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Immunosuppressive cells in
oncolytic virotherapy for glioma:
challenges and solutions
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Glioblastoma is a highly aggressive form of brain cancer characterized by the

abundance of myeloid lineage cells in the tumor microenvironment. Tumor-

associated macrophages and microglia (TAM) and myeloid-derived suppressor

cells (MDSCs), play a pivotal role in promoting immune suppression and tumor

progression. Oncolytic viruses (OVs) are self-amplifying cytotoxic agents that can

stimulate local anti-tumor immune responses and have the potential to suppress

immunosuppressive myeloid cells and recruit tumor-infiltrating T lymphocytes

(TILs) to the tumor site, leading to an adaptive immune response against tumors.

However, the impact ofOV therapy on the tumor-residentmyeloid population and

the subsequent immune responses are not yet fully understood. This review

provides an overview of how TAM and MDSC respond to different types of OVs,

and combination therapeutics that target the myeloid population to promote anti-

tumor immune responses in the glioma microenvironment.

KEYWORDS

oncolytic virus, glioma, immunosuppressive, glioblastoma, macrophages, microglia,
MDSCs, tumor microenvironment
1 Introduction

1.1 Oncolytic virotherapy for glioma: current challenges

Glioma, the most common primary central nervous system (CNS) tumor in adults, is

characterized by aggressive clinical-biological behavior, with low-grade gliomas eventually

progressing to CNS WHO grade 3/4 gliomas and resulting death (Claus et al., 2015).

Glioblastoma (Louis et al., 2021), the most lethal type of glioma, is resistant to conventional

therapies and shows invasive, intratumoral heterogeneity and stem-like phenotypic

plasticity (Liu et al., 2018; Perus and Walsh, 2019; Prager et al., 2020; Hutoczki et al.,

2021; Nicholson and Fine, 2021; Knudsen et al., 2022). The median survival time is less

than two years despite multimodality treatment options, such as maximum safe surgical

resection, chemotherapy, radiotherapy, and other new treatment strategies (Tan et al.,

2020). The blood-brain barrier (BBB) limits therapeutic drug options for glioma patients by
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actively blocking the influx of potentially effective pharmaceutical

small molecules and antibodies from peripheral routes (Sarkaria

et al., 2018; Luo and Shusta, 2020). BBB also maintains immune

homeostasis in the brain by filtering leukocytes from attempts of

peripheral adaptive immune cells into the brain to protect

vulnerable neuronal cells from inflammation and autoimmunity

(Muldoon et al., 2013). However, glioma takes advantage of this

immunological privilege to escape from immunosurveillance and

creates an immunosuppressive tumor microenvironment. This

results in further evolving immune evasion mechanisms and

neutralizing current immune checkpoint inhibitor (ICI) therapies

as a “cold” tumor (Lim et al., 2018; Labani-Motlagh et al., 2020).

Oncolytic virotherapy is an emerging treatment modality that

holds great promise for the treatment of cancer. Genetically

engineered viruses can selectively destroy cancer cells while

sparing healthy cells through altering viral infection, replication

or both (Chiocca, 2002; Twumasi-Boateng et al., 2018). In addition

to their direct lytic toxicity, OVs have been shown to induce

systemic anti-tumor immune responses. Some oncolytic viruses

are also capable of naturally targeting tumor stroma components,

including cancer-associated fibroblasts and tumor vasculature,

complicating their anti-tumor mechanisms (Toro Bejarano and

Merchan, 2015; Everts et al., 2020). Moreover, OVs can trigger

immunogenic cell death (ICD), which involves the release of tumor-

associated antigens (TAA), pathogen- or damage-associated

molecular patterns (PAMPs or DAMPs), and inflammatory

cytokines and chemokines (Ma et al., 2020; Hofman et al., 2021).

Additionally, genetic engineering can be used to enhance OVs’ anti-

tumor immunity by expressing immune stimulant factors, leading

to potent and long-lasting adaptive immunity, potentially

transforming the tumor microenvironment from “cold” to “hot”

(Friedman et al., 2021).

Currently, several OVs, including Herpes Simplex Virus (HSV),

Adenovirus (AdV), Reovirus, Newcastle Disease Virus (NDV),

Poliovirus, and others, are under evaluation in preclinical studies

and clinical trials for gliomas with promising results (Table 1)

(Rius-Rocabert et al., 2020; Lu et al., 2021; Shoaf and Desjardins,

2022). A recent development in Japan has received conditional and

time-limited approval for G47D, an HSV1-based OV, for patients

with glioblastoma (Shoaf and Desjardins, 2022). Nevertheless,

glioblastoma remains an incurable cancer type, and OV

monotherapy faces significant challenges (Zhang and Liu, 2020).

First, the administration of a single dose of intratumoral OV may

not be sufficient to exert anti-tumor effects due to uneven spread,

lack of persistence, and rapid clearance of virus particles (Moaven

et al. , 2021; Shoaf and Desjardins, 2022). Second, the

immunosuppressive microenvironment in gliomas hinders T cell

activation and induces exhaustion. Third, innate immunity

activated by OV therapy subsequently inhibits the replication and

spread of OV. Fourth, some OVs have the potential to promote

angiogenesis, which can support tumor growth and migration

(Kurozumi et al., 2008). Finally, despite demonstrating tolerable

safety in most glioma clinical trials (Shalhout et al., 2023), the

adverse events and long-term complications of OVs still require

continuous attention for large-scale application. Therefore, this

review article aims to provide the current status of OV therapy,
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including its impact on the immunosuppressive glioma

microenvironment and therapeutic limitations, to guide future

directions for research and development in the field.

1.2 The presence of immunosuppressive
cells in the tumor microenvironment
of gliomas

The interplay between immunosuppressive cells and oncolytic

viruses (OVs) in glioma therapy is complex and involves dynamic

and multifaceted virus-induced immune responses. The

involvement of immunosuppressive cells in OV therapy is not

straightforward since they can either act as foes or friends.

Various immune cell subsets, such as tumor-associated microglia/

macrophages (TAMs), myeloid-derived suppressor cells (MDSCs),

regulatory T cells (Tregs), and tumor-associated neutrophils

(TANs), mediate immunological suppression that contributes to

the complex outcomes observed in OV therapy. Tumor cells attract

these cells to the microenvironment and alter their functions and

phenotypes by secreting chemoattractants, such as MIC-1 (Wu

et al., 2010), MCP-1 (Roesch et al., 2018), GM-CSF (Horikawa et al.,

2020), S100A8/9 (Gabrilovich and Nagaraj, 2009) and CCL2

(Chang et al., 2016), to create an immunosuppressive milieu that

aids in evading anti-tumor immunity.

The immunosuppressive cells present in the glioma

microenvironment consist of brain tissue-resident and

peripherally derived immune cells. Microglia are the primary

resident immunosuppressive cells in the brain, accounting for 13-

34% of the tumor mass (Gieryng et al., 2017). Macrophages are

main peripheral immunosuppressive cells, accounting for 5-12% of

the tumor mass (Gieryng et al., 2017). Microglia and macrophages

comprise up to 30-50% of the cells in the glioma microenvironment,

while MDSCs are the second largest subpopulation of

immunosuppressive cells in the glioma microenvironment after

TAMs, accounting for 5-8% of glioma mass (Hambardzumyan

et al., 2016; Gieryng et al., 2017), but some literatures suggest a

larger population (Gabrusiewicz et al., 2016; Kamran et al., 2017).

Tregs are rare and account for only 0.3% of tumor mass (Thomas

et al., 2015). TANs are mature neutrophils in the glioma

microenvironment, accounting for a smaller proportion, and are

often confused with polymorphonuclear (PMN)-MDSCs (Bronte

et al., 2016). Despite their small proportion, both Tregs and TAN

play important roles in immune modulation. TAMs and MDSCs

are particularly significant in orchestrating an immunosuppressive

microenvironment in glioma, and this review will focus mainly on

their immunosuppressive functions in glioma virotherapy.

2 Tumor-associated microglia/
macrophages

2.1 The role of TAMs in the
immunosuppressive microenvironment
of gliomas

Tumor-associated macrophages (TAMs) are a heterogeneous

population of immune cells that play a dominant immunosuppressive
frontiersin.org
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TABLE 1 Clinical trials of oncolytic virotherapy for gliomas.

Virus name Genetic
modifications

Administration
approach

Combination
therapies Tumors Phase Country Year References

Adenovirus (Ad)

Ad-TD-nsIL12 nsIL12, deletions in
E1ACR2, E1B19K
and E3gp19K),

Single i.t. DIPG 1 China 2023 NCT05717712;
NCT05717699

DNX-2401
(Delta-24-RGD;
tasadenoturev)

E1A deletion, an
RGD-fiber

an infusion in the
cerebellar peduncle

RT NaiveDIPG 1 Spain 2017 NCT03178032
(Lang et al., 2018;
Perez-Larraya
et al., 2022)

Loaded with MSC ESIA infusions Therapeutic
Conventional

Surgery

Recurrent HGG 1 USA 2019 NCT03896568
(Chen et al.,

2022)

CED to infiltrated
brain

Recurrent GBM 1/2 Netherlands 2010 NCT01582516

i.t. Pembrolizumab,
CAPTIVE/

KEYNOTE-192

Recurrent GBM
or GBM

2 USA 2016 NCT02798406

Single i.t. IFN-g Recurrent GBM
or GBM

1 USA 2014 NCT02197169

i.t. or resected cavity TMZ Recurrent GBM 1 Spain 2013 NCT01956734

CRAd-S-pk7 survivin promoter-
E1A, fiber-pk7
loaded on NSC

Resected cavity TMZ + RT Newly Diagnosed
HGG

1 USA 2017 NCT03072134
(Fares et al.,

2021)

i.c. Surgical resection Recurrent HGG 1 USA 2023 NCT05139056

DNX-2440 i.t. first or second
recurrence GBM

1 Spain 2018 NCT03714334

ICOVIR-5 Loaded on Allogenic
MSC

weekly infusion DIPG: RT,
Medulloblastoma:
monotherapy

Newly Diagnosed
DIPG or

Medulloblastoma

1/2 Spain 2021 NCT04758533

Ad5-yCD/
mutTKSR39rep-

ADP

yeast cytosine
deaminase (yCD)/
mutant (SR39) with
HSV-1 TK (yCD/
mutTK(SR39)),
adenovirus death

protein (ADP) gene

a single
intratumoral
injection

fractionated
stereotactic
radiosurgery
(fSRS), oral 5-

fluorocytosine (5-
FC) and

valganciclovir
(vGCV)

Recurrent high-
grade

astrocytoma

1 USA 2022 NCT05686798

HSV-1/2

G207

deletions of both
g134.5 and a lacZ:

UL39

i.t. Recurrent
Malignant Glioma

USA 2001 NCT00028158
(Markert et al.,

2000)

MRI-guided single
infusion

RT (5Gy)

Recurrent HGG
in Children

2 USA 2023 NCT04482933

Recurrent or
Refractory

Cerebellar Brain
Tumors in
Children

1 USA 2019 NCT03911388

G47delta a47 deletion and
a47 promoter-US11

gene in G207

6 or more i.t.
injection

Residual or
recurrent GBM

1/2 Japan 2009,
2014

UMIN000002661
(UMIN-CTR),

UMIN000015995
(UMIN-CTR),
(Todo et al.,

2022)

(Continued)
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role in the glioma microenvironment, comprising up to 50% of the

tumor mass (Hambardzumyan et al., 2016; Twumasi-Boateng et al.,

2018). TAMs include brain-resident microglia and monocyte-derived

macrophages with the relative composition of these cells depending on

various factors such as genotype, grade, progression stage, and spatial

distribution of the tumors in the brain (Friebel et al., 2020; Andersen
Frontiers in Cellular and Infection Microbiology 04
et al., 2022). In the normal brain, microglia are the primary myeloid

cells as the resident macrophages in the central nervous system, while

peripheral macrophages are rarely seen (DePaula-Silva et al., 2019). In

gliomas carrying mutations in genes encoding isocitrate dehydrogenase

1 (IDH1) or 2 (IDH2), microglia-derived TAMs are more dominant

compared to wild-type gliomas (Friebel et al., 2020). Moreover, the
TABLE 1 Continued

Virus name Genetic
modifications

Administration
approach

Combination
therapies Tumors Phase Country Year References

rQNestin34.5v.2
(CAN-3110)

g134.5 and UL39
gene deletion, nestin
promoter- g134.5
gene insertion

MRI-guided i.t. Cyclophosphamide
(2nd arm only)

Recurrent or
progressive brain

tumor

1 USA 2017 NCT03152318
(Chiocca et al.,

2020)

C134 Multiple i.t. Recurrent
Malignant Glioma

1 USA 2019 NCT03657576

M032 g134.5 deletion, hIL-
12 gene insertion

Single infusion Recurrent
Malignant
Glioma

1 USA 2013 NCT02062827

Pembrolizumab Recurrent/
Progressive and
Newly Diagnosed

Malignant
Glioma

1/2 USA 2022 NCT05084430

MVR-C5252 IL-12 and Anti-PD-
1 insertion

a single i.t. Recurrent or
Progressive GBM

1 USA 2023 NCT05095441

OH2 ICP34.5 and
ICP47 gene deletion
in HSV-2, hGM-
CSF gene insertion

administered in
tumor cavity by

Ommaya reservoir
injection

Recurrent CNS
tumor (Phase 1),
Recurrent GBM

(Phase 2)

1/2 China 2021 NCT05235074

Other types of oncolytic viruses

H-1PV
(ParvOryx)

H-1 protoparvovirus Three doses via i.t.
or i.v., followed by
i.c. into the walls of
the resection cavity

Progressive
Primary or

Recurrent GBM

1/2 Germany 2011 NCT01301430
(Geletneky et al.,
2012; Geletneky
et al., 2017)

REOLYSIN® single i.t. infusion
over 72 hours

Recurrent
Malignant
Gliomas

1/2 USA 2006 NCT00528684

PVSRIPO a live attenuated
poliovirus type 1

(Sabin) vaccine with
its cognate IRES

with that of human
rhinovirus type 2

i.t. with CED Recurrent WHO
grade 4 malignant

glioma

2 USA 2017 NCT02986178

i.t. with CED Recurrent
Malignant

Glioma (WHO
grade 3 or 4) in
Children (12-21

yr)

1b USA 2017 NCT03043391

i.t. with CED Recurrent WHO
Grade 4

malignant glioma

1 USA 2012 NCT01491893
(Desjardins et al.,

2018)

TG6002 J2R, the I4L gene
deletions in vaccinia,
FCU1 insertion

weekly i.v. infusions
at days 1, 8 and 15

5-flucytosine (5-
FC)

Recurrent
Glioblastoma

1/2 France 2017 NCT03294486
i.t., intratumoral injection; i.c., intracerebral injection; i.v., intravenous injection; DIPG, Diffuse Intrinsic Pontine Gliomas; ESIA, endovascular super-selective intra-arterial; CED, convection-
enhanced delivery; TMZ, temozolomide; RT, radiotherapy; Pem, Pembrolizumab; HGG, high-grade glioma; GBM, glioblastoma; IRES, internal ribosome entry site; CNS, central nervous system;
WHO, world health organization; MSC, mesenchymal stem cell; NSC, neural stem cell; RGD, arginine-glycine-aspartame.
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density of bone marrow-derived macrophages increases with tumor

progression and the glioma grades (Sorensen et al., 2018). The spatial

distribution of microglia and peripheral macrophages is distinct within

the glioma microenvironment. Microglia preferentially reside in tumor-

adjacent parenchymal regions, while bone marrow-derived

macrophages are more abundant inside the tumor, particularly in

peri-necrotic and peri-vascular areas (Landry et al., 2020; Yin et al.,

2022). Microglia specific molecular markers such as TMEM119 and

P2RY12 are applicable to distinguish microglia from peripheral

macrophages (van Wageningen et al., 2019; Mercurio et al., 2022).

Despite their differences in ontogeny and spatial distribution, microglia

and peripheral macrophages share similar functions in the glioma

microenvironment and are referred as single cell cluster, i.e., TAMs

(Blitz et al., 2022; Rao et al., 2022).

TAMs have two distinct phenotypes: resting (or non-activated)

and polarized (or activated) (Li et al., 2021), with the latter being

further classified into two functionally distinctive types known as

M1 and M2 phenotypes (Mills et al., 2000; Yunna et al., 2020). The

M1 type is the classically activated antitumor phenotype, while

the M2 type is the alternatively activated pro-tumor phenotype. The

concept of M1-M2 classification was initially proposed by Hill et al.

based on observations of activated macrophages resembling Th1-

Th2 polarization of T cells (Mills et al., 2000). M1-like TAMs are

induced by interferon-g (IFN-g), tumor necrosis factor a (TNF-a),
and granulocyte-macrophage colony-stimulating factor (GM-CSF)

and are involved in pro-inflammatory responses and antigen

presentation with costimulatory molecules such as CD80 and

CD86 (de Sousa et al., 2016). M2-like TAMs are stimulated by

interleukin (IL)-10 and transforming growth factor b (TGF-b) and
involved in anti-inflammatory responses with overexpressed

surface proteins such as CD206, CD204 and CD163 (Laviron and

Boissonnas, 2019; Yunna et al., 2020). Although the activation state

of TAMs usually changes dynamically and continuously between

M1 and M2 (Martinez and Gordon, 2014), there is no clear

boundary between the two polarized states, especially in vivo

conditions. The M1-M2 model became obsolete after extensive

studies with widely applicable single-cell and spatial technologies

such as single-cell RNA and ATAC sequencing with spatially

resolved profiling (Deng et al., 2022a; Deng et al., 2022b).

Recently, TAM subpopulation is redefined as described elsewhere

(Ma et al., 2022; Pittet et al., 2022). However, M1/M2 dichotomy

facilitates research and communications in the field of

macrophages. The terminology of M1-M2 is frequently used in

papers on OV therapy; thus, we used the M1 and M2 terms to

respect descriptions of original papers through this review.

The predominant phenotype of tumor-associated macrophages

(TAMs) in the tumor microenvironment during glioma onset and

early stages remains unclear (Kennedy et al., 2013). Nevertheless,

studies indicate that M2 TAM infiltration increases with glioma

progression (Mahlbacher et al., 2018; Yin et al., 2020; Ghosh et al.,

2022). Glioma cell proliferation, including glioma stem cells (Yi et al.,

2011), results in the secretion of cytokines and chemokines such as

MIC-1, periostin, IL-33, andMCP-1 (Wu et al., 2010; Zhou et al., 2015;

Roesch et al., 2018; De Boeck et al., 2020), which recruit blood-borne

monocytes and macrophages to the tumor site, polarizing them into

M2 TAMs. M2 TAMs play a significant role in various malignant
Frontiers in Cellular and Infection Microbiology 05
biological behaviors, such as tumor proliferation, invasion,

angiogenesis, and stemness maintenance (Hambardzumyan et al.,

2016; Roesch et al., 2018; Zhu et al., 2018; Geraldo et al., 2021; Yan

et al., 2021; Yeini et al., 2021). They also contribute to the

immunosuppressive microenvironment of gliomas by releasing

soluble factors, metabolites, or direct cell-cell interactions (Roesch

et al., 2018). M2-like TAMs directly impair effector T cells activation

or induce apoptosis by binding to T cells inhibitory receptors, such as

CTLA-4 and PD-1 (Seliger et al., 2008; Saha et al., 2017) or death

receptors, such as FAS and DR5 (Zhu et al., 2019). M2-like TAMs also

release cytokines, such as TGF-b and IL-10 and promote the

production of metabolites, such as indoleamine 2,3-dioxygenase

(IDO) and kynurenine, inhibiting functions of T cells, NK cells and

DCs (Roesch et al., 2018; Herrera-Rios et al., 2020). Furthermore, M2

TAMs promote the recruitment of other immunosuppressive cells like

MDSCs and Tregs via cytokines and chemokines, such as IL-10, TGF-

b, IL-4, IL-6, CCL2, CCL5, and CCL20 (Zhou et al., 2020). Lastly, M2

TAMs promote immune evasion of glioma cells by binding to the

“don’t eat me” signal molecule CD47, which is overexpressed on the

cell surface of gliomas (Zhang et al., 2016). In summary, TAMs play a

dominant immunosuppressive role in the glioma microenvironment,

with M2-like TAMs involved in various malignant behaviors.

Understanding the function of TAMs in glioma progression can aid

in developing effective OV therapies for gliomas.
2.2 The effects of OVs on TAMs

Crosstalk between OV-infected tumor and TAM results in

complex outcomes in OV therapy. Following administration, OVs

modulate the tumor microenvironment by attracting bone marrow-

derived macrophages and brain resident microglia to the OV-

injected tumor site through the release of chemoattractants by

OV-infected tumor cells, such as CCL2 and CCN1 (Parker et al.,

2005; Thorne et al., 2014; Meisen et al., 2015). M1-like macrophages

are recruited in the early stage of virus infection, and play a crucial

role in virus clearance, while M2-like macrophages contribute to

wound healing and tissue repair in the late stage of infection

(Clements et al., 2017). However, current research does not

provide evidence of a shift from M1 to M2 during OV infection

at tumors. OV action may recruit and polarize non-activated

monocytes into M1-like macrophages (Meisen et al., 2015;

Clements et al., 2017) and promote the switching from M2 to M1

phenotypes of pre-existing tumor-associated macrophages (TAMs)

in the tumor microenvironment (van den Bossche et al., 2018; Lee

et al., 2019; Hofman et al., 2021; Blitz et al., 2022) (Figure 1).
2.3 The negative impacts of TAMs on OVs

Effectiveness of oncolysis ability to destroy cancer cells can be

attenuated through immune responses elicited by M1-like TAM,

which OV action trigger to recruit. They respond to the viral

infection and play a role in the clearance of virus-infected cells by

stimulating inflammation and anti-viral reaction. During the lytic

cycle of virus infection in tumors, macrophages are rapidly
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recruited to virally infected tumors and activated to aid in virus

clearance, primarily through phagocytosis (Clements et al., 2017;

Nikitina et al., 2018). When OV is intratumorally administered to

gliomas, TAM accumulate around the OV injection site within the

tumor mass and form physical barriers to limit the spatial

distribution of virions over the injected areas (Blitz et al., 2022).

Microglia and macrophages are capable of uptaking oncolytic

herpes simplex virus (oHSV) particles in glioma. However, oHSV

replication in these cells is typically inhibited due to the activation

of the intrinsic and intracellular innate immunity through STAT1-

interferon axis signaling pathways (Delwar et al., 2018).

Consequently, tumor-associated macrophages (TAMs)

phagocytose OV, which limits the tumor-killing effects of

oncolytic viruses (Fulci et al., 2007; Kober et al., 2015) (Figure 1).

Moreover, OV injection preferentially recruits M1-like TAMs

rather than M2-like TAMs, which prevent the infection and

dissemination of OVs (Blitz et al., 2022). TAMs are recruited to

the OV injection site and form physical barriers that restrict the

spread of virions within the tumor. Unlike oHSV, VV-based OVs

are capable of infecting TAMs, but their replication is inhibited by

early gene-induced apoptosis in these cells, which is not typically

observed in permissive tumor cells (Humlova et al., 2002; Kober

et al., 2015). A mathematical modeling and computational

approach proposed that the susceptibility of macrophages to OVs

is influenced by their polarization (Almuallem et al., 2020).

Specifically, M2-like macrophages are more susceptible to

oncolytic vesicular stomatitis virus (oVSV) infection than M1
Frontiers in Cellular and Infection Microbiology 06
macrophages, according to a recent study (Polzin et al., 2020).

Additionally, the migration of oVSV-infected M2 macrophages

towards the hypoxic region of the tumor has been shown to

facilitate OV dissemination (Almuallem et al., 2020). However, in

response to OV injection, M1-like TAMs are selectively recruited

instead of M2-like TAMs, which impedes OV infection and

dissemination (Blitz et al., 2022).

Macrophages serve as the primary immune response against

viral infections and secrete anti-viral cytokines and chemokines,

such as TNF-a, interferons, IL-1b, and IL-12. However, these

immune responses can also attenuate the efficacy of OV therapy

in the tumor microenvironment (Clements et al., 2017; Nikitina

et al., 2018). The secretion of TNF-a by TAMs in response to OV

therapy has been shown to be a crucial factor in inhibiting viral

replication by inducing apoptosis in OV-infected glioma cells

(Meisen et al., 2015; Yoo et al., 2019). This promotion of

apoptotic cell death can lead to a decrease in viral infection or

replication (Liskova et al., 2011; Kober et al., 2015). The M1-like

phenotype of TAMs, which are predominantly found surrounding

the injection site of OV, have the ability to produce interferons and

eliminate viruses through a Type I interferon-dependent

mechanism (Lang et al., 2010; Almuallem et al., 2020; Nikonova

et al., 2020). Moreover, pro-inflammatory macrophages (M1 type)

polarized by OV could recruit and activate other innate immune

cells, such as natural killer cells (NK cells) and DCs, through

secretion of chemokines and cytokines, thus further enhancing

anti-viral innate immune response (Denton et al., 2016) (Figure 1).
FIGURE 1

The interactions between microglia/macrophages and oncolytic viruses (OVs) in gliomas. The infection glioma cells with OVs lead to recruitment
more microglia and peripheral macrophages to the OV administration site and polarization of preexisting M2 type microglia/macrophages to M1
type tumor associated macrophages (TAMs). These M1 TAMs form a physical barrier surrounding the OVs-infected area to hinder the replication and
spread of viruses. On one hand, M1 TAMs exert anti-viral functions through secretion of anti-viral cytokines, by recruiting other anti-viral immune
cells and by direct phagocytosis of viral particles. On the other hand, these cells exert anti-tumor activity through production of tumor-killing
factors, by inducing the recruitment of other anti-tumor immune cells, such as NK cells and dendritic cells, and, more importantly, acting as antigen
presenting cells to elicit adaptive anti-tumor immune responses.
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2.4 Anti-tumor effects of TAMs on OV

Despite their negative impact on OV infection, OV-stimulated

TAMs may have a positive impact on anti-tumor effects. A large

number of studies have shown that M1-polarized microglia/

macrophages can inhibit proliferation (Yin et al., 2017), invasion

(Wang et al., 2021) and angiogenesis (Cui et al., 2018), as well as

promote anti-tumor immune response (Hsu et al., 2020) in gliomas.

After oncolytic virus treatment, the M2 pro-tumor TAMs that were

previously present in the glioma microenvironment repolarize

towards the M1 phenotype, which is known to have anti-tumor

and pro-inflammatory properties (Meisen et al., 2015; Ma et al.,

2022). Various types of tumors, including gliomas, have been shown

to benefit from anti-tumor effects of TAMs in oncolytic virotherapy,

regardless of the type of OV used (Meisen et al., 2015; van den

Bossche et al., 2018; Hofman et al., 2021; Kim et al., 2021; Milenova

et al., 2021). For example, M1 TAMs have the ability to generate

soluble factors, including reactive oxygen species (ROS), nitric

oxide (NO), TNF-a, and IL-1b, which can cause apoptosis, DNA

damage, or cytotoxicity, leading to the direct killing of tumor cells

(Pan et al., 2020; Aminin and Wang, 2021). M1 TAMs also have an

indirect anti-tumor effect by recruiting and activating other

immune cells, such as NK and T cells. NK cells are part of the

innate immune system and have strong cytotoxic functions against

tumor cells and other abnormal cells. M1 macrophages collaborate

with NK cells to eliminate tumor cells (Aminin and Wang, 2021).

M1-polarized macrophages, being one of the antigen-presenting

cells (APCs), are capable of presenting tumor or virus-associated

antigens to effector T cells, thereby triggering a vigorous adaptive

anti-tumor immune response (Burke et al., 2020; Hofman et al.,

2021). Multiple studies have demonstrated the anti-tumoral roles of

TAMs in OV therapy for gliomas. A recent study shows an

oncolytic IL-12-expressing HSV-1, G47D-mIL12, skewed TAMs

to M1-like phenotype, and M1-like TAMs were further increased

by triple therapy consisting of anti-CTLA-4, anti-PD-1, and G47D-
mIL12 in the GSC-derived GBM models. The authors found that

triple treatment significantly increased the cure rate of GBM-

bearing mice. Still, TAMs depletion blocked the efficacy of triple

therapy, indicating that TAMs, in part, play an indispensable role in

the treatment of GBM with this triple OV immunotherapy (Saha

et al., 2017). Similarly, Xu and colleagues reported that

macrophages mediate the anti-tumor cytotoxicity of aCD47-
IgG1-producing oncolytic HSV-1 in a preclinical model of GBM

(Xu et al., 2021). Together, these findings demonstrate that TAMs

within the glioma microenvironment upon OV therapy exhibit

tumor-killing function and possess classical activated M1-type

characteristics (Figure 1).
2.5 TAMs-targeted therapy in combination
with OV therapy

TAMs play a dual role in OV therapy for gliomas by inhibiting

OV replication and spread while also enhancing OV’s tumor-killing

efficacy (Blitz et al., 2022). Therefore, combining TAMs-targeting

immunotherapy with OV therapy can be challenging to predict the
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outcomes. TAMs act as a link between innate and adaptive

immunity in OV treatment and are involved in complex immune

regulatory networks. To maximize the anti-tumor effects of TAMs

and minimize their negative impact on OVs, OV therapeutic

strategy must carefully consider the function of TAMs (Figure 2).

Current strategies primarily aim to mitigate the adverse effects of

TAM on replication and spread of OV. An earlier study has shown

that the depletion of microglia/macrophages with clodronate

liposomes (CL) significantly increases the oncolytic HSV titers in

syngeneic GBM models (Fulci et al. , 2007). Similarly,

cyclophosphamide (CPA) enhances HSV replication and

oncolysis in GBM-bearing animals by inhibiting the OV-induced

infiltration of TAMs and the production of IFN-g by NK cells (Fulci

et al., 2006). A depletion of TAM population is also promising

approach. Shi et al. showed that a CSF1R inhibitor (PLX3397)

combined with oncolytic adenoviruses and anti-PD-1 significantly

promoted tumor regression and extended survival, as compared to

single or dual therapies, in colon cancer models by depleting TAMs

(Shi et al., 2019). On the other hand, a different study has suggested

that the depletion of peripheral macrophages using clodronate

liposomes or TAMs using CSF1R inhibitor BLZ945 eliminates the

effectiveness of triple therapy comprising oncolytic HSV, anti-

CTLA-4, and anti-PD-1 in GBM models. This indicates that M1-

polarized TAMs play a crucial role in tumor suppression within the

context of OV therapy (Saha et al., 2017). Furthermore, the CSF1R

inhibitor, PLX3397, showed no efficacy in a phase II clinical trial in

recurrent GBMs (Butowski et al., 2016). The findings of these two

studies, which employed TAMs depletion therapy in conjunction

with OV therapy and immune checkpoint blockades (ICBs), yielded

opposite conclusions, which could be attributed to the disparities in

the virus type, CSF-1R inhibitors employed, and the tumor type.

Moreover, as discussed earlier, the efficacy of TAMs depletion is

contingent on the tumor type and the timing of treatment (O'Brien

et al., 2021). Given that TAMs exhibit remarkable plasticity with

dynamically shifting phenotype and function in response to the

signals within the tumor microenvironment, the timing of

administration for TAMs-depletion compounds or antibodies is

crucial for OV therapy. As an example, administering CPA 48 hours

before OV injection can improve OV therapy in gliomas, as it

transiently suppresses innate immune responses mediated by TAMs

and NK cells, thereby allowing OV to spread and lyse tumors (Fulci

et al., 2006). Similarly, administering a CSF-1R inhibitor during the

early stages of glioma has demonstrated greater efficacy in

inhibiting tumor growth and inducing adaptive immune

responses (O'Brien et al., 2021). As a result, when employing the

TAMs-depletion strategy combined with OVs for glioma treatment,

it is crucial to exercise caution in identifying an optimal and rational

treatment paradigm.

Another strategy to enhance the replication and spread of OVs

is inhibiting M1 TAMs functions. TGF-b is an inflammatory

cytokine that suppresses innate and adaptive immune responses.

Han and colleagues showed that the administration of a single dose

of TGF-b before OV therapy could transiently suppress innate

immune cells, including microglia, macrophages, and NK cells

which restrict efficacy of OVs, boosting therapeutic responses in

glioma (Han et al., 2015; Groeneveldt et al., 2020). TNF-a is a
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TAMs-secreted anti-viral cytokine that is essential in inhibiting the

replication and spread of OVs. Multiple studies have shown that

curbing TNF-a secretion in gliomas can effectively increase viral

replication and spreads, thereby improving the anti-tumor effects in

OV therapy (Meisen et al., 2015; Yoo et al., 2019).

While inhibition of M1 TAM function is one strategy to

enhance the replication and spread of OVs, another approach is

to cooperate with TAMs instead of fighting them. One promising

approach for TAMs-targeted combination therapy is the use of

oncolytic HSV-1 expressing a full-length anti-human CD47 IgG1,

which blocks the CD47 “don’t eat me” signal expressed on the

surface of tumor cells, enhancing the phagocytosis of tumor cells by

macrophages and improving the tumor-killing effect of OV therapy

(Xu et al., 2021).

In conclusion, TAMs play a crucial role in OV therapy for

gliomas. Combining TAMs-targeting immunotherapy with OV

therapy for gliomas can be challenging due to the dual role of

TAMs, but optimizing timing and type of therapy can enhance OV

replication and spread while minimizing negative impact of TAMs,

with strategies including depletion or inhibition of M1 TAM

function and cooperation with TAMs.
3 Myeloid-derived suppressor cells

3.1 The role of MDSCs in the
immunosuppressive microenvironment
of glioma

MDSCs are a diverse group of myeloid cells that include

immature macrophages, dendritic cells, and granulocytes at

different stages of differentiation, which are present in very low

numbers in healthy tissues, making up only 0.5-2% of peripheral

blood mononuclear cells (PBMCs) (Salemizadeh Parizi et al., 2021).

Under pathological conditions such as cancer, inflammation, trauma,

and pathogen invasion, the proportions of MDSCs notably increase.

The frequencies of MDSCs in gliomas vary, but they are generally

considered the second largest immunosuppressive population within

the glioma microenvironment after microglia/macrophages (Kamran

et al., 2017; Salemizadeh Parizi et al., 2021). MDSCs are classified into
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two subtypes in mice, namely polymorphonuclear (PMN)-MDSCs

and monocytic (M)-MDSCs, whereas in humans, there is a third

phenotype referred to as early-stage MDSCs. These subtypes are

distinguished based on their phenotypic and morphological

characteristics. Most studies have identified MDSCs by analyzing

their expression of specific cell surface markers. In mice, pan-MDSCs

are usually characterized as CD11b+Gr-1+ cells, while PMN-MDSCs

and M-MDSCs are defined as CD11b+Ly6G+Ly6Clo cells and

CD11b+Ly6G-Ly6Chi cells, respectively (Bronte et al., 2016).

Human MDSCs are classified based on their molecular markers.

M-MDSC has the phenotype CD11b+HLA-DR−CD14+CD15-,

while PMN-MDSC is marked as CD11b+HLA-DR−CD14-CD15+

(Bronte et al., 2016). However, these surface markers are commonly

used but insufficient to define MDSC subpopulation. Bronte et al.

proposed a more comprehensive criterion for determining MDSCs

(Bronte et al., 2016). This criterion includes not only phenotypic

properties but also functional andmolecular characteristics. By taking

into account various features of MDSCs, this proposal provides a

standard for the definition and classification of MDSCs, which can

help to reduce confusion in the characterization of MDSCs.

In glioma, MDSCs are expanded and recruited by a variety of

inflammatory cytokines and chemokines secreted by glioma cells

and other immune cells, such as GM-CSF (Horikawa et al., 2020),

S100A8/9 (Gabrilovich and Nagaraj, 2009; Kwak et al., 2020),

prostaglandin-E2 (PGE2) (Mao et al., 2014), CCL2 (Chang et al.,

2016) and IL-8 (Alfaro et al., 2016). MDSCs are known to possess

potent immunosuppressive capacity and promote the progression

of glioma via multiple mechanisms. They can inhibit the activation

and function of cytotoxic T cells through the production of various

soluble factors such as ROS, NO, PGE2, IDO, IL-10, and S100A9

(Groth et al., 2019; Mi et al., 2020). Additionally, they can deplete

metabolic substrates such as L-arginine to further suppress T cell

function (Groth et al., 2019; Mi et al., 2020). MDSCs employ direct

cell-to-cell contact as another mechanism to suppress the functions

of effector T cells. The primary mode of MDSC-mediated inhibition

towards T cells involves direct cell-to-cell contact through

interactions such as PDL1/PD1, with soluble factors playing a

secondary role (Bian et al., 2018; Groth et al., 2019). MDSCs also

exhibit their suppressive potential indirectly by various ways such as

recruiting regulatory T cells (Schlecker et al., 2012; Park et al., 2018),
B CA

FIGURE 2

Utilization of combination therapies to fine-tune immunosuppressive networks in the glioma virotherapy. (A) Prior to or during the initial stage of
oncolytic virus (OV) therapy, the immunosuppressive network exerts both pro-tumoral and pro-viral functions. (B) OVs recruit more
immuosuppressive cells and alter their functions and phenotypes. Immunosuppressive network exerts both anti-tumoral and anti-viral functions.
(C) Fine-tuning immunosuppressive network by combination therapies renders maximum anti-tumor immune responses and minimum anti-viral
immune responses.
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suppressing the activity of NK cells (Fortin et al., 2012) and

interfering with antigen presentation function of dendritic cells

(DCs) (Hu et al., 2011), and polarizing macrophages toward an

anti-inflammatory M2 phenotype (Ostrand-Rosenberg et al., 2012).

Therefore, MDSCs are an essential component of the

immunosuppressive regulatory network in the glioma

microenvironment, as they interact with multiple immune cells.
3.2 The interactions between OVs
and MDSCs

While the immunosuppressive function of immature myeloid

cells was acknowledged early on, the term “myeloid-derived

suppressor cells (MDSCs)” was only introduced in a cancer

context 15 years ago (Gabrilovich et al., 2007; Bronte et al., 2016).

Consequently, there are limited studies on the interaction between

OVs and MDSCs in glioma, and thus we broadened the scope of the

review literature across any types of solid tumors beyond gliomas.

Table 2 shows that the majority of studies (18 out of 30) have

reported an increase in MDSC infiltration in tumors following OV

treatment, while a smaller number of studies (10 out of 30) have

reported the opposite effect. Additionally, two studies have found

that OV therapy has no significant impact on the proportion of

MDSCs in local tumor regions. Notably, only three of these studies

are specific to glioma (Otani et al., 2022). A recent study (Nguyen

et al., 2022) showed that a third generation of adenovirus, Delta-24-

RGDOX, elicits the resurface of an immunosuppressive tumor

microenvironment that counteracts the tumor-killing effects of

the virus. The activation of IDO, a critical immunosuppressive

factor in OV infection, has been demonstrated to play a central role

in promoting the frequencies of MDSCs and Tregs in the tumor

microenvironment following OV treatment (Nguyen et al., 2022).

Another study demonstrated that oncolytic HSV-1 (oHSV) not

only recruits M2-macrophages but also MDSCs into the glioma

microenvironment (Otani et al., 2022). Mechanistically, when

glioma cells are infected with HSV-1, they activate Notch

signaling in nearby uninfected glioma cells, as shown in a study

by Otani et al. (Otani et al., 2022). Additionally, macrophages

upregulate the expression of the Notch ligand, Jag-1, upon oHSV

treatment, leading to CCL2 secretion and subsequent recruitment of

MDSCs and M2 macrophages to the tumor site (Otani et al., 2022).

In contrast, another study found that Newcastle disease virus

(NDV) stimulates ‘immunogenic cell death ’ (ICD) and

‘necroptosis’ in the GL261 glioma model, thereby increasing the

infiltration of IFN-g expressing CD4+ and CD8+ T cells while

reducing the percentages of both PMN-MDSCs and M-MDSCs in

the tumor microenvironment (Koks et al., 2015).

There is still no agreement on how OVs affect the proportion of

MDSCs, but studies suggesting that OVs increase MDSC infiltration

are becoming more prevalent. It is believed that the recruitment of

MDSCs by OVs may depend on the type of virus, tumor, and the

time of detection. The frequency of MDSCs in the tumor

microenvironment changes over time after OV treatment. Early

after viral infection, Ly6Chi cells are recruited, which later transition

into pro-inflammatory macrophages during the infection’s
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progression (Clements et al., 2017). It should be noted that there

is variability in the definitions of MDSCs and gating strategies used

across the studies included in Table 2, which may have contributed

to the inconsistent conclusions.

The majority of studies suggest that OV-induced MDSC

infiltration in glioma has a negative impact on the tumor-lytic

effects of OV therapy. However, some studies suggest that OV

action can reprogram MDSCs from a pro-tumor to an anti-tumor

phenotype, despite an increase in MDSCs following OV treatment

(Kilinc et al., 2016; Katayama et al., 2018). This reprogramming is

believed to occur through mechanisms that increase NO production

in MDSCs and inhibit immunosuppressive functions in a TLR3-

dependent manner (Katayama et al., 2018). High levels of MDSC

infiltration have been linked to the resistance of tumors to OV-

mediated anti-tumor immune effects (Hou et al., 2016). The

infiltration of MDSCs, therefore, appears to be a key determinant

of OV resistance, which may not be overcome by increasing OV-

mediated immune activation.
3.3 MDSCs-targeted therapy in
combination with OV therapy

To improve the anti-tumor effect of OV therapy by overcoming

the negative regulatory role of MDSCs, several research groups have

implemented MDSC-targeted treatments (Shi et al., 2021). These

strategies targeting MDSCs have been explored, including direct

elimination, recruitment blockade, differentiation induction, and

inactivation (Mi et al., 2020). Several ongoing or completed clinical

trials, such as NCT04226066, NCT03294486, NCT02705196

(Bazan-Peregrino et al., 2021) have implemented 5-fluorouracil

(5-FU) and gemcitabine, two chemotherapeutic drugs that have

been demonstrated to selectively kill MDSCs in the glioma

microenvironment. Due to their MDSC-depleting effects, these

drugs exert synergistic anti-tumor effects when combined with

OV therapy (Eisenberg et al., 2005; Esaki et al., 2013; Gujar et al.,

2014). In studies involving OV therapy, reducing the recruitment of

MDSCs has been a commonly used approach, with compounds and

cytokines such as g-secretase inhibitor (GSI) (Otani et al., 2022), IL-
2 (Takehara et al., 2013), IL-36 (Yang et al., 2021), embelin (Wang

et al., 2020), trabectedin (Denton et al., 2018), dichloroacetate

(Meng et al., 2020), celecoxib (Hou et al., 2016) and indoximod

(Nguyen et al., 2022) inhibiting MDSC infiltration through various

mechanisms in the tumor microenvironment, thereby boosting the

anti-tumor effects when combined with OV therapy.
4 Other immunosuppressive cells

While microglia, macrophages and MDSCs are the predominant

cell types in the immunosuppressive microenvironment of glioma,

the remaining immunosuppressive cells such as regulatory T cells

(Tregs) and tumor-associated neutrophils (TANs) constitute a small

fraction (Gieryng et al., 2017; Salemizadeh Parizi et al., 2021).
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TABLE 2 The studies on the interactions between MDSCs and oncolytic viruses in various solid tumors.

Tumors Oncolytic
Viruses

Proportional change upon
OV Mechanisms involved in

changes
Combination
Treatment Ref.

MDSC Other

Colorectal tumor HSV (HF10) ↑
(Esaki

et al., 2013)

Peritoneal
carcinomatosis

Reovirus ↑ (M)
(Clements
et al., 2015)

Mesothelioma MVTT ↑ (PMN)
(Tan et al.,

2019)

Hepatocellular
carcinoma

Newcastle Disease
Virus (NDV)

↑ NK cells↑ STAT1, STAT3 activation Fludarabine
(Meng

et al., 2019)

Colon carcinoma Sindbis Virus ! (Scherwitzl
et al., 2018)

Glioma HSV ↑
Macrophages Jag-

1↑!Notch↑!CCL2↑! MDSCs
recruitment

g-secretase inhibitor
(GSI)

(Otani
et al., 2022)

Angiosarcoma Sendai virus ↑
NK cells↑ Tregs↓
CD8+ T cells↑

IL-2
(Takehara
et al., 2013)

Peritoneal
carcinomatosis

Reovirus ↑ Gemcitabine
(Gujar

et al., 2014)

Glioblastoma (GL261)
Newcastle disease
virus (NDV)

↓
CD4+ T cells↑ CD8

+ T cells↑
(Koks

et al., 2015)

Lymphoma and
melanoma

Reovirus ! TLR3-dependent
(Katayama
et al., 2018)

Colon cancer (MC-38)
Vaccinia viruses
(IL-36g-OVs)

vvTK: !
vvTK-IL-
36g: ↓(G),
!(M)

vvTK: TAMs!
Treg! DC! T

cells!
vvTK-IL-36g:
TAMs↓ DCs↑

Tregs↑ NK cells↑
CD8+ T cells↑

IL-36g armed OV
(Yang

et al., 2021)

Colorectal cancer liver
metastasis (CT-26)

HSV2 ↓
Neutrophils↑, NK
cells↑, T cells↑, B

cells↑

(Zhang
et al., 2021)

HPV-associated tumor
(TC-1)

Newcastle disease
virus (NDV)

↑ CD11b+ cells ↑
(Keshavarz
et al., 2020)

Lymphoma
Vaccinia virus

(OVV)
↑

CD8+ T cells↑ NK
cells↑

Embelin
(Wang

et al., 2020)

A mammary tumor
(NBT1)

Vaccinia virus
(VV-GMCSF)

↑
VV-neu (Recombinant
Vaccinia HER2/neu)

(de Vries
et al., 2015)

Liver cancer (Hepa1-6) OVH-aMPD-1

OVH-
aMPD-
1:↑(pan),
↑(G), ↑(M)

OVH:
↑(pan),
!(G),
!(M)

TIGIT antibody
(Lin et al.,
2020)

Ewing sarcoma (A673) HSV1 (rRp450) ↑
CD11b+ cells↑

TANs↑
Trabectedin

(Denton
et al., 2018)

Colon cancer (MC38)
Vaccinia virus

(vvDD-CXCL11)
↑(PMN)
!(M)

a-PD-L1
(Liu et al.,
2017)

(Continued)
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Tregs, a subpopulation of T cells, play a critical role in

suppressing adaptive immune response through various

mechanisms, such as upregulating immunosuppressive molecules

(e.g., Foxp3, CTLA4, CD25, PD-1, and IDO), inhibiting antigen-

presentation, secretion of immunosuppressive cytokines and
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consumption of IL-2 (Togashi et al., 2019; Bauer et al., 2021).

Tregs are indispensable components in the immunosuppressive

microenvironment of glioma, but it is unclear if OV therapy can

alter their immunosuppressive function. Hypoxia and highly

expressed HIF-1a is one of the main characteristics of glioma,
TABLE 2 Continued

Tumors Oncolytic
Viruses

Proportional change upon
OV Mechanisms involved in

changes
Combination
Treatment Ref.

MDSC Other

Hepatocellular
carcinoma

Newcastle disease
virus (NDV)

↑
NDV-induced STAT3 activation,
IDO1 upregulation, and MDSC

infiltration

Dichloroacetate (DCA, a
pyruvate dehydrogenase
kinase (PDK) inhibitor)

(Meng
et al., 2020)

Renal cancer (RENCA),
mammary cancer
(4T1), colon cancer

(MC38)

Vaccinia virus
(WR.TK-.Luc+)

4T1: ↑(Day
7),

MC38: ↑
(Day 3, 7,

14),
RENCA:

!

COX2-mediated production of the
prostaglandin PGE2 as a key
determinant of MDSC tumor-

infiltration

WR.TK-HPGD+ COX2
inhibitor celecoxib

(Hou et al.,
2016)

Lung cancer (A549)
Melanoma (B16)

Adenovirus
(Ad5D24-CpG,

Ad5D24)

!
(Ad5D24
vs. Ctrl)

↓
(Ad5D24-
CpG vs.
Ctrl)

CpG oligonucleotide blocks
immune suppression by MDSCs

Ad5D24-CpG
(Cerullo

et al., 2012)

Malignant peripheral
nerve sheath tumor

(MPNST) and
neuroblastoma

HSV-1 (HSV1716)
↑(M)
↑(G)

Alisertib (Aurora A
kinase inhibitor)

(Currier
et al., 2017)

Sarcoma
HSV-1 (M002: IL-

12 expressing
HSV-1)

↓

CD4+ T cells↑, CD8
+ T cells ↑,
Activated

monocytes ↑,
Tregs ↑

(Ring et al.,
2017)

Melanoma (B16.OVA)

Adenovirus (TILT-
123: Ad5/3-E2F-
d24-hTNFa-IRES-

hIL2)

↓
M2↓, M1!, DCs!,

Tregs!
(Cervera-
Carrascon
et al., 2021)

Colon adenocarcinoma
(HCT-116)

Vaccinia virus
(VACV)

↑
(Kilinc

et al., 2016)

Peritoneal surface
dissemination from
colon cancer (PSD

from CRC)

Vesicular stomatitis
virus

↓ CD4+ T cells↑
(Day et al.,

2020)

Colon cancer HSV2 ↓
Tregs↓ NK cells↑
CD8+ T cells↑

DCs↑

(Zhang
et al., 2020)

Ovarian peritoneal
carcinomatosis

Reovirus ↓ Tregs↓
(Gujar

et al., 2013)

Pancreatic cancer
Vesicular stomatitis
virus expressing
Smac (VSV-S)

↓
Neutrophils↑

TAMs↓
(Tang

et al., 2022)

Glioblastoma (GL261
and 005)

Adenovirus (Delta-
24-RGDOX)

↑ Tregs↑
OV elicit IDO expression and

activation
IDO inhibitor

(Nguyen
et al., 2022)
fr
↑, increased.
↓, decreased.
!, unchanged.
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especially glioblastoma. Yousaf et al. demonstrated that oncolytic

virus therapy can reduce HIF pathway activity (Yousaf et al., 2020).

However, Miska et al. found that the deficiency of HIF-1a in Tregs

can actually enhance their immunosuppressive function and impede

the anti-tumor immunity of CD8+ T cells in glioblastoma (Miska

et al., 2019). This suggests that in the hypoxic environment of glioma,

oncolytic viruses might enhance the immunosuppressive functions of

Tregs by eliminating HIF-1a, even though hypoxia could also

promote the replication of the virus (Reinblatt et al., 2004; Shayan

et al., 2022). Nonetheless, more research is needed to determine the

impact of oncolytic virus therapy on Tregs in the context of the

hypoxic glioma microenvironment.

Currently, the interaction between OV infection and Tregs

infiltration remains unclear. Several OV-related studies suggest

that OVs can decrease the proportion of Tregs in the glioma

microenvironment (Qiao et al., 2015; Saha et al., 2017; Todo

et al., 2022). However, some reports present an opposite view. For

example, Liu et al. found that a natural oncolytic alphavirus, M1,

increases Treg cells in the tumor microenvironment of prostate

cancer and melanoma. Targeting Tregs with CTLA4 antibody

reduced the ratio of Treg/Teff and further enhanced the anti-

tumor effect of OVs (Liu et al., 2021). Similarly, another study

demonstrated that an oncolytic adenovirus, Delta-24-RGDOX,

increases the frequency of Tregs in the glioma microenvironment,

but this effect can be reversed by administering the IDO inhibitor

indoximod to reduce the immunosuppressive microenvironment

and the infiltration of Tregs (Nguyen et al., 2022).

More research is needed to fully understand the role of TANs in

glioma virotherapy. the studies involving TANs have encountered a

bottleneck as there are no clear molecular markers that distinguish

them frommature neutrophils. While TANs and TAMs can both be

classified into pro-tumoral N2 type and anti-tumoral N1 type, N2

overlaps with PMN-MDSCs both functionally and phenotypically

(Bronte et al., 2016). Although the proportion of Tregs and TANs in

the glioma microenvironment is small, they still have a significant

impact on the immunosuppressive network that modulates OV-

induced anti-tumor immune responses. Further research is

therefore necessary to investigate the interactions between OVs

and Tregs or TANs.
5 Concluding remarks

The success of OV therapy for glioma depends on the delicate

balance between OV-induced anti-tumor immune responses and

the presence of immunosuppressive cells. The interaction between

OVs and immunosuppressive cells is complex, as OVs can recruit

and alter the functions of immunosuppressive cells, while these cells

can also affect OV-mediated immune responses. To optimize OV
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therapy, it is necessary to fine-tune the immunosuppressive cells in

response to different OV-induced host immune reactions,

maximizing anti-tumor immune responses and minimizing anti-

viral immune responses (Figure 2). Recent approval of an oncolytic

HSV-1 for glioma treatment in Japan has shed light on the potential

of OV therapy. Despite the concerns of tolerance and economic

burden caused by repeated stereotactic OV injection, serial

administration of OV significantly enhances T cell-mediated anti-

tumor immune response. It is likely counteracting the effects of

innate immunosuppressive cells (Christie and Chiocca, 2022; Todo

et al., 2022). In summary, the presence of immunosuppressive cells

in the glioma microenvironment presents a significant challenge to

the effectiveness of OV therapy. Therefore, it is crucial to explore

ways to fine-tune this cell population in future basic and clinical

research on glioma virotherapy.
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Glossary

TAM tumor-associated macrophage and microglia

MDSC myeloid-derived suppressor cell

OV oncolytic virus

TIL tumor-infiltrating lymphocyte

CNS central nervous system

BBB blood-brain barrier

ICD immunogenic cell death

TAA tumor-associated antigens

PAMP pathogen-associated molecular pattern

DAMP damage-associated molecular patterns

HSV Herpes Simplex Virus

AdV Adenovirus

NDV Newcastle Disease Virus

Treg regulatory T cell

TAN tumor-associated neutrophil

GM-CSF Granulocyte-macrophage colony-stimulating factor

MIC-1 macrophage-inhibitory cytokine 1

MCP-1 Monocyte chemoattractant protein-1

CCL2/5/20 chemokine (C-C-motif) ligand 2, 5, 20

PMN-MDSC polymorphonuclear MDSC

IDH Isocitrate dehydrogenase

TMEM119 Transmembrane Protein 119

P2RY12 Purinergic Receptor P2Y

CD cluster of differentiation

IL interleukin

ATAC Assay for Transposase-Accessible Chromatin

TGF-b transforming growth factor b

IFN-g interferon-g

TNF-a tumor necrosis factor a

CTLA-4 cytotoxic T-lymphocyte-associated protein 4

PD-1 programmed cell death protein 1

FAS Fas cell surface death receptor

DR5 death receptor 5

IDO indoleamine 2,3-dioxygenase

DC dendritic cell

CCN1 Cellular Communication Network Factor 1

STAT1 Signal Transducer And Activator Of Transcription 1

oHSV oncolytic Herpes Simplex Virus

(Continued)
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VV Vaccinia Virus

VSV Vesicular Stomatitis Virus

NK cell natural killer cell

ROS reactive oxygen species

NO nitric oxide

GBM glioblastoma multiforme

CL clodronate liposomes

CPA cyclophosphamide

CSF1R colony stimulating factor 1 receptor

ICB immune checkpoint blockade

M-MDSC monocytic MDSC

HLA human leukocyte antigen

TLR3 Toll-like receptor 3

5FU 5-fluorouracil

GSI g-secretase inhibitor

HIF-1 hypoxia-inducible factor 1

i.t. intratumoral injection

DIPG Diffuse Intrinsic Pontine Gliomas

ESIA endovascular super-selective intra-arterial

CED convection-enhanced delivery

TMZ temozolomide

RT radiotherapy

Pem Pembrolizumab

HGG high-grade glioma

IRES internal ribosome entry site
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