infection such as

COVID-19, reducing immune provocation is critical to lower a risk

for developing cytokine storm.

Patients with uncontrolled hypertension are more susceptible to

developing severe COVID-19. Gao et al. (2020) observed that

angiotensin-converting enzyme inhibitors (ACEi) and angiotensin

II receptor blockers (ARBs) help reduce mortality in COVID-19

patients compared to those without antihypertensive treatment or

with the use of non-RAAS inhibitors (beta blockers, diuretics,

calcium channel blockers). ACEi and ARBs are believed to

increase ACE2 expression in cardiac tissue (Ferrario et al., 2005)

and intestinal enterocytes (Vuille-dit-Bille et al., 2015), which leads

to the reduction of Angiotensin II levels. Ang-II mediated fibrosis

and lung injury is believed to play a crucial role in worsening lung

injury in COVID-19 (Kuba et al., 2005), therefore preservation of

ACE2 using RAAS inhibitors may offer protection against SARS-

CoV-2 injury (South et al., 2020). On the other hand, increased

ACE2 expression may provide more host receptors for binding with

SARS-CoV-2, leading to concerns of harmful ramifications of ACEi

and ARBs (Fang et al., 2020). A study by Bauer et al. (2021) found

that discontinuation of ACEi/ARBs led to a faster recovery in

elderly COVID-19 patients in Germany. Li, S et al. (2021) found

that the inpatient use of ARBs was associated with significant

decreased mortality in COVID-19 African American patients.

Other studies found no increased risk of mortality or morbidity

with the use of ACEi or ARBs in hypertensive patients with

COVID-19 (Gao et al. , 2020). These findings may be

controversial in some cases, suggesting that the effects of RAAS

inhibitors on COVID-19 patients with hypertension may be

protective or harmful depending on the intricate regulation

between RAAS pathway and SARS-CoV-2 entry through ACE2.
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This issue is further complicated by the fact that ACEi can activate

the kallikrein-bradykinin pathway; increased bradykinin level can

induce hypotension, pulmonary edema, dizziness, myalgia,

arrhythmia, etc., which could potentially cause the deterioration

of COVID-19 patients (Wang et al., 2020). Collectively, ACEi and

ARBs show more benefits than harms for COVID-19 patients with

hypertension. Discontinuation of RAAS inhibitors should be

cautiously determined based on specific patient situation.
Diet modulates COVID-19 through
gut microbiota

The popularity of the Western diets and processed foods

worldwide have raised concerns as they are correlated with

dyslipidemia, insulin resistance, overactivated renin-angiotensin

system, overactivated sympathetic nervous system, and

hyperinflammatory states (Beam et al., 2021). In several human

and animal studies, the nutritional components of theWestern diets

(e.g., saturated fatty acids, cholesterol, and sugars) result in an

increased oxidative state and increased levels of proinflammatory

markers such as C-reactive protein (CRP), IL-1, and IL-6 (Christ

et al., 2019). Interestingly, choline enriched in meat can be

metabolized to trimethylamine (TMA) by gut microbes and

further converted into trimethylamine-N-oxide (TMAO) in the

liver. TMAO is now known to be detrimental to human health to

cause many cardiovascular and metabolic diseases such as

atherosclerosis, hypertension, diabetes, and heart failure, most of

which are underlying comorbidities for COVID-19 (Shanmugham

et al., 2023). Specifically, TMAO can induce IL-6 production and

enhance the infection of endothelial cells by SARS-CoV-2 (Chiang

et al., 2022). Thus, adopting “non-Western” diets, such as

Mediterranean, high fiber, and fermented food diets, can alter the

microbiome and improve metabolic and inflammatory processes in

the gut.

Mediterranean diets have been shown to increase abundance of

butyrate producers (e.g., Agathobaculum butyriciproducens,

Anaerostipes hadrus, Faecalibacterium prausnitzii) and bacteria

with anti-inflammatory properties (e.g., Faecalibacterium

prausnitzii, Roseburia, and Lachnospiraceae) (van Soest et al., 2020;

Barber et al., 2021). Similarly, high fiber diets provide some

indigestible carbohydrates to produce SCFAs to maintain

homeostasis of many physiological processes of the body (Hills

et al., 2019; Wilson et al., 2020; Tanes et al., 2021; Wastyk et al.,

2021). Adherence to a whole grain diet for 6 weeks resulted in an

increase in effector memory T cells and the production of TNF-a
amongst the 81 participants (Vanegas et al., 2017), suggesting that

plant-based diets or the core component of blue-zones diets with

non-processed plant-based foods could have protective role against

SARS-CoV-2 infection. Indeed, this is also supported by recent

studies directly examining the effects of plant-based diets on

COVID-19 that show benefits to protect moderate-to-severe

COVID-19 and to reduce the burden of long-COVID (Kim et al.,

2021; Storz, 2021). Furthermore, patients subjected to synthetic

enteral nutrition (EEN) demonstrated the importance of fiber for

the recovery and maintenance of a healthy gut microbiome (Tanes
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et al., 2021). Fermented foods have been shown to modulate the gut

microbiota composition and decrease inflammatory markers (e.g., C-

reactive protein) and erythrocyte sedimentation rate (Bellikci-Koyu

et al., 2019; Wastyk et al., 2021; Zhang, X et al., 2021). The anti-

inflammatory and “protective” effects of the “non-Western” diets as

discussed above may provide a means to treat hyperinflammatory

diseases such as COVID-19 with cytokine storm.

A study conducted on a COVID-19 patient with a history of

Graves’ disease, hypertension, hyperlipidemia, and prediabetes

demonstrated that a high fiber diet alleviates GI symptoms post-

acute infection (Wang et al., 2022). Moreover, there was increased

abundance of SCFA producing bacteria, such as Oscillibacter,

Sellimonas, Bifidobacterium, Blautia, Lactobacillus, Faecalitalea,

Anaerofustis, and Eubacterium, after 2 months of the high-fiber

dietary intervention.

Another study examined the efficacy of a probiotic formula on

altering the gut microbiota and improving symptoms in 293

symptomatic COVID-19 outpatients (Gutiérrez-Castrellón et al.,

2022). The results showed that 53.1% of patients in the probiotic

group achieved complete remission from SARS-CoV-2 infection after

30 days, whereas only 28.1% of patients in the placebo group did. In

addition, the viral load and symptoms were both reduced for patients

in the probiotic group. Longitudinal studies should be conducted to

assess the long-term efficacy of such dietary interventions.
Discussion

Gut microbiome plays increasingly important roles in human

pathophysiology through its interaction with other body systems,

thereby emerging as a critical factor in regulating disease

development, prevention, treatment, and outcome. In this review,

we specifically analyze the function of gut microbiota in COVID-19

by focusing on how its metabolites like SCFAs and the status of

intestinal ACE2 regulate the innate and adaptive immunities in the

context of gut-lung axis. Aging, comorbidities, and diets as the

major modulators of gut microbiota are also integrated for us to

further understand the complex regulation between gut microbiota

and COVID-19.

During the interaction between gut microbiota and immune

responses, the function of intestinal ACE2 is an intriguing topic.

Relative enrichment of ACE2 in the gut makes the GI tract a major

organ susceptible to SARS-CoV-2 infection; on the other hand,

maintenance of intestinal ACE2 expression is required for the

healthy functions of the gut. Thus, the balance between these two

counteracting roles of ACE2 become critical in regulating SARS-

CoV-2 infection. One aspect of this balance is analyzed through the

therapeutic effects of ACEi and ARBs on patients with

comorbidities. Further studies are needed on this topic in the

wake of COVID-19 pandemic.

The other critical point we emphasized in this paper is how gut

eubiosis is compromised or disrupted by comorbidities and diets that
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lead to increased susceptibility to SARS-CoV-2 infections. Interestingly,

SARS-CoV-2 infection can also cause gut dysbiosis, thereby synergizing

the damaging cycle to favor its infection. Considering this topic,

currently fecal microbiota transplantation (FMT) becomes a novel

approach that is proved to be effective by transferring gut commensal

microbes from a healthy person to a patient to improve gut microbial

composition and homeostasis in the recipient (Wang et al., 2019). FMT

has demonstrated promising effects in the use of Clostridium difficile

infections (van Nood et al., 2013) to induce remission in active

ulcerative colitis patients (Moayyedi et al., 2015), to control

symptoms in irritable bowel syndrome patients (Johnsen et al.,

2018), and to improve hepatic encephalopathy in cirrhotic patients

(Bajaj et al., 2017). Zhang, W et al. (2020) observed that mice with

colitis had increased levels of SCFAs, decreased levels of pro-

inflammatory cytokines, and overall reduced inflammatory markers

from FMT treatment. Considering these positive effects, FMT may

become promising in treating COVID-19 in patients with gut dysbiosis

caused by various comorbidities.
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