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Fungal diseases have posed a great challenge to global health, but have fewer

solutions compared to bacterial and viral infections. Development and

application of new treatment modalities for fungi are limited by their inherent

essential properties as eukaryotes. The microorganism identification and drug

sensitivity analyze are limited by their proliferation rates. Moreover, there are

currently no vaccines for prevention. Polymer science and related

interdisciplinary technologies have revolutionized the field of fungal disease

management. To date, numerous advanced polymer-based systems have been

developed for management of fungal diseases, including prevention, diagnosis,

treatment and monitoring. In this review, we provide an overview of current

needs and advances in polymer-based strategies against fungal diseases. We

high light various treatment modalities. Delivery systems of antifungal drugs,

systems based on polymers’ innate antifungal activities, and photodynamic

therapies each follow their own mechanisms and unique design clues. We also

discuss various prevention strategies including immunization and antifungal

medical devices, and further describe point-of-care testing platforms as

futuristic diagnostic and monitoring tools. The broad application of polymer-

based strategies for both public and personal health management is prospected

and integrated systems have become a promising direction. However, there is a

gap between experimental studies and clinical translation. In future, well-

designed in vivo trials should be conducted to reveal the underlying

mechanisms and explore the efficacy as well as biosafety of polymer-

based products.
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1 Introduction

Fungi, organisms that form their own kingdom in the domain

of Eukarya, have an estimated 2.2 to 3.8 million species (Sun et al.,

2020). Only a small number of genera and species are pathogenic to

humans. Some may cause severe diseases and death in hosts with

weakened immune systems. Whereas others infest a large

population around the world, generally immunocompetent, and

cause a benign, topical, self-limiting infection, some of which are

global, and others are localized (Ashraf et al., 2020). For example,

studies have shown that superficial infections of the skin and nails

affect 20–25% of the world’s population, and up to 75% of women

have experienced vulvovaginal candidiasis at least once in their

lifetime (Sobel et al., 1998; Havlickova et al., 2008). Invasive fungal

disease (IFD), a systemic, generalized, deep-seated, visceral, and

severe fungal infection, is a global human health challenge (De

Pauw et al., 2008). Notably, there is a significant increase in the

susceptible immunocompromised population, due to the rise in

transplant recipients, cancer patients, and people with chronic

diseases such as diabetes (Rayens et al., 2022a). Studies have also

reported an increase in fungal infections, such as pulmonary

aspergillosis and invasive candidiasis during the coronavirus

disease 2019 pandemic, due to an increase in risk factors such as

damaged innate defense, use of steroids, and protracted invasive

mechanical ventilation (Baddley et al., 2021; Devnath et al., 2021).

Considering the associated high risk of mortality, there is an urgent

need for development of effective preventive methods, early

diagnosis tolls and efficacious treatment modalities (Chiurlo et al.,

2021; Mitaka et al., 2021).

To date, however, only a handful of antifungal agents have been

identified, owing to the similarity between eukaryotic cells of the

host and fungi. Furthermore, some are unavailable for patients with

comorbidities due to the risk of severe side effects or drug-drug

interactions. Moreover, the frequent and prophylactic use of these

drugs has generated an “arms race” of acquired resistance. Although

pharmacological research seeking to identify new antifungals with

novel modes of action such as glucan synthase inhibitor has shown

promise, no clinical translation has been achieved yet (Van Daele

et al., 2019; Davis et al., 2020). Interdisciplinary enhancement of

conventional drugs with novel materials could be a faster option.

Polymers have been widely used in such applications owing to

their highly controlled properties. This has been achieved through

choices of various monomers, different chain lengths, and subsequent

on-demand functionalization. To date, some natural and synthetic
Abbreviations: IFD, Invasive fungal disease; HIV, Human immunodeficiency

virus; PEG, Poly(ethylene glycol); PDT, Photodynamic therapy; PCR, Polymerase

chain reaction; FDA, Food and Drug Administration; AmB, Amphotericin B;

NPs, Nanoparticles; PLGA, Poly(lactic-co-glycolic acid); HP-b-CD,

Hydroxypropyl-b-cyclodextrin; MIC, Minimum inhibitory concentration; PVA,

Poly(vinyl alcohol); HA, Hyaluronic acid; UV, Ultraviolet; MN, Microneedle;

PVP, Poly(vinyl pyrrolidone); PEI, Poly(ethylene imine); AMP, Antimicrobial

peptide; ROS, Reactive oxygen species; PS, Photosensitizer; Pc, Phthalocyanine;

Pp, Protoporphyrin; CMC, Carboxymethyl chitosan; NIR, Near-infrared ray;

BERT, Bioluminescence resonance energy transfer.
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polymers with remarkable biocompatibility and biodegradability,

including chitosan and poly(ethylene glycol) (PEG), have been

approved for drug excipient application (Alam et al., 2014; D'souza

and Shegokar, 2016). Polymer-based novel delivery systems have also

shown remarkable efficacy and reduced toxicity. Numerous

convenient dosage forms, based on the properties of polymers, can

not only enhance topical delivery but also improve patient

compliance during the long course of treatment. Moreover,

polymeric materials with innate antifungal activities have shown

efficacy against multidrug-resistant fungi. Notably, such treatment

only represents one passive aspect in management of fungal diseases.

Therefore, there is need for development of more proactive methods

such as vaccination and self-testing. Furthermore, functionalized

polymers have potential as strong adjuvants and key integrators of

elements in biosensing devices.

So far, this field has been reviewed with emphasis on nano-

scaled composites primarily used as drug delivery systems and

synthetic materials with antifungal activity (Du et al., 2021; Nagaraj

et al., 2021; Ntow-Boahene et al., 2021). In this review, we describe

polymer-based strategies for management of fungal disease,

including treatment, diagnosis as well as monitoring and

prevention (Scheme 1). Firstly, we review common fungal

diseases and their conventional treatments, then describe

polymer-based drug delivery systems, approaches that depend on

the innate antifungal activities of the polymers, and polymer-

enhanced photodynamic therapy (PDT). Next, we highlight the

progress on active and passive immunization, fungus-proof medical

devices, and diagnostic platforms. Finally, we discuss the associated

challenges and put forward some recommendations for

future directions.
2 Human fungal diseases and
conventional treatment modalities

2.1 Fungal diseases

Fungal diseases are caused by various phylogenetically diverse

pathogenic species across phyla within the Kingdom fungi

(Jacobsen, 2019). Fungal infections are classified into four clinical

types, based on depth of infection, namely superficial, cutaneous,

subcutaneous, and systemic infections (Schwartz, 2004). However,

this classification only reflects the current state of infection. For

example, Candida albicans may first colonize the human skin

surface or mucosa lining, then invade such sites under certain

predisposing conditions, and they tend to infiltrate deeper tissues

and disseminate in immunocompromised patients. Therefore,

superficial fungal infection may also be a result of invasion and

likely to be the initial, local stage of IFD (Hof, 2010).

2.1.1 Superficial fungal diseases
Superficial mycosis, like tinea versicolor and tinea nigra, are

infections restricted to the stratum corneum and are associated with

little inflammation (Schwartz, 2004). Studies have shown that

cutaneous mycosis may affect deeper layers of the epidermis and

cutaneous appendages and elicit tissue reaction by the organism or
frontiersin.org
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its products (Hsu et al., 2012). Both superficial and cutaneous

mycosis are sometimes considered superficial infections and they

will be discussed together as superficial fungal diseases in the

following parts of this review. Dermatophyte infections are the

most common superficial fungal infections in humans (Havlickova

et al., 2008). Dermatophytes are filamentous fungi that can utilize

keratin as a nutrient source and cause superficial infections in

keratinized tissues, including skin, hair, and nails. Their intolerance

to body core temperature means that they are almost exclusively

localized in the keratinized tissues and seldom cause IFD

(Weitzman and Summerbell, 1995; Jacobsen, 2019). Most

dermatophytes are from three anamorphic genera, namely

Epidermophyton, Microsporum, and Trichophyton. Dermatophytes

can also be divided into three ecological groups, based on their

natural habitats, namely anthropophilic, zoophilic and geophilic

(Weitzman and Summerbell, 1995). Specifically, anthropophilic

species colonize human epidermal products and cause mild

chronic infections, whereas zoophilic and geophilic species are

responsible for acute mycoses with strong inflammatory
Frontiers in Cellular and Infection Microbiology 03
responses but shorter course of illness (Gnat et al., 2019). Other

classification systems, based on phenotypes, genetic relationships,

and molecular criteria, are more complicated and less used in the

clinical setting (Gnat et al., 2019). Apart from dermatophytes, yeasts

and molds have also been shown to cause superficial mycosis, with

the elderly reportedly more susceptible to these less common

pathogens than the younger population (Wang et al., 2020b). A

summary of typical development of skin infections is shown

in Table 1.

Based on the infection site, superficial fungal diseases can be

classified into tinea capitis (scalp), tinea corporis (body), and tinea

unguium (nails), among others. Although their clinical presentation

varies depending on infection site and pathogenic species, it

typically involves a circumscribed scaly and itchy rash (Hsu et al.,

2012). Other common signs include changes in appearance of

affected nails and hair loss for tinea unguium, and tinea capitis,

respectively (Hsu et al., 2012). The mucosa represents another

important barrier of our internal milieu. Studies have shown that

this area is easily affected under conditions like dampened host
TABLE 1 Typical development of superficial skin infection.

Process Fungi factors Host responses

Contact Passive forces such as hydrophobic and electrostatic interactions

Adherence Adhesins on the fungal cell surface
Establishment of short and long fibrils (Kaufman et al., 2007)
Proteases secretion

Increased cellular turnover

Colonization Degradation of host tissue structures by hydrolytic enzymes such as keratinolytic
proteases and lipases
Shaping and adapting to a neutral/alkaline pH (Martinez-Rossi et al., 2017)

Innate immunity
Upregulated antimicrobial peptides expression
Release of multiple inflammatory cytokines
Recruitment of inflammatory cells such as neutrophils,
macrophages, and dendritic cells
Production and release of melanin granules (Tapia et al., 2014)
Activation of sensory neurons (Kashem et al., 2015)

Adaptive immunity
Activation of immune cells such as Th1 and Th17 (Ma et al., 2021)

Infection Hyphal extension and invasion
Biofilm formation (Burkhart et al., 2002)
Binding and activation of host plasmin (Crowe et al., 2003)
Induced endocytosis (Waechtler et al., 2012)
SCHEME 1
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immunity or dysbiosis, because fungi, especially Candida spp.

which form part of the host’s mucosal microbiome, are also

opportunistic pathogens (France and Turner, 2017; Witherden

et al., 2017; Pellon et al., 2020). Vulvovaginal candidiasis is a

common fungal infection that affects up to 75% of women during

their lifetime. Notably, recurrent infections reportedly affect 5–8%

of women of childbearing age (Sobel et al., 1998; Matheson and

Mazza, 2017). The associated symptoms, such as itching and

soreness of the vulva, as well as dysuria, dyspareunia, and vaginal

discharge, can greatly affect the quality of life (Matheson and

Mazza, 2017). Oropharyngeal candidiasis is the most prevalent,

recurrent, and indicative opportunistic infection in patients with

human immunodeficiency virus (HIV) (Patil et al., 2018). Studies

have also implicated a myriad of predisposing factors, local or

systemic, such as xerostomia and use of broad-spectrum

antimicrobials, in commensal-pathogenic transition (Milsop and

Fazel, 2016). The classical presentation of oropharyngeal

candidiasis is erasable white plaques on oral mucosa and an

erythematous surface left behind. Although, most patients are

asymptomatic, some may experience a burning sensation, taste

alteration, or bleeding at affected sites (Sharon and Fazel, 2010;

Milsop and Fazel, 2016). Some species of Paracoccidioides,

Histoplasma, and Mucor are also pathogenic to the mucosa

(Marques, 2010). Fungal keratitis is a severe sight-threatening

ophthalmic disease that may lead to permanent blindness and eye

loss. It often occurs secondary to minor ocular trauma during

engagement in agricultural activities, while other reported

predisposing factors include previous ocular surgery, ocular

surface disease, contact lens use, and common systematic mycosis

susceptibility (Brown et al., 2021). Apart from eye inflammation

and opacity on the surface of the cornea, patients usually experience

pain, discharge, photophobia, and reduced vision (Ansari et al.,

2013). Other signs that differentiate this disease from bacterial

keratitis include satellite lesions and irregular borders of the ulcer.

However, the distinguishing accuracy is only 60–70% even for the

experts (Dalmon et al., 2012).

2.1.2 Deep fungal diseases
Primary subcutaneous mycoses are usually induced by traumatic

implantation or wound contamination, and may spread to internal

organs through lymphatic vessels and the blood stream (Fernandez-

Flores et al., 2014; Shields et al., 2019). Studies have shown that

patients may be infected after inhaling conidia or mycelial fragments,

as well as colonization by opportunistic pathogens like C. albicans

(Fernandez-Flores et al., 2014; Shields et al., 2019). Other

classifications have separated systemic and opportunistic diseases

by fungal virulence and host immunity. In some cases, only

dimorphic fungal infections are classified as systemic mycoses

(Arenas et al., 2012). Both subcutaneous and systemic

fungal infections mainly occur in tropical climates and in

immunosuppressed patients, due to the fact that invading

pathogens are not only restricted but also eliminated in most

immunocompetent people unless the inoculum is abundant
Frontiers in Cellular and Infection Microbiology 04
(Arenas et al., 2012). However, these pathogens reportedly cause

more serious clinical problems in immunocompromised individuals,

to whom opportunistic fungi become pathogenic and pathogenic

ones more virulent. Host factors are significant in probable and

possible diagnosis of IFD, if the mycologic evidence are insufficient.

They are used to identify patients very prone to fungal infections, that

mainly are causes of severe immunosuppression such as the recent

history of neutropenia, receipt of transplantation and prolonged use

of corticosteroids (Donnelly et al., 2020). Risk factors are about

underlying diseases that statistically increase the chance and

severity of IFD. In recent years, risk conditions have moved away

from HIV infections to people with certain conditions such as

diabetes mellitus, respiratory disorders (chronic obstructive

pulmonary disease and asthma), and cancer (Rayens et al., 2022a).

Some bacterial or viral infections (sepsis, pneumonia, and influenza,

among others) as well as organ dysfunction have also been reported

(Rayens et al., 2022b). Studies have shown that fungal infections not

only doubled the average cost and length of hospital stays in at-risk

patients, but also significantly exacerbated severity of the underlying

disease and risk of death (Rayens and Norris, 2022).

The role of certain genes and pathways in susceptibility to

fungal infections has become a new research hotspot. Notably,

polymorphisms in soluble and membrane-bound pattern

recognition receptors represent significant innate immune

response elements that could affect an individual’s susceptibility

to fungal diseases. Previous studies have associated variations

among related genes, such as mannose-binding lectin and toll-like

receptors, with increased risk of certain fungal infections (Carvalho

et al., 2010). Moreover, mutations in genes encoding members of

the interleukin family and metabolism of immune cells have also

been implicated in susceptibility (Naik et al., 2021)to fungal

infections. Therefore, detection and functional characterization of

such biomarkers may provide valuable approaches for future

development of personalized prevention and treatment strategies

for fungal diseases.

Pathogenic fungi invade different sites and cause different

clinical presentations. Among them, cutaneous and subcutaneous

tissues are commonly involved sites in systemic fungal diseases of

some species, and may display different clinical manifestations from

primary infections (Fernandez-Flores et al., 2014). The clinical

manifestation of IFD could be very insidious or nonspecific, and

lead to delayed or missed diagnosis (Danion et al., 2019). Generally,

the diagnosis is based on multiple evidences besides host factors,

including clinical, radiological, histological and microbiological

findings from biopsy and culture (De Pauw et al., 2008; Pappas

et al., 2018; Berger et al., 2019). Polymerase chain reaction (PCR)

and antigen biomarkers such as galactomannan and b-D-glucan are

useful non-invasive methods for microbiological analisis (Badiee

et al., 2016). However, these approaches are not readily available in

some less developed countries and regions (Falci and Pasqualotto,

2019). To effectively manage global health challenges brought about

by fungal diseases, there is a need to urgently develop convenient

and low-cost diagnostic tools.
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2.2 Conventional treatment modalities for
fungal diseases

Although pathogenic fungi can be classified into numerous

genera with various morphologies, they share similar cell wall and

membrane components that distinguish them from mammalian

cells. Researchers have exploited these as therapeutic targets,

although fungi’s susceptibility to these targets varies between

strains (Du et al., 2021). At present, four main classes of

antifungal agents namely polyenes, azoles, echinocandins, and

pyrimidine analogs, are applied for treatment of systemic

mycoses. Agents from other classes, including mitotic inhibitors

(griseofulvin), allylamines (terbinafine), aminoacyl transfer RNA

synthetase inhibitors (tavaborole), and hydroxypyridone derivatives

(ciclopirox), have been employed as alternative drugs for treatment

of superficial infections. Details on their underlying mechanisms of
Frontiers in Cellular and Infection Microbiology 05
action and Food and Drug Administration (FDA) approved dosage

forms of representative drugs are listed in Table 2.

Topical treatment is preferred to oral applications for many

superficial infections, due to the fact that the drug bypasses the first-

pass elimination, and has also been found to result in lower systemic

side effects, and concentrates at the target site (Rotta et al., 2013).

Besides, improved personal hygiene and dry, loose-fitting clothing

have been shown to accelerate the recovery process (Jartarkar et al.,

2022). Surgery is also effective for management of some

subcutaneous mycoses, as excision is the most direct method for

reducing pathogen load and the only independent predictor of

survival (Fernandez-Flores et al., 2014; Mauch et al., 2020). Corneal

scraping and penetrating keratoplasty are the most common

surgical interventions for refractory or severe fungal keratitis

(Ansari et al., 2013). However, systemic treatment is still required

for more serious and relapsing local infections for better clinical
TABLE 2 Representative antifungal drugs approved by FDA. Rx: prescription drug; OTC: over-the-counter drug.

Categories Antifungal
Drugs Mechanism of Action Dosage Forms Administration

Routes
Need of
prescription

Polyene

Amphotericin
B

Directly binds to ergosterol in the cell membrane of
susceptible fungi, forms transmembrane channels, and alters
the cell permeability that result in cytoplasm leakage.

Lyophilized powder
with sodium
desoxycholate for
injection

Intravenous Rx only
Lyophilized lipid-
complex for
injection

Lyophilized
liposomal for
injection

Nystatin

Tablet
Oral

Rx only

Suspension

Powder

TopicalCream

Ointment

Suppository
Vaginal

Tablet

Natamycin Suspension Ophthalmic Rx only

Azoles

Fluconazole

Selectively inhibit the fungal cytochrome P450-dependent
enzyme, lanosterol 14-a-demethylase, which convert
lanosterol to ergosterol.

Injection Intravenous

Rx only
Tablet

OralPowder for
suspension

Itraconazole
Capsule

Oral Rx only
Solution

Clotrimazole

Lozenge Buccal Rx only

Solution
Topical

OTCLotion

Cream Topical; Vaginal

Miconazole Tablet Buccal Rx only

(Continued)
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efficacy (Jartarkar et al., 2022). Although pathogen-targeting

antifungal agents remain the first choice for fungal infection

management, clinicians have also developed immunomodulating

therapies (Ademe, 2020). Repurposing of approved drugs, such as

statins and mebendazole, is also under investigation (Joffe et al.,

2017; Tavakkoli et al., 2020).
3 Polymer-based strategies in fungal
disease treatment

3.1 Delivery systems for antifungal drugs

Optimization of known drugs coupled with constant development

of new ones represents endless pursuits in medical and pharmaceutical

research. Considering that many conventional antifungal drugs are

hydrophobic, researchers have hypothesized that increasing their

aqueous solubility could promote their efficacy. Although formation

of conjugates with hydrophilic macromolecules is straightforward, care
Frontiers in Cellular and Infection Microbiology 06
should be taken not to compromise drug activity (Ravichandran and

Jayakrishnan, 2018). Generally, polymer-based carriers are combined

with drugs in non-covalent ways, and could be functionalized for

controlled tissue distribution, different pharmacokinetics, and reduced

toxicity, among others. Optimization of drug dosages, during topical

application, represents high potential for improved efficacy and

convenient application of these drugs.

3.1.1 Micro and nano-carriers in
systemic application

Micro and nano-carriers greatly improve the delivery of

antifungal drugs, owing to the associated advantages including

high dispersibility, protection from premature degradation, and

ability to maintain the free drugs at therapeutic levels which lowers

toxicity without affecting efficacy. Correct functions, such as

improved surface contacting, controlled release, targeted delivery,

and improved sensitivity, rely on properties of the material or

surface modification. Phospholipids, nonionic surfactants, and

polymers are the main organic materials used in drug
TABLE 2 Continued

Categories Antifungal
Drugs Mechanism of Action Dosage Forms Administration

Routes
Need of
prescription

Ointment Topical Rx only

Cream

Vaginal OTCSuppository

Insert

Echinocandins

Caspofungin Noncompetitively inhibits the b-1,3-D-glucan synthase,
resulted in compromised synthesis of glucan and instability of
fungal cell wall.

Lyophilized powder
for injection

Intravenous Rx only

Micafungin
Lyophilized powder
for injection

Intravenous Rx only

Pyrimidine
analogs

Flucytosine

After taken up by the fungi, it is converted to fluorouracil,
and the active metabolites inhibit cellular metabolism via
incorporation into RNA or inhibition of thymidylate
synthetase.

Capsule Oral Rx only

Mitotic inhibitor Griseofulvin Inhibits the function of mitotic spindle microtubule.
Tablet

Oral Rx only
Suspension

Allylamines Terbinafine

Inhibits the biosynthesis of ergosterol on squalene epoxidase
enzyme. The accumulation of high concentrations of squalene
results in increased membrane
permeability.

Tablet
Oral Rx only

Granule

Cream

Topical OTCGel

Spray solution

tRNA synthetase
inhibitor

Tavaborole
Inhibits protein synthesis by inhibition of leucyl-tRNA
synthetase.

Solution Topical Rx only

Hydroxypyridone Ciclopirox
Chelates polyvalent cations such as Fe3+ and Al3+, resulting in
the inhibition of some metal-dependent enzymes related to
antioxidant defense.

Gel

Topical Rx only

Cream

Suspension

Shampoo

Nail lacquer
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encapsulation. Among them, lipid-based materials are the most

abundant in pharmaceutical research and clinical use (Bulbake

et al., 2017; Nene et al., 2021). For example, AmBisome®, a

unilamellar bilayer liposomal Amphotericin B (AmB) delivery

system, has been used as an updated substitute for AmB

deoxycholate for over two decades. Although liposomal

formulations have advantages, such as low nephrotoxicity and

prolonged tissue residence, their low urinary clearance constrains

the application for treatment of lower urinary tract infections

(Stone et al., 2016). Concerns regarding membrane fusion-

induced toxicity and the associated instability have also restricted

the clinical translation of other lipid-based formulations (Yu et al.,

2017; Nakhaei et al., 2021). Studies have shown that some inorganic

carriers, such as metallic nanoparticles (NPs) and carbon nano-

tubes, may accumulate in solid organs like the liver and induce

repetitive injuries that eventually overwhelm the regenerative

capacity and cause irreversible damage (Li et al., 2022).

Conversely, polymers are promising materials for carrier

construction owing to their excellent biocompatibility and

biodegradability. Higher expectations are attached to nano-scaled

structures due to their small size and high surface-to-volume ratio,

which may enhance their interaction with pathogens (Kamel, 2019).

The structures of carriers vary with regards to materials and

processes that represent different strategies of encapsulation. A

summary of available carrier structures is provided in Figure 1.

Polymeric nanospheres consist of a continuous matrix of

polymers in which the hydrophobic drugs disperse. Notably, drug

release relies on both the diffusion mechanism and the degradation

of the polymer matrix. Poly(lactic-co-glycolic acid) (PLGA), in

which the hydrolyzed monomers, lactic acid and glycolic acid, are
Frontiers in Cellular and Infection Microbiology 07
endogenous and easily metabolized (Danhier et al., 2012),

represents one of the most favorable and authority-approved

polymers for drug delivery. A poriferous structure, namely

nanosponge, is a special kind of nanosphere. The complexation

property of the three-dimensional structure influences the

attraction and release of the molecules (Deng et al., 2021).

Cyclodextrins, cyclic oligosaccharides with a hydrophilic outer

surface and a hydrophobic inner cavity, are widely used to

increase solubility of hydrophobic drugs in water (Varan et al.,

2017). Hydroxypropyl-b-cyclodextrin (HP-b-CD) is used in

SPORANOX®, an itraconazole oral solution, as a molecular

inclusion complex. Osmani et al. (2016) solubilized clotrimazole

by fabricating the HP-b-CD nanosponge with dimethylcarbonate as

a cross-linking agent and found that a higher degree of cross-linking

improved the drug entrapment capacity. In the case of

nanocapsules, the hydrophobic drug is sealed in the solvent

(lipid) core by a biodegradable polymeric membrane, although in

a broad sense, nanospheres with a polymeric shell are considered

nanocapsules (Mora-Huertas et al., 2010). Studies have shown that

apart from properties of the polymer, manufactory methods,

choices of the core oil, and components of the dispersion system

also influence the parameters of the particle and result in diverse

release profiles or permeation of biological barriers (Fiel et al., 2011;

Ribeiro et al., 2016; Englert et al., 2020). An initial burst release is

commonly observed in the aforementioned formulations, due to the

possibility of the drugs to be adsorbed onto the surface of structures.

This may be advantageous since it could accelerate reaching the

therapeutic concentration, especially for the long-term-release

formulations. For sensitive species, NPs’ minimum inhibitory

concentration (MIC) may be higher than that of free drugs
FIGURE 1

Illustration of the structures and main composition of polymer-based drug carriers. The micro or nano carriers are primarily designed to increase the
water solubility, bioavailability and safety of the antifungal drugs. The polymers could be functionalized for controlled drug distribution,
pharmacokinetics and new administration route.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1142029
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wu et al. 10.3389/fcimb.2023.1142029
because of the encapsulation (Moraes Moreira Carraro et al., 2017).

However, for resistant fungi, the nanostructured carriers may

reverse the resistance via multiple mechanisms, such as surface

interactions, thus prevent recognition by efflux pumps (Bianchin

et al., 2019). A previous study found that antifungal activity was

enhanced by both size-dependent NP internalization in whole and

the nearby release (Patel et al., 2011). Notably, the authors

demonstrated that 200nm-sized itraconazole-loaded NPs were not

only more efficiently taken up by Aspergillus flavus compared to

1200nm-sized ones, but also displayed better antifungal activity at

low concentrations (Patel et al., 2011). Nevertheless, more research

is needed on drugs with different located targets and mechanisms

of action.

Unlike the entanglement of polymer chains in the

aforementioned NPs, amphiphilic polymers may also encapsulate

drugs in a relatively regular arrangement. Polymeric vesicles, also

known as polymersomes, not only have the most liposome-like

structure (comprising a self-assembling amphiphilic block

copolymer membrane and an aqueous core) but are also available

for encapsulation of both hydrophilic and hydrophobic molecules.

The complex and entangled polymeric membrane confers

polymeric vesicles with high stability and a tunable permeability

(Zhang and Zhang, 2017). Polymeric micelles, which are also based

on amphiphilic polymers, are self-assembled. In contrast to vesicles,

the core of micelles is the hydrophobic tails of the polymers and the

hydrophilic heads unite as a shell. Their stability depends on

entropy gain on micellization. Small hydrophobic drugs can be

physically entrapped in the core based on the “like dissolves like”

principle or conjugated to the polymer tail (Hwang et al., 2020). The

micelles tend to dissociate and release the drugs when concentration

of the amphiphilic macromolecules decreases. Studies have shown

that an increase in the assembly’s inherent hydrophilicity may push

the cargo out of the core due to hydrolysis or other chemical

reactions (Guo et al., 2020). Researchers have used dendrimers, a

class of hyperbranched polymers, to construct unimolecular

micelles that are resistant to dilution-induced dissociation. The

core of the dendrimer may be modified with hydrophobic blocks to

increase the loading of hydrophobic drugs, while the hydrophilic

branches may also be functionalized for long-circulating or targeted

delivery (Hwang et al., 2020).

Previous studies have also shown that polymer-based surface

modification of lipid, polymeric or inorganic carriers can improve

drug delivery capabilities. For example, one study revealed that poly

(dopamine) coating could facilitate intradermal delivery of

terbinafine-loaded nanostructured lipid carriers via the follicular

route (Chen et al., 2020). Another demonstrated that chitosan

coating not only resulted in prolonged ocular retention but also

penetration of AmB-loaded nanostructured lipid carriers (Fu et al.,

2017). As for systematic application, particularly controlled-release

formulations, researchers have attempted to prevent being

phagocytized by the mononuclear phagocyte system. PEG is one

of the most widely studied materials for surface modification,

especially for delivery of anticancer agents. PEGylation forms a

hydration layer around the NPs that reduces the interaction with
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plasma proteins and recognition by phagocytes, thereby causing

prolonged stealthy circulation and stable stereo structure (Gagliardi

et al., 2021). However, a recent study described the side effects

associated with PEG use, such as induction of PEG antibodies.

Nevertheless, development of better alternatives has achieved some

progress (Simon et al., 2020).

Active targeting, a concept derived from anticancer agent

delivery, has been suggested as an effective approach for reducing

effective dose and toxicity by the improved local concentrations of

antifungal drugs in close proximity to fungi. Affinity ligands not only

direct the binding but may also improve cellular uptake of nano-

carriers. In one study, CKR12, a mutant of the antibacterial core

peptide, was hybridized with PLGA to an amphiphilic block

copolymer. Results showed that it successfully formed a micelle

structure for miconazole encapsulation, and reduced the MIC to

one-eighth compared to free drug (Mori et al., 2021). The carrier itself

showed a MIC of 0.24 µmol/L, indicating that it synergistically

interacted with the antifungal drug (Mori et al., 2021). Mammalian

immune receptors, Dectin-1 and Dectin-2, have also been used to

direct the carriers to the glucans and mannans in fungal cell walls

(Ambati et al., 2019a; Ambati et al., 2019b). Apart from increasing

dissolution in luminal fluids, carriers can be applied to improve oral

absorption of hydrophobic drugs via different mechanisms.

Quaternary ammonium palmitoyl glycol chitosan, a mucoadhesive

amphiphilic polymer, was developed for oral griseofulvin and AmB

delivery. The polymer formed micelles when loaded with griseofulvin

and increased the maximum plasma concentration by 480% (Siew

et al., 2012). The presumable mechanism was that the bioadhesive

micelles were confined to the absorptive regions of the upper

gastrointestinal tract, leaving a longer absorptive time window

before being washed away by chyme. The tight junctions were not

opened, but transcellular transport was promoted (Siew et al., 2012).

Combination with AmB resulted in formation of polyelectrolyte

complexes between the polymer’s positively charged quaternary

ammonium groups and AmB’s carboxylic groups. Adding on the

hydrophobic interactions between the palmitoyl chains, this NP

formulation showed exceptional stability. The plasma level of oral

NPs was 2-fold higher than that of liposome formulation, and higher

portions of the drug were delivered to the spleen and lungs. Although

oral NPs resulted in lower AmB levels compared to intravenous

liposomes in tested organs, they displayed similar efficacy in

treatment of visceral leishmaniasis, aspergillosis, and systemic

candidiasis in animal models (Serrano et al., 2015). This

formulation also exhibited increased anti-biofilm efficiency for

better penetration (Alakkad et al., 2022). Despite the massive

designs in drug delivery systems, only a few studies have presented

results of in vivo testing. It is possible that the drugs’ releasing curve

could be very different from ex vivo testing due to the presence of

enzymes and phagocytes. Besides, the distribution of carriers may be

significantly affected by natural barriers such as the blood-brain and

blood-ocular barriers (Nowak et al., 2020; Swetledge et al., 2021).

Therefore, further elucidation of the distribution and serum

concentrations in vivo is imperative to comprehensive evaluation of

antifungal delivery systems.
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3.1.2 Advanced dosage forms for
topical application

Considering that most fungal colonization and infection are

topical and superficial, clinicians prefer topical application of

antifungals for increased concentration at affected sites and

reduced systematic toxicity. Solutions, creams, ointments, and

gels are conventional forms for topical application. Polymers such

as PEG and carbomers are widely used in such formulations as

auxiliary substances for stabilizing, thickening, emulsification, gel-

forming, etc. Novel dosage forms are in development for more

convenient use, patients’ experience, and improved efficacy. The

roles of the polymers are also extended beyond excipients to

vehicles and even part of a compound prescription.

3.1.2.1 Hydrogels and films

Hydrogels, systems composed of a three-dimensional cross-

linked network of hydrophilic polymers with the space between the

chains filled with water (Ahmed, 2015), are semisolids with very

tunable rheological characterizations for topical spread. On the

other hand, films are two-dimensional dry versions of polymer

networks, characterized by interpenetration and coalescence during

the solvent casting process (Felton, 2013). Both systems can easily

encapsulate drugs or carriers in their polymer matrix or through

chemical bonds for controlled topical release.

The water in hydrogels may hydrate the stratum corneum of

skin, thereby causing reversible degradation of the barrier function

and modulating drug permeation (Charalambopoulou et al., 2004;

Roberts et al., 2021). Formulations can also be dehydrated for better

storage, and rehydrated with water, buffer, or body fluid like saliva.

They may also provide evaporative cooling to the irritated area

thereby relieve the discomfort. Since long-time occlusion and

moisture violate the main demands of tinea treatment, namely

clean and dry, highly crosslinked hydrogel patches are less

recommended for skin application. Besides, such dosage forms

are not suitable for large-area use. Therefore, the formulations for

dermatophytosis are usually developed into viscoelastic liquids that

dry and form a film on the skin for sustained drug release. Studies

have shown that permeation and delivery profiles may be optimized

during the period of drug supersaturation (Frederiksen et al., 2016).

Notably, nanogels have been shown to outperform commercial

creams in dermal retention due to a combination of the advantages

of stratum corneum hydration and the effects of NPs (Ul Hassan

et al., 2022).

Chemical groups on the polymer chain may provide extra

adhesion on the body surface via non-covalent bonds, such as

hydrogen bonds and cation-p interactions (Zhang et al., 2022a).

Natural and modified mucoadhesive polymers, based on covalent

bonds with mucosa composition, are also highly developed for drug

delivery and surgical use (Brannigan and Khutoryanskiy, 2019).

The adhesion is largely dependent on their swelling capacity for the

relaxation of the network and exposure of such chemical groups.

Szekalska et al. (2021) encapsulated posaconazole in fucoidan-

gelatin microparticles by spray drying. When moisturized with

body fluid simulates, the formulation with more carboxyl groups

and a higher swelling ratio exhibited higher detachment force and

work adhesion, indicating that hydrogen bonds have a significant
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contribution. In another study, Ozkahraman et al. (2022) modified

polysaccharides with thiolated agents, L-cysteine and 3-

mercaptopropionic acid, to generate disulfide bonds between thiol

groups on the polymer chains and cysteine residues on

glycoproteins in the mucosa, and found that this markedly

improved the mucoadhesive properties. Further, they fabricated a

drug-loading buccal film patch and found that thiolated group

amounts were correlated with the force required to detach the

patches from the mucosal membrane.

The bond-induced retention of polymer chains is highly

compatible with ocular drug delivery to overcome physiological

specificities such as tear secretion and nasolacrimal drainage (Patel

et al., 2013). The pseudoplastic behavior of such hydrogels

minimizes discomfort, whereas viscosity decreases during the

high shear rate of eye blinking (Ahmed and Aljaeid, 2017).

Suspension of mucoadhesive polymers can also mediate sustained

drug release. A double-conjugated polymer was synthesized with

chitosan, cyclodextrin, and a catechol for econazole delivery.

Corneal penetration enhancement of the drug was induced by

opening of corneal epithelial tight junctions as well as prolonging

residence time, and a twice-daily dosage was enough to generate

satisfactory therapeutic efficacy in fungal keratitis model (Shi

et al., 2022b).

In situ gelation has been proposed for easy administration. The

sol-gel transition has to be induced by conditions and components

of the site such as temperature, pH, electrolytes, or enzymes. Ion-

sensitive formulations are suitable for ocular delivery due to

presence of mono and divalent cations such as Na+, K+, Mg2+,

and Ca2+ in tear. A previous study showed that an ion-sensitive

formulation of gellan gum and k-carrageenan outperformed the

commercially available solution in voriconazole pharmacokinetics

with regards to retention on both ocular surface and other internal

structures (Diaz-Tome et al., 2021).

Thermosensitive formulations with low viscosity at room-

temperature for high spreadability and gel at body temperature

have shown promise in vaginal delivery. Poloxamers, a series of

highly commercialized amphiphilic block copolymers, have a

concentration-dependent gelation temperature and the extended

retention time is attributed to bounds between hydrophilic oxide

groups and oligosaccharide chains of the mucosal membrane

(Osmani et al., 2016). Studies have suggested that reversible gels

may transform back to sol, resulting from dilution by vaginal fluids,

and leak (Yu et al., 2011). However, polymeric films may overcome

such disadvantages and provide an accurate dose (Cervi et al.,

2022). Ocular delivery systems do not have such concerns, although

the films’ dosage form may be excessively irritating. Researchers

developed a thermosensitive hydrogel, based on the copolymer of

poly(N-isopropylacrylamide) and hyaluronic acid (HA), for

ketoconazole delivery. The formulation had a gelation

temperature of 33 °C, and it showed no signs of irritation (Zhu

et al., 2018).

Functionalized hydrogels may also interact with physical

enhancements such as heat, magnetic or electric fields (Lee et al.,

2018; Ribeiro et al., 2021). Iontophoresis is a non-invasive method

in which charged drugs are repelled and driven into the body for

topical or systemic application in a given electric field (Dhote et al.,
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2012; Karpinski, 2018). Optimal molecules for iontophoresis should

be small and hydrophilic, properties that most antifungal agents do

not have (Dhote et al., 2012). An et al. (2020) encapsulated

fluconazole in surfactant-based nanocarriers together with

oleylamine for enhanced charge. They loaded the product into an

electroconductive poly(vinyl alcohol) (PVA) -poly(pyrrole)

hydrogel as a drug reservoir and electrode patch, then introduced

the reverse electrodialysis technology into the system as a battery for

portable and disposable use.

3.1.2.2 Nail lacquers

Nail lacquers are widely applied as cosmetics and are composed

of a polymeric film former, solvents, and other chemical

compounds for better attachment, plasticity, color, etc. After

application, the solvent volatilizes, leaving a thin film on the nail

plate for decoration and protection. Nail lacquers with

onychomycosis have been long studied and approved for

commercialization. Loceryl® and Penlac® contain 5% amorolfine

and 8% ciclopirox, respectively, and have been in use since the

1990s (Shanbhag and Jani, 2017). Lacquers form thin films with

concentrated drugs fixed on the nail surface, providing a relatively

sustained release. They stick more strongly compared with gels,

creams, and paste. In addition, potential advantages include

occlusion and reinfection prevention (Kataria et al., 2016).

However, the repetitive application and complex removal

procedures, which take tens of months, could compromise patient

compliance (Aggarwal et al., 2020b). Two main directions of

formula optimization are: easier removal with accelerated drug

delivery, or reducing reapplication frequency by improved drug

load and attachment.

The nail plate is a cornified epithelial structure that consists of

various types of keratins with a total lipid content of 0.1~1% (De

Berker et al., 2000; Walters et al., 2012). Thus, it is also described as

a hydrogel with an additional lipophilic pathway that acts as a

reservoir under certain conditions (Laube et al., 2019). Therefore,

efficient drug transfer from the film to the nail plate is a strategy for

sustained release that fully uses the nail’s innate proprieties.

Since fungi infect the nail plate, bed, and surrounding soft

tissue, trasungual drug delivery and intralingual drug retention are

needed (Zaias and Rebell, 2004). Several modifications of delivery

agents, physical and chemical, have been studied and reviewed in

previous works (Murdan, 2008; Angelo et al., 2017; Aslam et al.,

2021). One key finding is that hydration causes the keratin network

to swell and expand, leading to larger pores allowing small polar

molecules (Chouhan and Saini, 2012)to permeate. Water is

therefore recognized as an effective permeation enhancer that

does not break bonds and increases the flexibility of nails

(Walters et al., 2012; Saner et al., 2014). Chemical enhancers that

disrupt keratin disulfide linkages are designed to increase nail

hydration and pore sizes (Hafeez et al., 2013). Chouhan and Saini

formulated a cellulose-based terbinafine lacquer and observed that

with the addition of HP-b-CD, drug permeation flux was increased,

owning to hydration of nails and improved solubility of the

hydrophobic drug. Thus, the oligomer is considered a suitable

and safe nail improvement strategy for antifungal transungunal

delivery (Chouhan and Saini, 2014). HP-b-CD complexation was
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used to improve the physical stability of thymol, a highly volatile

antifungal molecule, and increase its retention in the film (Cunha-

Filho et al., 2021). Similar lacquers were developed in sulfur, silicon,

and biotin supplements to treat nail inflammatory disorders

(Fernandez-Campos et al., 2020). The release of drugs is affected

by the characteristics and concentration of the film former,

plasticizer, solvent, and drug (Sveikauskaite and Briedis, 2017;

Cutrin-Gomez et al., 2018; Valdes et al., 2018; Aggarwal et al.,

2020a). Interactions between drug and film-forming systems reduce

the release or inactivation and hence should be avoided in quick

delivery systems (Sveikauskaite and Briedis, 2017). As for easier

removal of the film, there is no substitute for washable formulations

for easier film removal. Eudragit E, an acidic-water-soluble acrylic

resin, was used to form a film with citric acid and glycerin as

plasticizers. The presence of citric acid reduces local pH and

increases the aqueous solubility of the polymeric matrix (Cunha-

Filho et al., 2021).The stability of the formula at room temperature

is a critical factor for easier application because patients may skip

treatment if the lacquer has to be refrigerated.

The alternative direction is to minimize the frequency of

reapplication. The film must be durable, waterproof, and firmly

adhered to the nail. Most importantly, sufficient drugs are needed to

sustain long-term release and to maintain an effective concentration.

Interactions between the nail plate and film-forming system

were designed to increase adhesion. Valdes et al. (2017) were the

first to apply poly(urethane) in therapeutic nail lacquers for

terbinafine delivery. The increase in adhesion was attributed to

the high isosorbide proportion in the polymer chain, which forms

hydrogen bonds with keratin. The selected formulation exhibited a

degree of flaking in the lattice pattern of 1.8%, and only small flakes

detached in the cross-cut area. A similar poly(urethane) formula

loaded with ciclopirox had even higher adhesion. This was

attributed to ethyl acetate as a solvent that increased the

formation of hydrogen bonds. The experimental formulations

performed well compared to commercial lacquer in terms of drug

deposit, permeation, and antifungal trials (Valdes et al., 2018). A

bilayer formulation comprises a drug-loading base layer with a

hydrophilic film former such as hydroxypropyl methylcellulose and

water-resistant drug-free coat (Hasan et al., 2018; Rahman et al.,

2021). The hydration and swelling of polymeric films increased

adhesion, whereas the hydrophobic layer increased durability

(Rahman et al., 2021).

Kerai et al. (2015); Kerai et al. (2016) explored the use of

ultraviolet (UV)-curable gels, technique used in nail cosmetic

industry for pharmaceutical applications. The formulation

contains acrylate-and methacrylate-based monomers ,

polymerization photo-initiating system, a solvent, and an

antifungal agent such as amorolfine or terbinafine hydrochloride.

The UV-cured films showed promising results in vivo. Herein,

experimental films lasted for two weeks, whereas commercial

lacquers lasted for three days. Moreover, they also outperformed

the commercial type in terms of occlusion by reducing trans-

onychia water loss by approximately 20%, reducing the lag time,

and increasing permeability. Chemical permeation enhancers were

also introduced into the system, and they influenced both the

vehicle and the nail plate. Notably, the extent of polymerization
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had no effect on drug release and ungual permeation (Kerai et al.,

2018). Although previous findings reported that UV have inhibitory

effect on Trichophyton rubrum, the wavelength segment used for gel

curing showed no inhibition (Cronin et al., 2014; Kerai et al., 2015).

Generally, hydrophilic films increase drug diffusion through

swelling and relaxation of the polymer network (Thapa et al., 2016).

Conversely, highly cross-linked networks and polymer

concentrations in the film result in thicker and denser films that

slow down drug release (Valdes et al., 2018). The drug retention

within the nail plate function as a pool where most of the antifungal

agents are stored. However, the permeation of the nail plate

regulates the in and out flow of the pool. Higher permeability

shortens the lag time and depletes the drug reservoir rapidly

(Khattab and Shalaby, 2018). A combination of hydrophobic and

hydrophilic polymers in the formulation balances the drug

retention and permeability across the nail plate (Thatai and

Sapra, 2018).

3.1.2.3 Microneedle patches

Compared with the surface application, microneedles (MNs)

are a more promising drug delivery system because of their reliable

mechanical penetration of stratum corneum (Bubic Pajic et al.,

2021). Besides, the dose form of patches provides more accurate

control of active ingredient content compared with other topical

formulations such as creams and gels, but they are not applicable for

large-area use. Biodegradable polymer MNs are preferred for their

biocompatibility, low cost, and lack of sharp hazardous waste

(Larraneta et al., 2016). Although it is generally regarded as a

transdermal system for systemic delivery, as the drugs can enter the

circulation through blood vessels in the upper papillary dermis, the

lipophilicity of most antifungal drugs tends to locate them in the

lipid intercellular regions of epidermal keratinocytes and stratum

corneum (Dhote et al., 2012; Larraneta et al., 2016). Peng et al.

(2021b) fabricated a dissolving MN patch with poly
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(vinylpyrrolidone) (PVP) and PVA for micronized AmB particle

delivery. An in vivo study on mice have shown that of MN

application, the maximum drug level in the skin was achieved 20

hours earlier and 410-fold higher compared with the intravenous

route. The drug level remained 22-fold higher than the peak of

intravenous injection on the seventh day. The biodistribution and

pharmacokinetic study showed little systemic exposure in kidney,

liver, spleen, and plasma.

Engineering methods are used to preserve drugs for intradermal

application. Inspired by long-acting implant formulations, Peng

et al. (2021a) developed an MN system with AmB-loaded PLGA

tips and a quick-dissolving shaft base. The PVP shafts dissolve in

interstitial skin fluid and embed the tips intracutaneously for

sustained release of AmB. In addition, the base was easily

removed and discarded safely in water. A similar concept is also

adopted in AmB encapsulation with chitosan-poly(ethylene imine)

(PEI) copolymer MNs and an HA supporting substrate, as

illustrated in Figure 2. Moreover, chitosan-PEI copolymer

exhibited fungicidal activity and a synergistic effect with AmB;

treated with the copolymer, the surface of fungi became porous and

resulted in higher susceptibility to AmB (Zan et al., 2019).

Itraconazole nanocrystals delivered in PVP/PVA MNs also

exhibited a longer residence time and higher distribution in both

concentration and depth compared with conventional creams and

needle-free patches in ex vivo porcine skin (Permana et al., 2020).

Furthermore, MN-based intracorneal drug delivery for the

treatment of fungal keratitis has shown considerable progress

(Roy et al., 2019; Albadr et al., 2022; Suriyaamporn et al., 2022).

Adopted from contact lens design features, ocular patches with a

curvature that fits the cornea increase the contact area, provide

uniform MN insertion, and reduce discomfort in application (Roy

et al., 2019). The concerns about the damage of corneal epithelium

are greatly minimized since it was reported that the punctures of

MN patches on the cornea recovered within 12 hours and could be
D
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FIGURE 2

A dissolvable antifungal MN patch with a quick-separable supporting substrate. (A) Schematic illustration of the MN patch. (B) LIVE/DEAD viability
assay of C. albicans. (C) SEM image of a AmB-loaded MN patch and confocal fluorescence image of Cy5-loaded MNs. (D) In vivo fluorescence
imaging and quantitative release profiles of Cy5 from the MN. Reproduced with permission from Zan et al. (2019).
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optimized by polymer formula and MN shapes (Than et al., 2018;

Shi et al., 2022a). Similar to intradermal delivery, the drug was not

widespread within the eye globe and plasma (Roy et al., 2019).

Suriyaamporn et al. (2022) fabricated double-layered MNs with

chitosan and PVA for the outer layer and fluconazole

microemulsion as stuffing. The reduced lag time and increased

permeability indicated a combination mechanism of corneal barrier

bypassing and surfactant-based optimization of hydrophobic drugs.

However, liposomal AmB delivered by MNs showed lower

antifungal activity compared with free AmB MNs (Roy et al.,

2019). Further investigations into the underlying mechanism are

needed for a comprehensive understanding to the delivery of

antifungal drugs.

The aforementioned designs of MNs were generally based on

the biodegradability and mechanical properties of polymeric

materials. One innovative approach involved is to create a porous

MN “cage” made of a combination of biodegradable and non-

degradable materials for the purpose of encapsulation of beneficial

bacteria, making it an easily removable implant. The immobilized

Bacillus subtilis was found to be safe for the host’s immune system

and host. They secrete a range of potential antifungal agents, such as

surfactin. Moreover, both pseudohyphae of C. albicans.and the skin

inflammation were minimized (Wang et al., 2020a).

Microneedling therapy is reported to induce epidermal

differentiation, growth factor expression, inflammation, dermal

remodeling and indirect activation of inflammatory cells. (Zeitter

et al., 2014; Schmitt et al., 2018). Although differences exist between

procedures of microneedling therapy and MN-based drug delivery,

they share similar micro-invasions consequences.

3.1.2.4 Carrier devices

Carrier devices made from polymers are applied topically or

inserted into body cavities for sustained drug release. Intravaginal

rings are flexible elastomeric toroidal devices that are easily inserted

into the vagina by women for hormone replacement therapy or

birth control (Roumen, 2008; Tietz and Klein, 2019). In recent

studies, intravaginal rings have been developed for microbicide

delivery and show potential in treating infectious diseases such as

vulvovaginal candidiasis and bacterial vaginosis (Arany et al., 2021;

Tiboni et al., 2021). Tiboni et al. (2021) 3D printed a clotrimazole-

loaded intravaginal ring made of thermoplastic polyurethane.

Clotrimazole was added to castor oil-covered polyurethane pellets

and then extruded into filament at 190 °C to homogenize the

material. Drug release in vaginal fluid analog was 13.4% in the first

week and was maintained at a high concentration above the MIC

value of C. albicans in vivo. Another manufacturing scheme

involved fabricating a hollow drug reservoir, then filling it with

drugs, and fixing the drug with excipients. Such devices could be

manufactured in extreme conditions, regardless of the drug

stability, and refilled if necessary (Arany et al., 2021).

The comfortable structure of contact lenses and advances in the

hydrogel are adopted for sustained ocular drug delivery (Ciolino

et al., 2011; Phan et al., 2014; Gallagher et al., 2017). Huang et al.

developed an electrostatic cross-linking hydrogel-based contact lens

by combining materials with innate antimicrobial activity, such as

quaternized chitosan, silver NPs, and graphene oxide (Figure 3A).
Frontiers in Cellular and Infection Microbiology 12
The composite was softer and more flexible but with high

mechanical properties for contact lens manufacture. Voriconazole

was loaded onto the lens by the graphene oxide and released with an

initial burst phase followed by a slow, sustained release. In vivo

results indicated that the AgNPs delayed keratitis (Huang et al.,

2016). Liu et al. (2018) demonstrated that AgNPs loaded onto

commercial contact lenses with a polydopamine coating for

antimicrobial improvement achieved stable visible light

transmittance in a simulated clinical application with A spergillus

fumigatus infected rabbit. However, they turned yellow cultured

with high concentrations of bacteria. It indicates that the stability

and reliability of the products are significant for the clinical

translation. Furthermore, given that wearing contact lenses is a

major risk factor for infectious keratitis (Ting et al., 2021),

antimicrobial materials are valuable for both therapeutic use and

conventional vision correction. However, normal microbiota

maintains the ocular health (Wang et al., 2020c), leaving a subtle

distinction between appropriate precautions and overuse of

microbicide to be studied.

Apart from metallic NPs, essential oils, antimicrobial peptides

(AMPs), and other compounds with antifungal activities can also be

delivered with polymers, and some exhibit synthetic effects (Yang

et al., 2018; Miranda et al., 2019; Olad et al., 2020; Parolin et al.,

2021). Reactive oxygen species (ROS) is one of the main effectors of

antifungal immunity, but excessive ROS cause tissue injury and

inflammation (Branzk et al., 2014). Therefore, capturing and

reservation ROS for a controlled release is a promising approach

in antifungal therapy. Liu et al. replaced normal water with plasma-

activated water rich in free radicals and synthesized a

polyacrylamide hydrogel called plasma-activated hydrogels

(Figure 3B). The polymer network of hydrogel preserved short-

lived free radicals such as hydroxyl radicals and nitric oxide for 140

days and exhibited strong antifungal activity, although it faded

faster than freshly made hydrogel (Liu et al., 2019).
3.2 Systems based on the innate antifungal
activity of polymers

Synthetic and modified polymers seem to be further away from

clinical translation compared to the delivery systems that are

approved antifungal drugs on polymers known to be safe. Despite

the biocompatibility concern, polymers with innate antifungal

activities remain promising strategies to overcome or even reverse

the increasing risk of antifungal resistance primarily based on

inherent properties like the surface charge that is hardly adaptive.

Some natural polymers possess antifungal activities. For

example, chitosan is a natural cationic polysaccharide derived

from chitin and is a structural element in the exoskeleton of

crustaceans and fungal cell walls (Hamed et al., 2016). Its

fungicidal mechanism includes electrostatic interaction-induced

leakage forming a dense film and gene expression alteration

(Lopez-Moya et al., 2019; Matica et al., 2019). The positively

charged chitosan molecules bind to the phospholipids by

electrostatic interaction, stiffen the membrane regions and

increase the differences in fluidity between various regions,
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causing membrane permeabilization (Palma-Guerrero et al., 2010).

Although the antifungal activity of chitosan are restricted, and some

fungi are resistant to it, they have many chemical groups for

functionalization and modification to improve the antifungal

effects and expand aditional activities (Palma-Guerrero et al.,

2010; Hoque et al., 2016; Fan et al., 2018; Hassan et al., 2018; Mi

et al., 2018). For example, multi-aminoethyl and phosphoryl groups

can increase the antifungal activity of chitosan and the derivatives

have good water solubility and low toxicity to cells (Fan et al., 2018).

HA is a natural, negatively charged glycosaminoglycan polymer

that exhibits dose-dependent growth inhibition of Candida species

and a higher molecular weight leads to stronger activity (Sakai et al.,

2007). The sensitivity varies between the strains. For example,

growth inhibition of C. albicans ATCC 18804 at 1.0 mg/ml (2000

kDa) reaches 40%, whereas the growth of C. albicans ATCC 90028

and 90029 is not suppressed at 2 mg/ml (1837 kDa) (Sakai et al.,
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2007; Ardizzoni et al., 2011). Although the mechanism remained

unknown, it was speculated that its massive carbohydrate structures

were involved in fungistatic activity (Kang et al., 2011). The

antifungal activity of HA was unchanged after conversion into

hydrogel (Fahmy et al., 2015). However, in studies on artificial

saliva, HA inhibited the candidacidal activities of lysozyme and

peroxidase system probably by restricting their diffusion (Kang

et al., 2011).

AMPs are abundant and diverse groups of host defense

molecules produced by all organisms. Their antimicrobial activity

is correlated with their unique pattern of chemical structure that

can be imitated in material design. Numerous natural AMPs are

recorded and annotated, and the development of synthetic AMPs

never ends (Wang et al., 2016; Ramamourthy et al., 2020; Tallet

et al., 2022). Their antifungal mechanisms involve pore formation,

mannan-binding, nucleic acid, and cell wall inhibition (De Cesare
A

B

FIGURE 3

(A) Schematic illustration of hydrogel contact lens loaded with conventional drugs. The addition of graphene oxide increased the antifungal activity.
Reproduced with permission from Huang et al. (2016). (B) Antifungal hydrogel based on the encapsulation of ROS. Reproduced with permission
from Liu et al. (2019).
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et al., 2020). Their membrane disruption depends on the

electrostatic and hydrophobic interaction, as illustrated in

Figure 4. Moreover, they are simple to imitate with synthetic

polymeric materials (Rank et al., 2017; Yu et al., 2022). Schaefer

et al. synthesized a series of cationic polyacrylamide terpolymers

consisting of different ratios of positively charged, hydrophilic, and

hydrophobic monomers and varying degrees of polymerization. It

was concluded that shorter polymers with high hydrophobicity

tended to be more toxic to C. albicans, but hemolytic activities

increased with hydrophobicity. Furthermore, the results revealed

that cyclic and shorter linear aliphatic functionalities outperform

their branched derivatives. The terpolymer with the most potential

for therapeutic application exhibited high antifungal activity against

drug-resistant fungi and had good biocompatibility that

outperformed AmB (Schaefer et al., 2021). Similar results were

observed with nylon-3 copolymers which decreased the MIC of

azoles and AmB against some selected fungi, highlighting the

potential of combination therapy (Rank et al., 2017). A study of

aliphatic polyesters found that hydrophobic interaction induced the

damage of fungal cell walls and membranes (Cheng et al., 2022).

Mohamed et al. (2015) highlighted the antimicrobial activity of

cations by demonstrating that a higher degree of quaternization and

glutaraldehyde cross-linking of the hydrogel resulted in a

strengthened positive charge and more antibacterial activity. The

electrostatic interaction also mediates the fungicidal activity of two-

dimensional nanomaterials. Saha et al. (2022) wrapped MoSe2
nanosheets with chitosan through liquid phase exfoliation and

observed distinct damage in the membrane and filament of

treated fungi of different genera. The mechanisms were concluded

to be electrostatic adhesion, physical piercing, and leakage-initiated

death. Inspired by ϵ-polylysine, a cationic antibacterial peptide, poly
(DL-diaminopropionic acid) was developed for its substantially

increased charge density. The mechanism of action involves
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electrostatic attaching, both energy-dependent and independent

uptake, and ROS-related cell apoptosis and death. These

significant fungicidal activities against both planktonic and

biofilm forms and their safety in vivo suggest that polymers are

potentially new antifungal agents (Zhang et al., 2022b).

Hydrophilic polymers exhibit antifungal activities through

other mechanisms. For example, a series of cross-linked hydrogels

were developed from terpolymers of acrylonitrile, acrylic acid,

acrylamide, or its sulfonic acid derivative. Their antimicrobial

activity is attributed to cellular stress induced by pH reduction

and diffusion of the active monomers (Farag et al., 2020).

Stereochemical materials represent a new design concept for

fungistatic activities, but it is more suitable for contamination

prevention than infection treatment and is thus mostly used in

surface modification of medical apparatus and instruments. This

will be reviewed in Section 4.2.

The development of novel antifungals is a broad topic. Polymers

has attracted special interest owing to the ability to target the

inherent properties of fungi, such as the surface charge, and

function through physical mechanisms to reduce drug resistance.

Correspondingly, their selectivity between microorganisms and

host cells is less reliable. Numerous research has focused on

topical applications instead of IFD treatment, but the antifungal

activities have been tested mainly on C. albicans. As previously

mentioned, dermatophytes caused the majority of superficial

mycosis. Besides, their metabolism and resistance differed greatly

from the Candida spp. Therefore, the design of antifungal trial

needs to be more representative. Moreover, limited in vivo toxicity,

pharmacodynamics, and pharmacokinetics reports hinder its

potential application of polymer-based antifungal in IFD

treatment. Besides, a large number of studies remained at the

efficacy level, and more studies investigating the underlying

mechanism of materials against mycoses are urgently needed.
FIGURE 4

Proposed models of membrane destructive and nondestructive-disturbance antimicrobial mechanisms of AMPs. Reproduced with permission from
Yu et al. (2022).
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3.3 Photodynamic therapy with polymer-
enhanced photosensitizer

Photodynamic therapy is a modern strategy that involves three

nontoxic principal components: a photosensitizer (PS), light of an

appropriate wavelength, and oxygen molecules. The PSs are usually

nontoxic and light-sensitive dyes that can be excited to the first

excited singlet state by photons, then relax to the triplet state, interact

with molecular oxygen in type I and type II pathways, and generate

ROS and singlet oxygen (1O2), respectively (Figure 5A) (Dai et al.,

2012). Its antifungal mechanism involves oxidative damage of cell

walls and membranes, achieved through the generation of

extracellular ROS and photodamage to multiple intracellular targets

by oxidizing species that changes the enzyme activities, lipid

peroxidation, lyses of cell organelles and membranes, and finally,

resulted in cell death (Figure 5B) (Gonzales and Maisch, 2012). PDT

has been increasingly applied in clinics to treat superficial and

localized mycoses, such as onychomycosis and oral candidiasis, due

to its multi-factorial and nonspecific antimicrobial properties against

antibiotic-resistant species (Shen et al., 2020). However, PDT of

cutaneous and subcutaneous fungal infections showed a lower

response rate. Therefore, there is increasing interest in strategies to

increase the penetration of both PSs and the corresponding light

(Shen et al., 2020).

Porphyrin and its derivatives are the major known PSs.

However, other designs based on transition metal complexes,

aggregation-induced emission luminous, and nanostructures with

semiconducting or photoactive materials involved exist (Escudero
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et al., 2021; Zhou et al., 2021b; Nguyen et al., 2022). Polymer-based

strategies are necessary and convenient for biocompatibility

promotion, water solubility increase, and aggregation prevention.

Furthermore, they are convenient for targeting and sensitizing

functionalization (Hutnick et al., 2017; Dos Santos et al., 2021;

Zhang et al., 2022c).

Similar to the antifungal drugs, a large number of classic PSs

such as phthalocyanines (Pcs) and protoporphyrin (Pp) are

hydrophobic, and their aggregation in an aqueous medium

significantly reduces the photoactivity (Kwiatkowski et al., 2018).

Thus, a polymer-based delivery system is necessary for PSs. Zhang

et al. (2022c) combined Pp IX with PEI and further linked the

compound with carboxymethyl chitosan (CMC) through EDC/

NHS reaction, creating the PS NPs. The CMC-PEI-Pp IX NPs

showed remarkable wide-spectrum antimicrobial PDT

performance. It had higher 1O2 generation and microbe entering

compared with free Pp IX. Additionally, it had good

biocompatibility and stability.

Hsieh et al. (2019) encapsulated iron (III) Pc with chitosan and

tripolyphosphate NPs for PS delivery. This increased PDT

performance, uptake by fungus, and biocompatibility. Its

antifungal activities against adherent C. tropicalis were distinctly

lower compared with planktonic fungi; although pseudohyphae

were reduced, the fungi survived. However, with subsequent

treatment with flucytosine, 90% of the adherent fungi were

eradicated, indicating antifungal treatments are complementary to

PDT. Notably, the differential results from the reversed treatment

sequence suggest a complicated synergistic effect to be revealed.
A B

C

FIGURE 5

(A) Schematic illustration of photodynamic therapy, including the Jablonski diagram. Reproduced with permission from Dai et al. (2012). (B) SEM
images of PDT-treated and control fungal cells. (C) Schematic diagram of the synthesis of PS nanoconjugates by incorporating rose bengal on
lignin-metallic and lignin-bimetallic nanocomplexes. Reproduced with permission from Chandna et al. (2020).
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Zinc phenyl-thio-Pc and AmB encapsulated in PLGA

nanocapsules is another example of combined therapy. It showed

little cytotoxicity at high concentrations of murine fibroblasts

without irradiation. The dose-dependent fungistatic effect on C.

albicans increased with irradiation (Evangelista et al., 2021).

Whether a synergy exists between AmB and the phototoxic agent

or the phototoxic agent is simply an additive remains to be

validated. However, it ’s speculated that the membrane

permeabilization caused by AmB improves the uptake of

nanocapsules as they are negatively charged and electrostatically

repulsed to fungi (Evangelista et al., 2021).

As previously mentioned, a micelle is a convenient delivery

system for solubility, stability, and permeability enhancement.

Loading curcumin, a naturally occurring PS, onto Pluronic® F-

127 micelles increased the antimicrobial activities of PDT against

pathogens that cause dental caries. However, the system suffered the

dilution-disintegration problem (Dos Santos et al., 2021). Hutnick

et al. (2017) used poly (amidoamine) dendrimers as a framework

for unimolecular micelle vehicles, with the chain end PEGylated for

better water solubility and to prevent nonspecific adsorption.

Silicon Pc 4 was encapsulated into the hydrophobic core of the

dendrimers driven by host-guest supramolecular interactions and

showed no reduction in ROS generation. However, the

internalization was slightly lower compared with free Pc 4. In

addition, their chitin-targeted counterparts functioned by a

chitin-binding peptide, was even less effective in the cell uptake

trial. Further investigation into the mechanism of such inhibition is

needed to improve PS designs and to understand the differences

between drug and PS delivery.

The aforementioned examples are based on polymeric vehicle

delivery by non-covalent combination with photoactive agents.

Covalent strategies are helpful in PS modification and do not

compromise the energy conversion performance of PSs. Ruiz-

Gonzalez et al. (2017) synthesized cationic dendrimeric Pcs with

Zn(OAc)2 in the center, and the zinc compounds displayed higher
1O2 yields in the solution, resulting in a higher microbial reduction

upon irradiation. The bulky arms of the dendrimer prevented

aggregation, and the large dimension was anticipated to extend

circulation. Lignin is an economical, eco-friendly biopolymer and a

waste product of the paper pulp and bioethanol industries. It is

taken as an example for covalent PS modification rich in phenolic,

aliphatic, and carboxylic groups. These provide various properties

and reaction sites for chemical reactions (Boerjan et al., 2003). A

study described a PS NP system of the photoactive azo dye

functionalized lignin incorporated with zinc oxide NPs (Jose

et al., 2021). Chandna et al. (2020) created a photodynamic

nanoconjugate with two components that have PDT activity,

noble metal NPs, and a xanthene dye (Figure 5C). Rose bengal

was conjugated to the surface of lignin-capped metallic and

bimetallic nano complexes via ester bonds. In the presence of

lignin-capped AgNPs, the PSs exhibited less antifungal activity

without irradiation. The PS was further incorporated into

transparent and pH-responsive hydrogels for controlled release of

the nanoconjugates. However, it was found that this did not

increase the antifungal efficiency in a significant way.
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Previous studies have attributed the increased cellular uptake

and photodynamic inactivation efficacy to the surface charge of the

PS system. For example, (Zhou et al., 2021a) demonstrated that the

cationic PS selectively lit up the mitochondria of fungi based on the

inherent discrepancy in surface charge between fungi and

mammalian cells, as well as the negative mitochondrial

membrane potential. Another study of NP-encapsulated

curcumin supports the importance of electrostatic interaction. In

contrast to the enhancement of cationic carriers, anionic NPs lost

their antifungal effects due to electrostatic repulsion (Sakima et al.,

2018). However, in the study of Ruiz-Gonzalez et al. (2017), cationic

dendrimeric octacationic Pcs showed no significant improvement

in photoinactivation performance compared with tetracationic

analogues, although the cellular uptake has not been well studied.

Dibona-Villanueva and Fuentealba (2021) proposed that the

promotion of photodynamic inactivation was because of chitosan,

which is covalently linked to the photodynamic agent, attached the

conjugate to the surface of the pathogen by electrostatic interaction.

Therefore, ROS is generated in the vicinity of the cell wall. The

CMC-PEI-Pp IX NPs displayed a negative charge as a whole

particle, and the researchers attributed the increased NP-access to

the electrostatic interaction of microbial cells between some local

positive charge of the materials and the membrane of microbes

(Zhang et al., 2022c). Tang et al. (2018) found that the conjugates,

especially the quaternized conjugates of chitosan oligosaccharides

and Pc, achieved higher cell uptake in aqueous media and showed a

stronger antifungal effect against C. albicans. However,

quaternization of CMC conjugated with Pc caused decreased cell

uptake and reduced PDT activity (Tang et al., 2020). The

phenomenon was thought to be caused by the electrostatic

activity from the negatively charged carboxyl group nearby.

Hydroxyl radical scavenging activity of quaternized CMC also

possibly participated in the function decline (Guo et al., 2008;

Tang et al., 2020). The contradictory results of the studies

indicate more complicated interactions inside the PS system and

between the microbes than just the electrostatic interaction.

Antimicrobial PDT is a localized and topical treatment since the

photocytotoxic reactions occur only within the area of PS

distribution, and the visible light cannot penetrate deeply into

tissues (Kwiatkowski et al., 2018). A potential direction involves

the upconversion NPs triggered by deep-penetrated near-infrared

rays (NIR), converting NIR into visible emission light to activate the

conjugated PSs. (Zhang et al., 2018) synthesized a NIR-triggered PS

system with upconversion of NPs, Pc-based PS, and a PVP coating.

Few C. albicans survived a 20 min excitation of a 980 nm laser in

vitro at the concentration of 200 mg/mL. However, the killing of

microbial cells’ efficiency was reduced as the NIR was still

attenuated by the obstructed tissue. This technique could

potentially be used for treating subcutaneous lesions, but it

cannot reach deeper organs.

Systems based on bioluminescence resonance energy transfer

(BERT) represent another potential solution to overcome the

limitation of external light sources for the treatment of IFD. Kim

et al. (2015) used self-illuminating quantum dots for PDT of cancer.

The PS of bioluminescent quantum dots and their activator were
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given sequentially, and this significantly increased the survival time

of tumor-bearing mice. (Yuan et al., 2015) were the first to apply an

enzyme cascade-based BERT system for antimicrobial activity. The

bio-illuminating element was based on the cascade reaction induced

by glucose oxidase and horseradish peroxidase with the addition of

glucose and luminol.

With the light penetration problem solved, microbe targeting

has become the most promising direction. In contrast with solid

tumors, bacteria and fungi scatter between and inside the host cells

which requires much higher specificity. Therefore, intracellular

targeting and activation could induce more selective

photodynamic inactivation and spare more host cells (Zhou et al.,

2021a). Protective agents that enhance the resistance of host cells or

quench ROS directly are yet to be fully explored (Lobanov and

Uzdensky, 2009; Liao et al., 2021). For similar reasons,

photothermal therapy is restricted for antimicrobial application.

Although the thermotolerance of pathogens is generally better than

human somatic cells, fever-range temperatures could improve the

immune-protective mechanisms (Evans et al., 2015). Photothermal

techniques has also been used synergistically with conventional

antifungals to improve drug delivery (Zhang et al., 2020b; Ji

et al., 2021).
4 Polymer-based strategies in fungal
disease prevention

4.1 Active and passive immunization

Vaccination is one of the major prevention and control

measures for infectious diseases. Currently, there are no licensed

fungal vaccines. Various factors, such as molecular complexity of

eukaryotic pathogens, reliance on cellular immunity, and

characteristics of the target population, have hindered the

development of fungal vaccines. Studies have aimed at

overcoming the above limitations. A candidate vaccine for

recurrent vulvovaginal candidiasis has completed the phase II

trial, and has shown great clinical potential (Edwards et al., 2018).

Applications of polymeric materials in vaccines is based on two

aspects: as adjuvants that facilitate potent immune responses and as

carriers that protect antigens and expand the delivery routes.

In vaccine formulations, adjuvants enhance immune responses

and increase vaccine efficacy, of which aluminum-containing

adjuvants were the first to be approved and are the most widely

used due to their good safety. Even though they are effective at

enhancing antibody production, their ability to improve cellular

immunity is limited (Hogenesch, 2013).

An ionic cross-linked thermosensitive hydrogel composed of

chitosan and b-glycerophosphate is used as both the carrier and

adjuvant in experimental vaccines with epitope C from heat shock

protein 90 against systemic candidiasis. The hydrogel recruits

immune cells at the injection site, improves cellular uptake as

well as endosomal escape of the antigen due to its buffering

capacity, and facilitates the development of long-term humoral

immunity through sustained antigen release. The presence of the

hydrogel evokes strong Th1, Th2, Th17, and CTL responses with
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improved cytokine secretion (Li et al., 2021c). The polymer-based

NPs are also used for antigen delivery to achieve controlled release.

Ribeiro et al. (2013) encapsulated DNA antigens with PLGA NPs,

which exhibited a similar level of immune responses to that of

naked DNA vaccine when administered via the intramuscular route

at much lower concentrations. Moreover, PLGA was used to

encapsulate cytosolic antigens of C. albicans and further

entrapped into plasma beads for improved protective immunity.

The survival rate was increased by 40% a month after a lethal dose

of C. albicans, compared to mice immunized with antigens and

conventional adjuvant (Ahmad et al., 2015). Adjuvant effects of

PLGA are partially mediated by dendritic cells through PLGA-

induced maturation and enhanced antigen cross-presentation

abilities (Srinivasan and Babensee, 2021).

The mucosal immune system is an important part of the human

immune system, and mucous membranes are susceptible sites for

opportunistic fungi. Mucosal vaccination induces dual layers of

protective immunity at the mucosal surface and in the systemic

compartment (Kiyono et al., 2021). Appropriate materials can

improve mucosal adhesion, prolong antigen release and enable

co-delivery with other active molecules (Amidi et al., 2007; Qin

et al., 2020).

Delivery of immune modulators up-regulates the immune

system and protects against pathogenic fungi. The P10 peptide, a

stimulator of cellular immunity, can enhance the therapeutic

efficacy of pharmacotherapy against paracoccidioidomycosis. The

encapsulation in PLGA eliminated the requirement for additional

adjuvant and reduced the peptide amount by 20-fold (Amaral et al.,

2010). The carrier itself may have immunomodulatory activities.

Farace et al. (2016) reported that chitosan or poloxamer coated lipid

carriers mediated the induction of both innate and adaptive

immunity response.

Even though antifungal immunity has long been attributed to

innate immunity and the cellular arm of acquired immunity, the

potential of protective and therapeutic antibodies against fungal

infections have been reported (Pathakumari et al., 2020; Ulrich and

Ebel, 2020). Passive immunotherapy with specific humanized

monoclonal antibodies is a more substantial therapy, as

immunocompromised patients are very highly susceptible to IFD.

All commercial antibodies are administered via the parenteral route

as immunoglobulin molecules can be inactivated by proteases in the

digestive tract when orally administered. The pH-sensitive

polymer-based carriers are of great potential as oral monoclonal

antibody delivery systems. They promote the traversing of

antibodies from the intestinal epithelial cells into systemic

circulation (Tashima, 2021).
4.2 Antifungal medical devices

Bacteria and fungi, Candida spp. especially, are highly

associated with medical device-related infections. The formation

of microbial biofilms is a major challenge as they promote drug

resistance when compared to planktonic microbials (Francolini and

Donelli, 2010). Interactions between bacteria and fungi may provide

extra protection against drugs in polymicrobial biofilms (Francolini
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and Donelli, 2010). Intravascular catheters are a major risk factor

for candidemia, regardless of the origin of pathogens, and should be

removed as soon as suspected (Kullberg and Arendrup, 2015).

Moreover, additional surgeries are usually required to remove or

replace implanted devices (Kojic and Darouiche, 2004). Antifungal

materials and coatings have a great potential in medical device-

related infection prevention. Strategies against microbial

colonization have been previously summarized (Ricardo et al.,

2020). Herein, we review several functionalized polymers.

For non-releasing materials, antifouling surfaces are usually

realized by increased hydrophilicity or electrostatic repulsion, and

contact-killing activities can be mediated by immobilized

antimicrobials, AMPs, and quaternary ammonium compounds

among others (Ricardo et al., 2020).

An interesting concept involves capturing and quarantining the

fungi, which isolates them from the internal environment instead of

killing them. Li et al. created a “spore prison” with menthol modified

2,4,6-Trichloro-1,3,5-triazine that firmly confined the fungi in

menthoxy units for suppression of spore spread and germination

(Li et al., 2021b). The spore prison potentially avoids the development

of fungal fragment-induced pro-inflammatory responses (Oya et al.,

2019). Even though the killing efficiency of implants is unlikely to

induce Jarisch-Herxheimer reactions due to limited contact areas

(Muscianese et al., 2020), the superiority of fungicidal materials

against fungistatic ones has yet to be determined.

For releasing materials, the main problem is exhaustion of the

antimicrobial agent, especially for dentures that are faced with

continuous microbial contamination. (Sun et al., 2013) grafted

poly(N-vinyl-2-pyrrolidinone) onto surfaces of conventional

denture materials for antifungal drug encapsulation to achieve

sustained antifungal release without compromising their

mechanical properties. The drug release duration lasted from

weeks (chlorhexidine digluconate) to months (miconazole).

Innovatively, the drug-loaded construction could be quenched by

an aqueous solution of the grafted polymer and recharged with

different drugs by immersing in the solution. The average longevity

for complete dentures is approximately 6 years (Taylor et al., 2021).

The ability to reload and replace drugs coordinates antifungal

therapies and is applicable for the treatment of other diseases.

Various preventive measures, including personal protective

equipment should be used as labor protection appliances or used

daily by the susceptible population. Li et al. (2021a) fabricated a

nanofibrous membrane loaded with advanced aggregation-induced

emission PS that exhibits microbicidal activities under sunlight

irradiation. The multi-layered porous structure of the membrane is

applicable to masks for interception of pathogenic droplets

and aerosols.

Constant fungicidal device use may result in dysbiosis of

commensal mycobiota and diseases (Zhang et al., 2020a).

Materials with innate fungicidal activities exert stronger effects on

bacteria, which exacerbates the imbalance of normal flora and

should therefore be regarded as antifungal agents and regulated.

The anti-adhesive materials are more suitable for conventional use.

Besides, exhaustion and restoration of antifungal activities should

be investigated in consideration of service life and use-cost

of products.
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5 Advances in diagnostic and
monitoring tools

Host factors, clinical manifestations, and mycological evidence

are three main elements of IFD diagnosis, and based on certainty

level, they are classified into three levels: “proven,” “probable,” and

“possible” (Ascioglu et al., 2002; De Pauw et al., 2008; Donnelly

et al., 2020). Confirmed diagnosis of fungal diseases relies on fungal

culture and microscopic examination of clinical samples; combined

with subsequent antifungal susceptibility tests, it requires a lot of

time. Advanced methods, such as PCR-based molecular diagnostics

and antigen-antibody reaction-based serological diagnostics, are

being developed for more precise species identification in the

absence of trained mycologists and rapid detection of antifungal

resistance (White and Price, 2021). Non-cultured point-of-care

methods have become the trend in diagnosis.

Biosensors are biomacromolecule-integrated devices or probes

combined with electronic components for generating measurable

signals. They are capable for detection and measurement of very low

concentrations of specific pathogens or chemicals (Naresh and Lee,

2021). Pla et al. (2021) designed a biosensor based on

oligonucleotide-capped nano-porous anodic alumina for effective

detection of C. auris that allows accurate detection in an hour

without previous sample treatment or amplification steps. The

method was based on DNA hybridization and release of

entrapped fluorophore. (Bhatnagar et al., 2018) designed a

sensitive electrochemical nano-biosensor for diagnosis of invasive

aspergillosis via detection of the virulent glip target gene. Analytical

parameters were determined by probe-target hybridization and

intercalation of toluidine blue, and reported in less than 20 min.

Components of the fungal cell wall were also distinctive.

Concanavalin A and wheat germ agglutinin are lectins that

effectively bind glycan and mannan units in yeast cell walls. A

novel electrochemical biosensor platform was based on such

recognition elements for identification of pathogenic Candida

species. Evaluation was based on changes in charge transfer

resistance, which was affected by variations in dispersion and

blocking of sensor surfaces depending on constitutions of

different Candida cell walls (Sa et al., 2020). Combined methods

for diagnosis of fungal species continue to appear. Hu et al. reported

a rapid detection method that is based on surface-enhanced Raman

scattering with Fe3O4@PEI magnetic NPs to capture Candida via

electrostatic interactions and positively charged AgNPs as

substrates. Three Candida species were tested and clearly

distinguished by the advanced analysis method (Hu et al., 2021).

Evaluation of drug sensitivity is important but time-consuming

and requires specialized laboratories. Yu et al. (2020) developed a

lab-on-a-chip platform for portable detection of genetic markers

that are associated with azole resistance and an assorted

smartphone system for monitoring and cloud processes. The

platform will improve clinical decision making, infection control,

and epidemiological surveillance. Another device for antifungal

susceptibility determination is based on screen-printed carbon

electrodes for real-time monitoring of treated Candida biofilm

growth. Even though the throughput of the electrochemical

method is not satisfying, low costs and the propensity for
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miniaturization and automation make it a potential alternative for

rapid assessment of antifungal activities (Olaifa et al., 2021).

“Sense-and-treat” is the cutting-edge concept in health

management. Zhou et al. (2022) developed a multi-functional

sensing platform that is based on localized surface plasmon

resonance sensors and gold nano-match head arrays to monitor the

C. albicans adhesion (Figure 6). Changes in optical performance near

sensor surfaces were captured to reflect microbial adhesion, which

resulted in shifts of localized surface plasmon resonance peaks. The

sensor exhibited higher stabilities and sensitivities when its surface

was modified with poly-L-lysine. The polycationic polymer also

exhibited fungicidal activities. Even though the readily available

samples such as sputum and vaginal fluid are not reliable for

distinguishing colonization from invasion, the results are still

valuable for IFD diagnosis and self-monitoring of susceptible

populations. A detecting platform or method may differently

interact with different biomarkers, including proteins and nucleic

acids. Studies should aim at improving the sensitivity, specificity and

applicability of the platform. Modular designs with variable markers

or reagents are potential integrated diagnostic tools for strain

identification and sensitivity tests. In pursuit of self-service, studies

are aimed at developing portable, point-of-care, and high-sensitive

diagnostic and monitoring devices for infectious diseases (Heikenfeld

et al., 2019). Futuristic miniaturized hand-held devices for point-of-

care detection of fungal diseases should be developed.
6 Conclusions and future directions

Polymers are potential fundamental materials for protecting,

delivering or integration of active components. They may also be
Frontiers in Cellular and Infection Microbiology 19
the bearers for functions in drug-free systems. In fungal disease

management, innovative solutions for prevention, diagnosis, and

treatment have been proposed. Polymeric delivery systems can be

highly customized based on chemical structures and properties of

loaded antifungals to limit their biotoxic effects and exert synergetic

effects. However, only in vitro studies are not enough as findings from

in vivo studies may differ due to the complex internal environment.

For example, clearance of NPs by the reticuloendothelial system may

result in unwanted drug distribution and impair the original purpose

of sustained drug release (Hu et al., 2018). Therefore, there is a need

to investigate the in vivo pharmacokinetics of delivery systems,

particularly those with novel surface modifications. The choices of

research model should also be made wisely according to the clinical

aims. Studies should focus on systems that are aimed at targeted

delivery, including blood-brain barrier permeation for central

nervous system IFD treatment and pulmonary concentration

against fungal pneumonia. In terms of topical delivery systems,

most of the studies have been aimed at improving efficacy and

patient experience of pre-existing dosage forms, such as gels and

nail lacquers. Target sites have included body skin, nails, oral and

vaginal mucous membranes. However, to the best of our knowledge,

few studies have specifically focused on treatment of tinea capitis,

which usually affects children. Inclusion of aesthetic requirements

reflects the compassionate care of modern medicine. Symptomatic

relief and masking of lesions should be considered in future studies to

improve the physical and mental health of patients.

Drug-free therapies are novel medical applications in polymer

science. They are promising solutions to the growing problem of

drug-resistant fungi. Previous studies mostly focused on topical

applications of such systems. However, unlike aggregated cancer

cells, pathogenic fungi spread throughout affected sites, sometimes
FIGURE 6

Schematic illustration of the structure and mechanism of a fungicidal sensing platform. The biosensor was based on the shift of localized surface
plasmon resonance peaks that resulted from the adhesion of fungal cells to gold nano arrays. The surface modification by the polycationic polymer,
poly-L-lysine, increased the attachment of C. albicans and provided antifungal properties. Reproduced with permission from Zhou et al. (2022).
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even in whole organs. The rationality of current systems was based

on the fact that the skin and mucous membranes are natural barrier

tissues with strong regenerative abilities and thus more tolerant to

the microenvironment change. However, cells of inner organs are

more sensitive and fragile. Potential systemic applications should

aim at improving selectivity at the cellular level to reduce damage to

body cells. Long-term observation is also necessary in case some

underlying minor irritation is carcinogenic.

With the increasing public health threat of fungal resistance, the

“precision medicine” concept has been introduced. Futuristic

prevention and diagnostic devices are current hot spots. The

design for superficial and deep applications should coincide with

the tissue characterization and category of mycoses. The genetic

background and underlying diseases target population should also

be considered. For superficial mycoses, comfortable protective

equipment, handy diagnosis, and provision of health advice are

important. Moreover, the combination of smart phones and big

data may assist in self-help prevention and treatment of superficial

mycosis and reduce public health expenditures. Regarding IFD,

timely monitoring of drug susceptibility, pathogen load, and

reaction to treatment is the future direction. Point-of-care

molecular diagnosis may accelerate the clinical translation of

novel RNA-based therapies (Bruch et al., 2022). In conclusion,

polymer-based strategies have promising applications in

prevention, diagnosis, and treatment of fungal infections and may

achieve closed-loop management in future.
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