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Healthcare settings have dramatically advanced the latest medical devices, such

as urinary catheters (UC) for infection, prevention, and control (IPC). The

continuous or intermittent flow of a warm and conducive (urine) medium in

the medical device, the urinary catheter, promotes the formation of biofilms and

encrustations, thereby leading to the incidence of CAUTI. Additionally, the

absence of an innate immune host response in and around the lumen of the

catheter reduces microbial phagocytosis and drug action. Hence, the review

comprehensively overviews the challenges posed by CAUTI and associated risks

in patients’morbidity andmortality. Also, detailed, up-to-date information on the

various strategies that blended/tailored the surface properties of UC to have anti-

fouling, biocidal, and anti-adhesive properties to provide an outlook on how they

can be better managed with futuristic solutions.

KEYWORDS
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1 Introduction

The advancements and developments in medical devices increase the quality and

comfort of a patient’s life. However, they also pose a serious threat of acquiring Device

related nosocomial infections, imparting a burden on the healthcare industry. Among

various infections, the higher percentage is contributed by Catheter-Associated Urinary

Tract Infections(CAUTI). Recently, many ingenious catheter coatings have been developed
Abbreviations: UC, Urinary catheter; UTI, Urinary Tract Infection; CAUTI, Catheter Associated Urinary

Tract Infection; QS, Quorum Sensing; AMR, Antimicrobial resistance; PVC, Polyvinyl chloride; PU,

Polyurethane; PTFE, Polytetrafluoroethylene; PEG, poly (ethylene glycol); p-HEMA, poly-2-hydroxyethyl

methacrylate; NP, Nanoparticle; RIF, Rifampin; CFX, Ciprofloxacin; PDMS, Polydimethylsiloxane; CDH,

Cellobiose dehydrogenase; NO, Nitrous oxide; AMP, Anti-microbial peptide.
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to prevent infection and biofilm formation on the device’s surface.

This review aims to provide a comprehensive overview of various

surface coatings and modifications to either prevent bacterial

adherence and biofilm formation or kill the pathogen (Figure 1).
2 Urinary catheters

The urinary system is an excretion route for waste and toxic

materials. Kidneys and ureters reside in the upper tract of the urinary

system, where they convert liquid waste into urine and other

products, whereas the bladder in the lower tract stores urine before

being expelled from the body through the urethra (Hickling et al.,

2015). Several risk factors, such as nerve damage and enlargement of

the prostate and urethra, impair bladder function in hospitalized

patients, resulting in urinary retention requiring a urinary catheter.

Urinary catheters (UC) replace bladder function to drain urine in

patients before, during, or after surgery and prevent urine retention in

intensive care patients (Cortese et al., 2018; Feneley et al., 2015).

A UC is a long tube structured with a polymeric material that

is conveniently inserted into the urethra until the urine flows

through the line. It is biocompatible, with improved softness,

malleability, resistance to chemicals, and smooth urine flow

(Lawrence and Turner, 2005; Singha et al., 2017), and provides a

short- or long-term solution to patients’ correlated medical

conditions. The single-use UC is employed for males who suffer

from mental disabilities or face trouble urinating. Intermittent or

short-term UC is used in hospitalized patients for a maximum of

30 days and in patients under postoperative care unable to urinate.
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Catheterization lasting longer than 30 days is considered long-

term or chronic catheterization (Donlan R., 2001). Foley catheters

are latex catheters most commonly used during long-term

catheterization in patients with multifactorial medical

conditions, such as spinal cord injuries, multiple sclerosis,

prostate enlargement, and cerebrovascular damage (Köves et al.,

2017; Singha et al., 2017).

Modern medical devices have revolutionized the quality of life

of patients with chronic diseases. Paradoxically, both short- and

long-term catheterization have disadvantages. In the USA,

approximately 15–25% of hospitalized patients (more than 30

million) use urethral and bladder catheters annually (Siddiq and

Darouiche, 2012). Clinical data reveal that 10–50% of patients with

non-Foley catheterization have a high incidence of catheter-

associated bacteriuria (Zhang, S. et al., 2019). Monospecies cause

nearly 15% of catheter-associated bacteriuria, which later develops

into polymicrobial conditions, wherein the pathogens adhere to the

catheters; however, the risk is minimal because they are placed in

the body for a short period (Singha et al., 2017).

The European and Asian guidelines on the management of

catheter-related infections list the bacterial pathogens commonly seen

in short-term catheterization (Escherichia coli, Proteus mirabilis,

Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus

epidermidis, Enterococcus spp., and Candida spp.) (Tenke et al., 2008;

Köves et al., 2017). Prolonged Foley catheterization damages urothelial

cells and urethra and weakens the immune system, creating an optimal

environment for bacterial adhesion, invasion, and bacteriuria,

ultimately leading to CAUTI (Köves et al., 2017; Juanjuan et al.,

2021; Werneburg, 2022).
FIGURE 1

Overview of the selective advantage of Modified Urinary Catheters (M-UC) over the uncoated urinary catheter (UC). The M-UC is a tailored/blended
biomaterial with various advantages over UC (prevent growth/adherence of microbes, avoid discomfort).
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3 Catheter-associated urinary
tract infection

The National Healthcare Safety Network, managed by the

Center for Disease Control [CDC], 2020 and Prevention, defines

CAUTI as an infection established in a urinary catheter in situ for

more than two days (considering device placement day as day 1) or

within 48 h prior to infection onset (Roshni et al., 2013). The

infection is correlated with primary symptoms, such as fever

(>38.0°C), suprapubic tenderness, costovertebral angle pain or

tenderness, urinary urgency, and dysuria (Fakih et al., 2022).

CAUTI is the fourth most threatening nosocomial infection

worldwide (Potugari et al., 2020). In 40% of all hospital-wide

infections, 80% of the cases were estimated to be CAUTI. It

accounts for nearly one-third of all device-associated infections

and increases morbidity and mortality in hospitalized patients

(Maharjan et al., 2018; Zhang, S. et al., 2019). The annual

requirement for bladder catheters in the US has increased (more

than 30 million), resulting in an exponential incidence of CAUTI

(Siddiq and Darouiche, 2012). Additionally, the annual cost

associated with CAUTI prevention is estimated to range from

$115 million to $1.82 billion (Werneburg, 2022). Thus, the global

burden of CAUTI is associated with medical, social, and financial

resources (Feneley et al., 2015). The primary cause of CAUTI is

colonization by pathogens and their inherent ability to form

biofilms. The most common pathogens associated with this

infection are P. aeruginosa, S. aureus, Enterococcus faecalis, and E.

coli. Other bacteria include coagulase-negative staphylococci, S.

epidermidis, K. pneumonia P. mirabilis, Proteus Vulgaris, and

Candida albicans (Stickler, 2014; Kart et al., 2017)
4 Pathogenesis of CAUTI

The pathogenesis of CAUTI begins with the entry of bacterial

pathogens, followed by endoluminal or extraluminal colonization of

the urinary catheter, leading to biofilm formation (Aumeran et al.,

2021). Meanwhile, host defense strategies clear pathogens during

voiding or intrinsic antibacterial action under normal conditions

owing to the glycosaminoglycan coating on the urothelial cells (D.

Zhang et al., 2004). However, the first line of host-mediated defense

is neutralized under Foley catheterization because of bacterial entry

and colonization of the catheter (Feneley et al., 2015).

The entry of bacteria into the urinary tract is a high-risk during

catheter insertion. Once bacteria enter, they colonize the

intraluminal and extraluminal surfaces of the portion of the

urinary catheter inserted into the urethra (Chuang and Tambyah,

2021). Clinical data show that approximately 20% of patients

suffering from CAUTI have bacterial adherence and colonization

during catheter insertion (Köves et al., 2017). Several host factors,

such as increased ionic strength due to the deposition of host

urinary components, proteins, acidic pH, and electrolytes, lead to

microbial adherence to the UC surface (Saini et al., 2017; Goda

et al., 2022). In addition, host proteins cover the catheter surface

and create a thin film (biofilm); this further increases bacterial
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adhesion to the catheter surface and/or uroepithelium, further

exacerbating the formation of a thick protective layer(Djeribi

et al., 2012; Chuang and Tambyah, 2021).
5 Rise of biofilm

The National Institutes of Health reports that approximately

80% of microbial infections and 65% of nosocomial infections are

biofilm-mediated (Römling and Balsalobre, 2012). Biofilm

formation on the UC surface is a phenomenon in which

pathogens self-sustain to escape the host defence (Köves et al.,

2017). Three-dimensional structured biofilms formed on UC are

complex, with homogenous/heterogeneous sessile consortiums

(Gupta et al., 2016; Azeredo et al., 2017; Costerton et al., 1999;

Liu et al., 2019; Sánchez et al., 2021). This complexity is reflected in

the various stages of biofilm formation, which involve reversible

and irreversible binding, colonization, maturation, and dispersion

(Köves et al., 2017). The initial stage of sessile microorganism

attachment to a UC is usually weak and reversible and controlled

by the material characteristics of the catheter, such as surface

polarity, surface charges, van der Waals forces, and hydrogen

bonding (Anjum et al., 2018; Alotaibi and Bukhari, 2021).

However, the appendages, such as flagella, pili, and fimbriae, help

them adhere to the catheter, and over time, microorganisms

overcome the electrostatic repulsive forces and solvation effect

that inhibit adhesion (Faustino et al., 2020). The hydrophobic and

hydrophilic nature of UC allows a wide range of pathogens to form

biofilms on catheters (Singha et al., 2017).

During biofilm colonization of the UC, microorganisms build a

self-secreted extracellular matrix polymeric substance (EPS). EPSs

are co-structured with extracellular DNA, exopolysaccharides,

proteins, nucleic acids, and lipids (Liu et al., 2019). Thus, EPS

acts as a scaffold built via secreted adhesive substances, which

stabilize them to form a thick biofilm that protects pathogens from

various threats. Microorganisms within the biofilm exhibit

phenotypic alterations in the growth rate and production of

exopolysaccharides that entrap and protect them (Donlan and

William Costerton, 2002; Saini et al., 2017). In addition to

increasing the concentration of intracellular signals, acyl-

homoserine lactone and autoinducer peptides in gram-negative

bacteria and gram-positive bacteria, respectively, initiate

communication among both bacterium types to choreograph

changes in the expression of genes within the microbial

community and establish infection/other processes to sustain life

via quorum sensing (QS) (Kim et al., 2012; Maharjan et al., 2018).

Once the biofilm matures on a medical device surface, it leads to

failure and increases the risk of CAUTI in patients (Danese, 2002).

After maturation, the biofilm tends to disperse, initiating the spread

of infections downstream of the catheter (Liu et al., 2019).

Dispersed cells eventually cause systemic infections, particularly

in immunocompromised patients (Faustino et al., 2020). As

discussed earlier, the biofilm’s threat lies in its ability to produce

EPS; the matrix formed by bacteria on the urethral surface not only

precludes the pathogen against the innate immune system but also

contributes to antimicrobial resistance (AMR) (Stewart and
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William Costerton, 2001; Yassin et al., 2019). AMR is critical to

understanding the involvement of biofilm because it neutralizes the

effect of antimicrobial agents (Stewart and William Costerton,

2001). Several characteristics of biofilms in UCs affect antibiotic

penetration, with the altered environmental conditions that favor

the growth of the heterogenic cells to exhibit a resistant and

persistent state (Ramadan et al., 2021).The continued race for the

fast-paced development of antimicrobial agents is overcome by the

ability of resistant and persistent superbugs to produce strong

biofilms. Thus, the eradication of already-formed biofilms on UC

surfaces in CAUTI patients is complex. Therefore, it is essential to

develop a biomaterial that can efficiently control biofilm-mediated

infections in medical devices (Anjum et al., 2018; Faustino et al.,

2020). Although research on various biomaterials is emerging, there

is also a necessity to follow the guidelines provided by the CDC,

which includes the appropriate use of catheters, aseptic methods for

insertion and maintenance of catheters, and catheter materials used

(Centers for Disease Control and Prevention [CDC], 2020).
6 Urinary catheter biomaterials

The biological response to a UC depends on the surface

properties of the biomaterials used. Standard biomaterials used to

optimize functional characteristics include silicone, latex, polyvinyl

chloride (PVC), plastic, siliconized latex, and polyurethane (PU).

Microbial biofilm formation and subsequent incidence of CAUTI

lead to a decreased economic value of UCs. Such challenges are

overcome by modifying the structural and functional aspects of

existing UCs by engineering the surfaces with potential

antimicrobial/adhesive properties (Andersen and Flores-Mireles,

2019). This includes surface-engineered biomedical devices with

inherent anti-fouling, biocidal, and anti-adhesive properties

(Faustino et al., 2020). (Siddiq and Darouiche, 2012; Tenke et al.,

2012; Ramasamy and Lee, 2016).
7 Anti-fouling approaches

Anti-fouling strategies involve the surface modification of

biomaterials to exhibit anti-adhesive properties that prevent

microbial biofilm formation (Faustino et al., 2020). However, the

selective advantage of such anti-fouling catheters is that they either

prevent bio-foulant attachment or degrade them (Banerjee et al.,

2011). Once the increased hydrophilic nature of the catheter is

inversely proportional to microbial adherence (Desrousseaux et al.,

2013). Anti-fouling catheters impart adhesion resistance owing to the

functionalization of surfaces with hydrogel, polytetrafluoroethylene

(PTFE) coating, and poly (ethylene glycol) (PEG) (Table 1, Figure 2).

In contrast, clinical data based on studies using animal models have

shown increased resistance to antibiotics associated with the long-

term use of biocidal coatings.
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7.1 Hydrogel-coated catheters

Advancements in hydrogel technology are effective in modifying

hydrophobic catheters to more hydrophilic ones to decrease the

formation of microbial biofilms on them. This is achieved using a 3D

network of hydrogels made of polymers that are crosslinked,

insoluble, and swellable, providing unique ice-like characteristics to

improve the mechanical strength of catheters (Bahram et al., 2016;

Werneburg, 2022). Interestingly, the swelling aspect of the hydrogel

invariably increased hydrophilicity, providing a hydration layer for

the UC to improve patient comfort and decrease microbial

adherence. Meanwhile, the tissue-catheter interface reduces the

encrustation and non-specific adsorption of proteins, which is a

critical factor for microbial adherence (Siddiq and Darouiche, 2012;

Roshni et al., 2013; Andersen and Flores-Mireles, 2019).

Although a correlation exists between the hydrophilic nature of

catheters and anti-fouling properties, the real-time cell-based analysis

of its potency to reduce CAUTI remains controversial, attributed to

various physiochemical properties of the catheter or the types of

hydrogels used (Siddiq and Darouiche, 2012). However, several

success stories are coming in the future. One such clinical trial

compared the efficacy of hydrogel-based UC with that of other

silicone catheters in small animal models. Animals with silicone

catheters had mild forms of inflammation in the urethral tissue,

whereas the hydrogel catheters blocked encrustation. Likewise, in an

extended study, hydrogel-based catheters showed a low level of

irritation in the mucosal tissue and a subsequent decrease in

bacterial adherence when compared with PTFE-coated and silicone

catheters (Werneburg, 2022). In addition, catheters with the poly-2-

hydroxyethyl methacrylate (p-HEMA) polymer surface loaded with

rifampin (RIF) and CFX showed stable antimicrobial activity for eight

days when compared to surface-modified catheters with p-HEMA

alone. Furthermore, RIF and CFX enhanced the durability of the

catheter employed before replacement (Tarawneh et al., 2022).

Another study involved the design of a novel urethral catheter

surface engineered with multiple layers using polymers, such as

polydopamine (PDA) with catechol-conjugated biomolecules and

loaded antibacterial agents, that demonstrated a robust effect.

Additionally, hydrogels impregnated with silver nanoparticles

(AgNPs) minimized bacterial adhesion. Overall, the attempt toward

hydrogel-based surface engineering increased the hydrophilicity,

which was expected to be stable with the desired lubrication and

antimicrobial fouling effect. Stability was observed for 20 days, and

both PVC and hydrogel-coated UC surfaces showed hydrated

conditions. However, many additional materials require tailoring

for biocompatible hydrogels as a safe and stable drug delivery

system to provide a long-term effect against microorganisms that

adhere to the surface of catheters (Yang et al., 2019). Hydrogel-coated

catheters do offer short-term benefits of greater patient comfort and

reduced microbial adherence. However, their long-term use is a

concern due to the cytotoxic potential of hydrogels due to the

presence of unreacted monomers, and also the physicochemical
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TABLE 1 Surface modifications and their biological efficacy to control growth/biofilm on Urinary catheters.

UC Surface
modification

UC
considered

Active ingredient
used

Methodology
adopted to coat UC

Tested
Pathogens

Phase of
Trial

Outcomes References

Hydrophilic p-HEMA 1. Rifampin
2. cefixime trihydrate

Rifampin, cefixime
trihydrate hydrogel coating
in a combined ratio

1.S. aureus
2. E. coli
3. P.
aeruginosa

1.Covidien
Dover
hydrogel
coated latex
catheter, USA
–

commercially
available
2.Bardex
Catheter,
USA –

commercially
available

1. Anti-
microbial (> 8
days)
2. Delayed
biofilm
formation

(Tarawneh
et al., 2022)

PU, PVC 1. Chitosan Catechol functionalized
Chitosan (CHI-C) hydrogel
with silver nanoparticle
coated on a PDA PU/PVC
treated surface

1. S. aureus
2. E. coli

In research 1. Reduced
bacterial
adherence and
biofilm
formation (>20
days)

(Yang et al.,
2019)

Silicone foley
catheter

1. Silver and PTFE (Ag-
PTFE)

Ag-PTFE nanocomposite
coating by incorporating
PTFE nanoparticles into the
Ag matrix

1. S. aureus
2. E.coli

BARD PTFE
coated latex
catheter, USA

1. Reduced
biofilm and
growth (>14
days)

(Zhang et al.,
2019)

Silicone foley
catheter

1. Methoxylated
polyethylene glycol
2. 3,4-
dihydroxyphenylalanine
(DOPA)

Novel silver-containing,
polymer-based
(mPEG-DOPA3) Coating

1. E.coli
2. E. faecalis,
3. P.mirabilis

In research 1. Reduction in
biofilm
formation (in
vitro)
2. Reduction in
microbial count
(in vivo)
3. No effect on
encrustation (in
vivo)

(Tailly et al.,
2021)

PDMS strips 1. PDMS surface
functionalized with
zwitter ionic moieties

PDMS functionalized using
the oxidation of laccase and
gallic acid to trigger an
enzymatic reaction of
polymerization of
zwitterionic sulfobetaine
methacrylate monomers on
the silicone catheters.

1. S. aureus
2. P.
aeruginosa

In research 1. Reduction of
biofilm
formation
(>80%).
*

(Diaz Blanco
et al., 2014)

Hydrophobic Silicone
catheter

1. Modification
using1H,1H,2H,2H-
perfluorodecanethiol
using layer-by-layer
deposition.

PDA coating was used as a
platform attach of AgNps,
followed by hydrophobic
modification with
1H,1H,2H,2H-
perfluorodecanethiol.

1. E. coli WT
F1693
2.
P.mirabilias
WT F1697,

In research 1. Delayed the
bacterial
migration
2. Reduced
biomass
accumulation
3. Exhibited
good
biocompatibility.

(Zhang et al.,
2020)

PDMS Trifluoropropyl Using spray coating
technique TFP was coated
on PDMS

1. P.
mirabilias

1. Reduction in
bacterial
attachment > 14
days.
2. Enhanced
anti-biofilm
activity

(Gayani et al.,
2021)

Silicon surface Micropatterning Three variations of sharklet
micropatterned silicone
surface

1. E. coli In research 1. Inhibited
colonisation and
migration

(Reddy et al.,
2011)

(Continued)
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properties of the hydrogels are not clearly understood (Siddiq and

Darouiche, 2012; Dai et al., 2023). This can lead to changes in the

surface properties of the hydrogel and promote microbial adhesion,

increasing the risk of CAUTI. Further research is needed to

understand the long-term safety and efficacy of hydrogel-coated

catheters fully.
7.2 Polytetrafluoroethylene coating

The PTFE-coated catheters (Teflon-coated catheters) were

commercialized by Bard Medical (Andersen and Flores-Mireles,

2019; Zhang et al., 2021). The inherent non-sticky nature of PTFE

makes it ideal for use as a material for catheter coatings. This is in

accordance with a recent study where silver-PTFE (Ag-PTFE)

nanocomposite-coated catheters reduced E. coli and S. aureus

adherence (>55%) and biofilm coverage (>96%) when compared

to uncoated commercial silicone catheters (Zhang et al., 2019).

However, it cannot be stated that PTFE-coated catheters are better

than commercial uncoated catheters because of the wavelet pattern

that enables bacterial adherence.
Frontiers in Cellular and Infection Microbiology 06
7.3 Polyethylene glycol

Poly (ethylene glycol) and poly (ethylene oxide) (PEO) are

excellent materials for catheter surface modification (Yassin et al.,

2019). PEG has a high molecular weight and is well-documented as

a gold-standard biocompatible material suited to coat medical

devices. In addition, the anti-fouling properties of PEG are the

outcome of its hydration and steric hindrance effects, which are

controlled by its polymer chain length and surface packing density

(Faustino et al., 2020). In a recent in vitro study, catheters coated

with the copolymers methoxylated polyethylene glycol (mPEG) and

3,4-dihydroxyphenylalanine (DOPA) with silver cross-linking were

evaluated for their efficacy against uropathogen adherence; these

catheters significantly reduced the adherence of P. mirabilis, E.

faecalis, and E. coli. In a rabbit model, the microbial count of E. coli

GR 12 reduced; however, encrustation was identified (Ko et al.,

2008; Tailly et al., 2021). In addition, titanium surfaces

physiochemically modified using polymers, such as poly

(methacrylic acid), PU acetate, and PEG, prevent protein

absorption and inhibit bacterial adherence (Ramasamy and

Lee, 2016).
TABLE 1 Continued

UC Surface
modification

UC
considered

Active ingredient
used

Methodology
adopted to coat UC

Tested
Pathogens

Phase of
Trial

Outcomes References

PDMS
elastomer

Sharklet AF™ Engineered surface
microtopography based on
the skin of sharks, Sharklet

AF™

1. S. aureus 1. Delayed early
biofilm
formation

(Chung et al.,
2007)

Enzymes PDMS
catheter

Cellobiose
dehydrogenase

antimicrobial enzyme
coating, produces hydrogen
peroxide using
oligosaccharides.

1. S. aureus In research 1. Reduced
viability (60%).
2. Decreased
total biomass
deposition on
the surface

(Thallinger
et al., 2016)

PDMS
catheter

Cellobiose
dehydrogenase

Layer-by-layer deposition on
surface with polyanions
consisting of PSS and CDH,
polycations consisting of
novel copolymers
(PTMAEMA-co-PSPE) with
different sulfobetaine
fractions for antifouling
properties, and the addition
of quaternary hydrophobic
groups for contact biocide
functionality.

1. S. aureus
ATCC 10145

In research 1. Reduced the
amount of
biofilm
development.

silicone
catheters

Acylase and Amylase Silicone catheter was coated
with acylase and a-amylase
alone and in combination
using a layer-by-layer
deposition technique.

1. S. aureus
2. P.
aeruginosa
3. E. coli

In research 1. Inhibited
aggregation (in
vitro).
2. Enhanced
antibiofilm
activity (in
vitro)
3. Synergistically
reduced biofilm
formation (70%)
in vivo

(Ivanova
et al., 2015)
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7.4 Polyzwitterions coating

Polymers that possess both cationic (quaternary ammonium

salt) and anionic groups (sulfonate, carboxylate, or phosphonate) in

their polymeric repeating units are known as polyzwitterions.

Zwitterionic polymers have excellent anti-fouling properties

(Wang et al., 2022). Silicone catheters enhanced the anti-fouling

properties of zwitterionic moieties when covalently modified using

enzymes (laccase). The improved bioconjugate coating was

evaluated for its efficacy in vitro under static and dynamic

conditions against the pathogens P. aeruginosa and S. aureus and

showed a >80% decrease in biofilm formation when compared to

unmodified catheters (Diaz Blanco et al., 2014). Noteworthy data

were obtained in similar studies in which silicone and latex

catheters were evaluated against P. mirabilis. Zwitterions can

either repel or prevent pathogen colonization, biofilm formation,

and encrustation (Kanti et al., 2022).
7.5 Micropatterning of surfaces

Surface topography affects microbial adherence and subsequent

biofilm formation on hydrophobic catheter surfaces (Cheng et al.,

2019; Faustino et al., 2020). Several bioinspired structures have
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similar properties that contribute to the anti-fouling properties of

the catheter surfaces (Damodaran and Sanjeeva Murthy, 2016).

7.5.1 Lotus leaves-inspired superhydrophobic
coating

Bioinspired superhydrophobic urinary catheters were designed

using a layer-by-layer deposition technique, an innovative solution

to reduce CAUTI The superhydrophobic catheters prevented

uropathogenic E. coli WT F1693 and P. mirabilis WT F1697

biofilms under static and dynamic conditions and also delayed

encrustation in the catheter lumen (Zhang et al., 2020). The

antifouling nature of the superhydrophobic catheter was

significant in comparison with other variants of silicone and

silver-alloy-hydrogel catheters. Furthermore, Ag nanoparticles

were endowed on the superhydrophobic surface to enhance

antibacterial efficacy, improve biocompatibility, and reduce

bacterial attachment. Several other studies employed a similar

approach of spray coating PDMS with trifluoropropyl for

catheters to provide a self-cleaning activity that decreased

microbial biofilm formation over 14 days (Gayani et al., 2021).

7.5.2 Sharklet topography
Sharklet AF™, a novel surface technology designed with a

sharklet micropattern using a PDMS elastomer (PDMSe),
FIGURE 2

Overview of Urinary Catheter(s) (UCs) surface modification to prevent the adherence of pathogens. Top: Physiochemical modification (Hydrogel,
Zwitter ions, Polyethylene glycol (PEG) and Polytetrafluoroethylene (PTFE). Bottom: Topography modification (Superhydrophobic and Sharklet
topography). Left: Enzymes (Extracellular Matrix polymeric Substance (EPS) degrading enzymes). (Created using Biorender).
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possesses the inherent capacity to prevent colonization, migration,

and growth of uropathogenic E. coli (Reddy et al., 2011). Sharklet

AF™ PDMSe effectively prevented S. aureus biofilms for 21 days,

suggesting that the topographical surface of the catheter did not

show evidence of early biofilm colonization (Chung et al., 2007).

However, the study must be expanded to a polymicrobial

environment and requires pre-clinical evaluation to understand

its safety and efficacy in the patients.
7.6 Matrix degrading enzymes

Exopolysaccharides and polymeric substances are the major

constituents of the biofilm, providing a protective sheath to

microbes. Enzyme-coated catheters have been explored for

clinical use to break this protective layer.

7.6.1 Cellobiose dehydrogenase
Plasma-activated urinary PDMS catheter surfaces were

covalently grafted with cellobiose dehydrogenase (CDH), an

antimicrobial enzyme that metabolizes oligosaccharides as

electron donors to produce hydrogen peroxide in the presence of

an electron acceptor (oxygen; O2). CDH-functionalized PDMS

surfaces reduced S. aureus viable cells in the biofilm to >60%;

these catheters are biocompatible, as they were non-toxic in

mammalian cell lines (Thallinger et al., 2016). Later, an improved

PDMS catheter was designed using layer-by-layer assembly in the

presence of functional polymeric building blocks. The block

consisted of polyanions, poly (styrene sulfonate), and CDH for

antibacterial coating as the first layer. The second layer was built

using polycations consisting of novel anti-fouling copolymers with

zwitterionic and quaternary ammonium side groups (PTMAEMA-

co-PSPE). The final layer was laid with sulfobetaine fractions and

quaternary hydrophobic groups for contact biocide functionality to

reduce the adherence of S. aureus ATCC 10145 by >60%. In

addition, the combined antimicrobial coating of the catheter

enhanced its killing effect (Vaterrodt et al., 2016).
8 Antimicrobial coatings and
impregnation

Urinary catheter surfaces functionalized to conjugate

antimicrobials, such as metal ions, antibiotics, antimicrobial

peptides, bacteriophages, quorum sensing disruptors, bacterial

interference, natural polymers, and bioactive molecules, have been

extensively explored (Tables 2, Figure 3) (Lim et al., 2015). Such

modified antimicrobial-coated catheters decrease the viability of the

pathogen by inhibiting cell wall proteins and nucleic acid synthesis

or blocking any specific metabolic pathway that sustains their life.

Several of these have been investigated for their efficacy in

controlling UTIs using in vitro and in vivo models (Roshni

et al., 2013).
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8.1 Metal-based approaches

8.1.1 Silver alloy coating
Silver (Ag), a non-specific antimicrobial, exhibits broad-

spectrum antibacterial effects at low concentrations (Zhang et al.,

2019). Silver alloy coatings in catheters exist in different forms, such

as silver oxide, silver alloys, and silver nanoparticles. Silver alloy

releases ions that lead to oxidative DNA damage of pathogens and

disrupt the cell membrane (Durán et al., 2016). In addition, silver

ions activate vital enzymes that interact with thiol groups and

enhance pyrimidine dimerization via a photodynamic approach,

causing changes in the cell wall by inducing electron-dense granules

(Matsumura et al., 2003). Silver ions are medically important

because they are effective against a broad range of bacterial

pathogens, specifically methicillin-resistant S. aureus. However,

pathogens such as K. pneumoniae, Enterobacter cloacae, P.

mirabilis, and C. freundii are emerging as silver-resistant (Estores,

2008). Catheters coated with silver oxide have no market value as

they are ineffective in preventing CAUTI (Hooton et al., 2010).

Several meta-analyses show that asymptomatic bacteriuria and

CAUTI can be effectively reduced using Ag alloy-coated UCs (Ha

and Cho, 2006; Hooton et al., 2010; Francolini et al., 2017).

Researchers reviewed eight different randomized controlled trials

of Ag alloy catheters, confirming their better effects than uncoated

catheters; thus, they are recommended for patients at the highest

risk of developing severe consequences from UTI (Donlan and

William Costerton, 2002). The recommendations were contrary to

other research findings; sparfloxacin (SPA)-treated urinary

catheters showed better efficacy in inhibiting E. coli and S. aureus

growth and biofilm formation relative to Ag-coated catheters

(Kowalczuk et al., 2012). Some studies suggest that the Ag alloy-

coated catheter delays the onset of infection and does not prevent

the occurrence of CAUTI (Zhang et al., 2019).

The drawbacks of silver alloy catheters were addressed by

embedding them in a hydrogel to provide a novel hydrogel/silver

catheter to prevent CAUTI. The hydrogel/silver catheter efficiently

prevented the access of microbes, including gram-positive cocci and

yeasts, to the urinary tract extraluminally (Ahearn et al., 2000). A

similar study with an Ag-alloy hydrogel-coated catheter was

conducted in clinical settings by comparing it with a commercial

catheter; a CAUTI rate reduction of 47% was observed (Davenport

and Keeley, 2005; Lederer et al., 2014). The Bardex I.C. hydrogel

latex Foley catheter, commercially available in the market, has its

interior and exterior surfaces lined using a monolayer of Ag, which

helps in reducing friction and irritation during catheterization and

also provides broad-spectrum antimicrobial protection. (Singha

et al., 2017) (C.R. Bard, Inc. 2008-US Patent Application

Publication No. US2008/0206943 A1)
8.1.2 Inorganic nanoparticles
Nanoscale materials (nanoparticles; NPs) constitute a broad

spectrum of materials, including particulate substances with

dimensions <100 nm (Murthy, 2007). NPs can be used as a drug
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delivery vehicle owing to a high surface area to volume ratio,

improved pharmacokinetics and biodistribution, high solubility and

stability, and decreased toxicity in comparison to conventional drug

delivery systems. Moreover, the physicochemical properties of NPs

can be tailored by altering their structural and functional properties to

enhance their application potential in the treatment of CAUTI (Din

et al., 2017).

8.1.3 Gold nanoparticles
Gold nanoparticles (AuNPs) exert bactericidal activity against

MDR gram-negative bacteria by collapsing membrane potential or
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inhibiting protein synthesis (Cui et al., 2012). A study showed that the

modification of commercial PVC with methylene blue and 2 nm

AuNPs upon exposure to red laser light for 4–8 min increased the

photosensitivity of pathogens S. epidermis and E. coli (Noimark et al.,

2012). Aegle marmelos leaf extract capped with AuNPs has

antimicrobial activity against various biofilm-forming organisms on

urinary catheters (Table 3) (Sánchez et al., 2021; Filipović et al., 2022).

8.1.4 Silver nanoparticles
Silver-based nanomaterials have gained more attention than

AuNPs as well-established (Makabenta et al., 2021) metal
TABLE 2 Nanoparticles/composites and their biological efficacy to control growth/biofilm on Urinary catheters.

Type of
Nanoparticle

Metal
used

Mode of
action

Nanocomposite Microorganism
tested

Phase of
Trial

Major
outcomes

References

Inorganic
nanoparticles

Silver alloy
coatings

Oxidative
damage

Hydrogel, along with a layer of
silver coating

1. P. aeruginosa
2. C. albicans

Commercialised
as Bardex I.C

1. Lowered the
adhesion of
organisms

(Ahearn et al.,
2000)

Nitrofurazone/silver alloy coated
hydrogel catheter compared to
PTFE catheter

1. Uropathogens 1. Excellent
antimicrobial
effect

(Pickard et al.,
2012)

Gold
nanoparticles

Collapsing
membrane
potential

Aegle marmelos extract capped in
gold nanoparticles

1. S. aureus
2. K.pneumonia
3. P.aeruginosa
4. E. faecalis

In research 1. Inhibited the
growth until
48hrs.

(Arunachalam
et al., 2014)

Silver
nanoparticles

Disrupt cell
wall and
metabolic
pathway

Spirulina platensis extract was
used to synthesise SNPs, coated
on catheters in combination with
commercial antibiotics

1. E.coli In research 1. Resisted
attachment
until day8
2. Exhibited
90% inhibition
(2 years)

(Mala et al.,
2017)

Green Silver
based
nanoparticles

EPS (Kocuran) from K. rosea
strain capped in SNP.

1. S. aureus
2. E. Coli

In research 1. Bactericidal
property
2. Inhibition of
biofilm
formation.

(Kumar and
Sujitha, 2014)

Copper
nanoparticles

Interaction
with
proteins
and DNA

Silver-copper (Ag-Cu)
nanocomposite at various
concentrations was sputtered as a
film.

1. E.coli K12 In research 1. Showed
antimicrobial
effect.

(Rtimi et al.,
2016)

Zinc doped
nanoparticles

Zn2+ ions doped in CuO
nanoparticles were
sonochemically coated.

1. E.coli ATCC
25922
2. S. aureus ATCC
29213
3. P.mirabilis

In research 1. Exhibited
good anti-
biofilm activity
(24 hrs) in
vitro.

(Shalom et al.,
2017)

Mesoporous
silica nano-
composite

MSNP conjugated with
phenazine-1-carboxamide (PCN),
a small molecule derived from K.
rosea strain

1. C. albicans In research 1. Anti-fungal
activity

(Kanugala
et al., 2019)

Organic
nanoparticles

Amino-
cellulose
nanospheres

ACN synthesised sonochemically
was functionalised on the PDMS
surface

1. E.coli In research Exhibited anti-
biofilm activity

(Fernandes
et al., 2017)

Sodium
dodecyl
sulfate
nanoporous
film

1,2-polybutadiene-b-
polydimethylsiloxane (1,2-PB-b-
PDMS) was loaded with SDS to
form a nanoporous film

1. E.coli In research 1. Resulted in
Anti-biofilm (1
week)
2. Anti-
adhesion
activity (3
days)

(Li et al.,
2013)
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antimicrobials that disrupt both bacterial cell walls and metabolic

pathways (Sim et al., 2018; Sánchez et al., 2021). Commercial UCs

coated with self-polymerized polydopamine act as active platforms

for the deposition of silver nanoparticles in situ, preventing biofilm

formation by gram-positive bacterial pathogens36. Interestingly,

AgNPs exert antibacterial/biofilm and biofilm activities on

coagulase-negative S. aureus (Thomas et al., 2015). Foley

catheters were coated with AuNPs along with various

combinations of antibiotics (amikacin (6.25 µg/mL) and

nitrofurantoin (31.25 µg/mL) to observe the combinatorial effect

under in vitro and in vivo conditions. These catheters significantly

controlled the colonization of microbes until the 14th day of

observation in the mouse model. In addition, the functionalized

catheter anti-adherence activity was evaluated two years after

storing it aseptically and was proven to be efficient in controlling

microbial biofilm >90% (Table 3). Thus, the impregnation of UC

with AuNPs and antibiotics is promising for preventing biofilm

formation (Mala et al., 2017).

8.1.5 Green silver-based nanoparticles
The green synthesis of NPs using biological extracts of lower to

higher organisms is safer, non-toxic, biocompatible, and cost-

effective (Iravani, 2014; Pal et al., 2019; Sánchez et al., 2021). In

this pipeline, green synthesis of AgNPs using the Kocuria rosea
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strain BS-1 showed antimicrobial and antifouling activity against S.

aureus and E. coli. The data was extrapolated toward

functionalizing the same (Kocuran-functionalized AgNPs) in

urinary silicone catheters, which showed the same response in

controlling microbial adherence (Kumar and Sujitha, 2014).

Similar studies were conducted in varnishing green AgNPs

synthesized using Pistacia lentiscus (mastic), which also prevented

bacterial colonization. The AgNPs synthesized using pomegranate

grind extract-coated catheters inhibited bacterial colonization for

>72 h by antibiotic-resistant clinical gram-positive (S. epidermidis

and S. aureus) and gram-negative (E. coli, K. pneumoniae, P.

mirabilis, and P. aeruginosa) bacteria but were more active

against gram-negative bacteria(Goda et al., 2022). Carissa

carandas leaf extract-capped silver nanoparticles (AgNPs) coated

catheters with commercial antibiotics (ciprofloxacin: 50 mcg,

trimethoprim: 30 mcg, and gentamycin: 30 mcg) show

antimicrobial and antifouling activities (Table 3) (Rahuman

et al., 2021).

8.1.6 Copper-based nanoparticles
Copper nanoparticles affect bacterial cell functions in various

ways, adhering to the gram-negative bacterial cell wall via

electrostatic force, denaturing the intracellular protein, and

further interacting with phosphorus and sulfur-containing
FIGURE 3

Anti-microbial coatings on Urinary Catheter(s) (UCs) to either kill the pathogens or inhibit biofilm formation. Right: Contact killing (Enzymes, Anti-
microbial peptides (AMPs), Bacteriophages). Left: Release killing (Antibiotic, Nanoparticles (NPs), Nitric Oxide (NO)). Bottom: Quorum Sensing (QS)
disruptors to prevent biofilm formation: a) QS mechanism b) Quorum Quenching c) QS inhibitor. (Created using Biorender).
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TABLE 3 Antibiotic coatings and their biological efficacy to control growth/biofilm on Urinary catheters.

UC consid-
ered

Antibiotics Approach used for
coating UC

Tested
Microorganism

Mode
of
killing

Phase of
Trial

Major
outcomes

References

Silcone
catheter

Nitrofurazone Nitrofurazone impregnated
catheter

1.Uropathogens Release -
killing

Rochester
Medical
release-NF
catheter,USA
(Commercially
available and
later
withdrawn
from market)

1. Reduced
Catheter-associated
bacteriuria and
funguria

(Stensballe,
2007)

Foley
catheters

Nitrofurazone-impregnated
catheter, Ag-coated
silicone catheter,
hydrophilic-coated catheter
without an antimicrobial
agent, silico-latex catheter
without antimicrobial
agent, silicone catheter
without an antimicrobial
agent.

1. E.faecalis
2. S.epidermis
3. P. aeruginosa

1. Exhibited
prolonged
antimicrobial
durability

(Kart et al.,
2017)

Silicone
catheter

Chlorohexidine Chlorohexidine along with
Triclosan impregnated
catheter

1. S. aureus
2. E. coli
3. E.aerogenes
4. K.pneumoniae
5. P. mirabilis
6. E. faecalis
7. C. albicans

Release -
killing

In research 1. Prevented
microbial
colonization (20
days).

(Anjum et al.,
2018)

Silicone
surface

Chlorhexidine-loaded
polycaprolactone
nanospheres was spray
coated on the surface

1. Uropathogens 1. Showed 3-fold
antibacterial activity
t>15 days

(Phuengkham
and
Nasongkla,
2015)

Silicone
catheter

Gendine Gendine was coated on a
silicone catheter (GND-
UC)

1. E. coli
2. P.aeruginosa
3. K.pneumoniae
4. C. albicans
5. C. glabrata
6. C. krusei

Release -
killing

In research 1. Exhibits 4-to 6-
log reduction in
biofilm (in vitro)
2. Reduced
bacteriuria and
bacterial burden (in
vivo)

(Hachem
et al., 2009)

Silicone
catheter

Gentamicin Poly(ethylene-co-vinyl
acetate) and poly(ethylene
oxide blends containing
gentamicin were coated
using the dip method

1. P.vulgaris
2. S.aureus
3. S.epidermidis

Release -
killing

In research 1. Exhibited
sustained drug
release (7 days)
2. Exhibited anti-
microbial activity (7
days)

(Cho et al.,
2003)

Silicone foley
catheter

Catheter was coated with
poly(ethylene glycol),
gentamicin sulphate and
finally poly(vinyl alcohol)
using the dip method

1. E. coli
2. S. aureus

1. Prevents
bacterial
colonization.

(Rafienia
et al., 2013)

Low Density
Polyethylene
(LDPE)
catheters

Triclosan Triclosan was added to the
LDPE at 0.10 wt.%, 0.50
wt.%, 1.00 wt.% and 1.50
wt.%.

1. E.coli
2. ATCC8739
3. P.aeruginosa
ATCC 9027
4. S.choleraesuis
ATCC 14028
5. B. subtilis
ATCC 6633
6. C.sporogenes
ATCC 11437
7. E. faecalis
ATCC 29212

Release -
killing

In research 1. Imparts efficient
biocidal property
2. Biofilm
formation increased
with decreasing
triclosan.
3. Increased pH
leads to encrustation
and biofilm
formation.

(Thomé et al.,
2012)

(Continued)
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TABLE 3 Continued

UC consid-
ered

Antibiotics Approach used for
coating UC

Tested
Microorganism

Mode
of
killing

Phase of
Trial

Major
outcomes

References

8. S. aureus
ATCC 25923

Silicone foley
catheter

Norfloxacin EVA/PEO2kPDMS blends
were used to coat the
catheter surface and
impregnated with
norfloxacin

1. E.coli
2. K.pneumoniae
3. P. vulgaris

Release -
killing

In research 1. Exhibited
continuous delivery
of norfloxacin (30
days)

(Park et al.,
2003)

Silicone foley
catheter

Ciprofloxacin Ciprofloxacin liposome
containing hydrogel was
used for catheters

1. E. coli Release -
killing

In research 1. CAUTI was
delayed (in vivo)

(Pugach et al.,
1999)

Silicone Ciprofloxacin with
azithromycin

Combination of
azithromycin and
ciprofloxacin coating was
prepared using a solvent-
based method

1. P. aeruginosa
PAO1

Release -
killing

1. Antimicrobial
effect for a
prolonged period of
time.
2. Prevention of
biofilm formation
and stable shelf-life
for one year.

(Saini et al.,
2016)

polyurethane
stents

Ciprofloxacin with
N-acetylcysteine

Ciprofloxacin in
combination with N-
acetylcysteine was coated
using the dip method

1. S.aureus
2. S.epidermidis
3. E.coli
4. K.pneumoniae
5. P.aeruginosa
6. P.vulgaris
7. P.rettgeri
8. C.freundii
9. S. marcescens.

Release -
killing

1. Dose-dependent
Inhibition of
microbial adherence.
2. Broad spectrum,
prolonged
antimicrobial effect

(El-Rehewy
et al., 2009)

Foley catheter Nitric oxide A piece was catheter was
impregnated with nitric
oxide using a chamber

1. E. coli Release -
killing

In research 1. Prevented
biofilm formation

(Regev-
Shoshani
et al., 2010)

Silicone
catheter

RK1
(RWKRWWRRKK),
RK2
(RKKRWWRRKK)

Covalently tethering of
RK1 and RK2 via allyl
glycidyl ether polymer
brush on PDMS surface

1. E.coli
2. S.aureus
3. C.albicans

Contact-
Killing

In research 1. Showed
antimicrobial effect
2. Prevented
biofilm
3. Non-toxic to
host cells

(Li et al.,
2014)

PDMS surface CWR11 Synthetic CWR11was
immobilised on PDMS
support by Covalent
immobilisation via
intermediate crosslinking
using PDA film

1. E.coli
ATCC 8739
2. S.aureus ATCC
6538
3. P.aeruginosa
PAO1

Contact-
Killing

In research 1. Potent
bactericidal
properties
2. Potent salt-
resistant properties

(Lim et al.,
2013)

Silicone Foley
catheters

Cys Lasio-III CysLasio-III was
immobilised on
commercial catheter using
an AGE brush platform

1. E. coli
ATCC8739
2. 2. P.
aeruginosa
3. ATCC9027
4. 3. S. aureus
5. ATCC6538
6. 4. E. faecalis
7. ATCC29212

Contact-
Killing

In research 1. Exhibited
antimicrobial and
anti-adhesive
properties.
2. Stable for 4 days
in urine.

(Mishra et al.,
2014)

39APmC32,
65APm2833,
72APm5211

Phages were studied alone
and as a cocktail

1. 1. P. mirabilis Contact-
Killing

In research 1. Possess an anti-
biofilm agent.
2. Stable under
adverse milieu
conditions.

(Maszewska
et al., 2018)

(Continued)
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molecules, such as DNA (Mahmoodi et al., 2018). A notable added

value was observed when hybrid bimetal Cu-Ag NP-coated

catheters reduced the viable cell count of E. coli (Andersen and

Flores-Mireles, 2019).

8.1.7 Zinc-doped copper nanoparticles
Zn-doped CuO (Zn0.12Cu0.88O) nanoparticle-coated catheters

catheterized in a rabbit model displayed biocompatibility,

antibiofilm effects and low cytotoxicity. The nanoparticles,

analyzed for seven days, effectively prevented CAUTI. Taken

together, these data emphasize the therapeutic potential

(antifouling) of Zn-doped CuO nanocomposites (Shalom

et al., 2017).

8.1.8 Mesoporous silica-based nanocomposite
Mesoporous silica nanoparticles (MSNPs) are a class of Food

and Drug Administration (FDA)-approved nano-drug delivery

systems with the selective advantage of being stable and having

customizable pore size, increased surface area, and pore volume,

enabling a variety of chemical modifications to improve its

functional properties for diagnosis and therapy(Gao et al., 2020).

In addition, MSNPs act as both drug carriers and imaging

modalities (Farjadian et al., 2019). MSNPs functionalized with

phenazine-1-carboxamide (PCN) (PCN-MSNPs) were evaluated

against Candida spp. and S. aureus and exhibited a 4-fold

increase in antibiofilm activity. These data were incomparable to

those of pure PCN. Mechanistic studies showed that PCN-induced

intracellular reactive oxygen species accumulation, reduction in

membrane permeability and total ergosterol content, and
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disruption of ionic homeostasis with the release of Na+, K+, and

Ca2+ leakage led to the death of C. albicans and S. aureus (Kanugala

et al., 2019). Furthermore, a detailed investigation of its efficacy in

suitable in vivo models is warranted before clinical application

(Farjadian et al., 2019; Gao et al., 2020).

8.1.9 Other inorganic nanoparticles
Nanoparticles of tungsten, titanium, sulfur, and hydroxyapatite

also show antimicrobial and antifouling activity against

uropathogens. Tungsten nanoparticle (W-NP)-coated catheters

show bactericidal effects at low concentrations in both clinical

and standard drug-resistant pathogenic E. coli (Syed et al., 2010).

The green synthesis of sulfur nanoparticles (SNPs) in the presence

of Catharanthus roseus leaf extract exhibited antibacterial activity

against uropathogens, either alone or in combination with selected

antibiotics, such as amoxicillin and trimethoprim (Paralikar et al.,

2019). In this pipeline, hydroxyapatite (HA) nanoparticle-coated

urethral catheters were tested in rabbit models, and the formation of

biofilm on the luminal surface of the catheters was significantly

reduced compared to the control until the catheterization period

(5–7 days) (Evliyaoğlu et al., 2011).

8.1.10 Organic nanoparticles
Polymeric NPs are drug carriers that release antimicrobial

agents, bacteriostatic peptides, alkyl pyrimidines, or quaternary

ammonium compounds to enable the contact killing of pathogens

(Ramasamy and Lee, 2016). A nanoporous polymer film prepared

from self-polymerized 1,2-polybutadiene-b-polydimethylsiloxane

(1,2-PB-b-PDMS) block copolymers via chemical cross-linking of
TABLE 3 Continued

UC consid-
ered

Antibiotics Approach used for
coating UC

Tested
Microorganism

Mode
of
killing

Phase of
Trial

Major
outcomes

References

Bladder model Siphovirus (Isf-Pm1)
and Myovirus (Isf-
Pm2)

Phage cocktail was
prepared using Isf-Pm1
and Isf-Pm2

1. 1. P. mirabilis
ATCC 7002

Contact-
Killing

In research 1. Achieved 4-log
reduction in biofilm
formation
2. Downregulation
of adhesion-
associated genes.

(Mirzaei et al.,
2022)

Silicone and
latex catheters

Chrysophanol The catheter was coated by
dipping in the
chrysophanol-AgNPs
solution containing long-
chain dodecyl
methacrylate.

1. 1. P.
aeruginosa
2. PAO1
3. 2. E. coli
(MTCC 443)

Quorum
sensing
disruptors

In research 1. Showed 9-fold
anti-adhesion and
anti-biofouling
effects.
2. Reduced biofilm
formation

(Prateeksha
et al., 2021)

Silicon
catheter

Chitosan The chitosan extracted
from shells of crab P.
sanguinolentus was coated
as in solution form using a
dip coating technique

1. 1. S.epidermidis
2. (RP62A)
(ATCC 35984)
3. 2. C.albicans
4. (ATCC 90028)

In research 1. Downregulated
the virulence genes
(bhp and agrAC) in
S.epidermis (ume6
and hyr1) in C.
albicans

(Rubini et al.,
2021)

latex catheter Salicyl acrylate Polyurethane acrylate
polymer composed of
salicyl acrylate was co-
cured to make films. It was
coated on catheters using
the dip coating method.

1. P. aeruginosa
2. E. coli

In research 1. anti-biofilm
property, under
simulated
physiological urine
flow simulation.

(Chifiriuc
et al., 2012)
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the 1,2-PB block and sodium dodecyl sulfate blocked E. coli

attachment and biofilm for one week. The durability of the

activity over seven days was due to the tailoring of the

morphological features of the nanoporous polymer films (Li et al.,

2013). As a continued effort, researchers devised a catheter material,

PDMS, with a known antibacterial component, amino cellulose

nanospheres, using epoxy/amine grafting chemistry, which reduced

the total biomass in the E. coli biofilms when compared with the

naked silicone catheter (Table 3) (Fernandes et al., 2017).
8.2 Antibiotic coating

8.2.1 Nitrofurazone
Nitrofurazone, a nitrofuran derivative, is a broad-spectrum

antibiotic used to treat UTIs (Lee et al., 2004). It reduces reactive

intermediates by releasing nitric oxide (NO), which interferes with

ribosomes, DNA, and the cell wall to inhibit bacterial replication,

growth, and biofilm formation (Siddiq and Darouiche, 2012;

Thompson et al., 2016). Nitrofurazone-coated catheters were

tested against a wide spectrum of bacterial pathogens and were

found to inhibit the adherence of E. coli and E. faecalis for 3–5 days

(Stensballe, 2007; Desai et al., 2010; Kanti et al., 2022). In addition,

several other comparative studies showed that the nitrofurazone-

impregnated silicone catheter reduced the viable count of E. faecalis

and inhibited S. epidermidis and P. aeruginosa biofilms (Table 3)

(Kart et al., 2017; Al-Qahtani et al., 2019). However, a

nitrofurazone-coated catheter is a promising catheter for

preventing bacterial adherence and biofilm; the one that was in

commercial use (Rochester Medical Release-NF catheter, USA) was

withdrawn from the market as it created discomfort in patients

(Zhang et al., 2021). Later, it was listed as prohibited by the FDA

because it caused tumors in the animal model subjects (Singha

et al., 2017).
8.2.2 Chlorhexidine
Chlorhexidine (N, N‴′1,6-Hexanediylbis[N′-(4-chlorophenyl)

(imidodicarbonimidic diamide) is a di-cationic bisbiguanide with

broad antibacterial activity (Jones, 1997). To date, research has

shown that chlorhexidine is bacteriostatic at low concentrations and

vice-versa (bactericidal) in a wide range of gram-positive and gram-

negative pathogens (Francolini et al., 2017). The UC is coated with

chlorhexidine using either spray or dip coating methods and has

potential in appropriate in vitro models that mimic the urinary

tract, either alone or in combination with other antimicrobial agents

such as triclosan (Kanti et al., 2022). The data showed that

chlorhexidine- and triclosan-coated catheters could synergistically

prevent the colonization of a wide range of bacterial pathogens for

>20 days (Table 2)(Anjum et al., 2018). In 2015, polycaprolactone

nanospheres loaded with chlorhexidine were spray-coated on

silicone catheters to provide a sustained release of chlorohexidine

compared to bulk polymers and were effective for 15 days

(Phuengkham and Nasongkla, 2015; Singha et al., 2017).
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8.2.3 Gendine
Gendine is an antiseptic dye (gentian violet and chlorhexidine;

GND-UC) with broad-spectrum activity against drug-resistant

microbes that cause UTIs (Siddiq and Darouiche, 2012).

Comparative studies on using GND-UC to other silver hydrogel-

coated Foley catheters and uncoated catheters under in vitro

conditions suggested that GND-UC is dominant and exhibits

better effects against MDR E. coli, P. aeruginosa, ESBL K.

pneumoniae, VRE, methicillin-resistant S. aureus, and Candida

spp. The extended in vivo study showed similar observations,

with a significant decrease in biofilm formation compared to

silver-alloy-coated and uncoated catheters (Hachem et al., 2009).

8.2.4 Gentamicin
Gentamicin belongs to the class of aminoglycosides known to

exert bactericidal effects on a broad range of pathogens, excluding

Streptococcus and Enterococcus spp. They exert their action via

interacting with the protein synthesizing machinery, specifically the

A-site of the 30S ribosome (Krause et al., 2016). To apply

gentamicin as a therapy to treat CAUTI, the UCs were coated

with this antibiotic with appropriate delivery vehicles known as

gentamicin-containing poly (ethylene-co-vinyl acetate) (EVA) and

EVA/poly (ethylene oxide) for local and sustained release for a

prolonged period of seven days against P. vulgaris, S. aureus and S.

epidermis. In vivo, experiments recommend its application to treat

short-term catheterization, as it can deteriorate biofilms for 3–5

days (Cho et al., 2003; Ha and Cho, 2006; Rafienia et al., 2013;

Roshni et al., 2013; Andersen and Flores-Mireles, 2019). However,

studies have shown that when the gentamicin delivery vehicle is

changed to PEG, there is a significant change in the release profile,

which is extended to 12 days (Rafienia et al., 2013). Although

significant results have been obtained, gentamicin-releasing

catheters have limitations because gentamicin is a hydrophilic

antibiotic known for its rapid release from the carrier; thus, it

may not be suitable for short-term catheterization (Ha and

Cho, 2006).

8.2.5 Triclosan
Triclosan (TCS) is a synthetic lipid-soluble antimicrobial agent,

also known as 5-chloro-2-(2,4-dichloro phenoxy) phenol. It blocks

a critical enzyme, enoyl-acyl carrier protein (ACP) reductase (FabI),

a critical enzyme that affects the growth of microbes and is involved

in fatty acid biosynthesis. In addition, it was observed that the same

TCS might also show non-specific actions of targeting multiple

pathways and destabilizing membranes (Cadieux et al., 2009;

Dhende et al., 2012). However, it is harmless to humans because

we lack ENR enzymes (Dhillon et al., 2015). For more than 40 years,

it has been used as a disinfectant and preservative in hospitals.

Later, it was proposed to have application potential to treat CAUTI

via coating in UCs (Yueh and Tukey, 2016). Researchers have

conducted detailed investigations of the antimicrobial efficacy of

low-density polyethylene (LDPE) catheters with various

concentrations of TCS. The addition of TCS (0.5 wt.%) is critical
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to achieving the minimum inhibitory concentration against

multiple uropathogens (Table 3) (Thomé et al., 2012). Several

studies have demonstrated the limitation of TCS as pathogens

overexpress enoyl reductase or changes in cellular permeability

impact its non-functionality for them to develop resistance112.

Another study claimed that TCS induces efflux pump

overexpression, resulting in high-level resistance in P. aeruginosa

(Chuanchuen et al., 2001). Another report suggested that

overexpression of the enzyme Fab I by 3–5 fold decreased S.

aureus sensitivity against TCS, as mutations were mapped in the

gene FabI of resistant strains (Fan et al., 2002). In the year, 2016 the

FDA banned TCS in soap products and allowed 1% TCS in

toothpaste, mouthwash, and hand sanitizer. In the subsequent

year, the European Union banned TCS from all human hygiene

biocidal products (Weatherly and Gosse, 2017).

8.2.6 Norfloxacin
The UC was coated with norfloxacin, a hydrophobic wide-

spectrum synthetic antibiotic coated on UC to prevent CAUTI

(Park et al., 2003; Ha and Cho, 2006). Norfloxacin was coated on the

surface of the catheters with EVA/PEO2kPDMS (poly (ethylene-co-

vinyl acetate; EVA), and an amphiphilic multiblock copolymer

(poly (ethylene oxide) and poly (dimethyl si loxane);

PEO2kPDMS). After coating, norfloxacin release kinetics were

established to provide better treatments for patients with long-

term catheterization. Experiments showed that EVA/PEO2kPDMS

blends containing norfloxacin inhibited selective pathogens (E. coli,

K. pneumoniae, and P. vulgaris) over 10 days of treatment.

Combinatorial studies of the same blends with norfloxacin and

other antibiotics, such as ciprofloxacin and azithromycin, proved to

be effective against microbial biofilms; however, further exploration

at the preclinical level is warranted (Park et al., 2003; Saini

et al., 2016).

8.2.7 Ciprofloxacin
Ciprofloxacin (CFX) is an antibacterial agent used to treat a

range of infections, including skin, ophthalmic, bone, respiratory,

and urinary tract infections (Vidyavathi and Srividya, 2018). A

previous study reported that pathogens treated with sub-MIC

concentrations of CFX decreased their biofilm, lowering their

hydrophobicity (El-Rehewy et al., 2009). Its efficacy over biofilm

inhibition expanded its application potential in catheters, and the

CFX-coated catheters were evaluated in rabbit models and showed

inhibition of E. coli on catheter biofilms (Pugach et al., 1999).

Furthermore, a combination of CIP with azithromycin (AZM)

showed better efficacy in inhibiting P. aeruginosa (PA01) growth

for 30 days, suggesting its stability, shelf life, and future application

for the treatment of long-term CAUTI. Further in vivo analysis in

the murine model suggests that AZM-CFX-coated catheters were

efficient in tackling CAUTI in comparison to the uncoated

catheters, which showed persistent colonization of pathogens as

well as the dispersion in urine to spread infection further (Saini

et al., 2017). In another study, the effects of CFX and N-

acetylcysteine-coated catheters, alone and in combination, were
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evaluated for their antimicrobial adherence activity against various

pathogens (Table 2). Ciprofloxacin/N-acetylcysteine-impregnated

catheters resulted in the highest inhibitory effect on microbial

adherence when compared with controls (85.5%–100%)(El-

Rehewy et al., 2009).
8.2.8 Sparfloxacin
Sparfloxacin (SPA)-coated latex catheters were tested against E.

coli and S. aureus using broth and agar diffusion methods. The

antifouling effect of SPA was compared with that of silver-coated

and uncoated catheters. It was observed to significantly reduce the

colonization of E. coli and S. aureus compared to both the silver-

coated and untreated catheters (Kowalczuk et al., 2012).

Furthermore, the same group developed an antimicrobial

urological catheter surface modified with a thin film of heparin

(HP) deposited with SPA, which was stable to provide long-term

antibacterial protection (Kowalczuk et al., 2010).
8.2.9 Other antibiotics
Although several antibiotics are being explored for use in the

treatment of CAUTI, research on other antibiotics is ongoing. The

efficacy of the bladder catheter coated with antibiotics (minocycline

and rifampin) showed a decrease in the rate of catheter-associated

bacteriuria over two weeks compared to that of the control

(Darouiche et al., 1999). Meanwhile, the efficacy of third

generation cephalosporins, ceftazidime, and ceftriaxone-coated

catheters to prevent P. aeruginosa biofilm formation has been

investigated. The antibiotics ceftazidime and ceftriaxone delay

biofilm formation for more than a week and are recommended

for short-term catheterization but not for long-term catheterization

(>28 days) (Ghanwate et al. 2014).
8.3 Nitric oxide

Nitric oxide (NO) is a free-radical gas that is hydrophobic in

nature and significantly affects innate immunity. NO is highly

diffusive and has a short half-life in a physiological milieu. It NO

has a short half-life in a physiological environment and quick

diffusive property via biological liquids, thereby binding to DNA,

proteins, and lipids to inhibit or kill pathogens. (Regev-Shoshani

et al., 2010; Schairer et al., 2012). The inherent biological activity of

NO is extrapolated to its application potential in impregnating

Foley urinary catheters. The impregnated Foley UC releases NO

into the urine and is stable for two weeks in various clinical models.

Thus, it prevented bacterial colonization on the external and

luminal surfaces and was able to eradicate up to 104 CFU/ml of

E. coli in the surrounding media under static and dynamic

conditions (Regev-Shoshani et al., 2010). Research has also shown

the influence of pH on NO activity. Therefore, subsequent

experiments were conducted in varying urine pH, and results

showed that the release of NO was different, which may affect the

response to CAUTI treatment (Andersen and Flores-Mireles, 2019).
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8.4 Antimicrobial peptides

Antimicrobial peptides (AMPs) are short, cationic molecules

that are part of the innate immune system of many species and

exhibit effective antimicrobial activity. The unique ability of AMPs

to affect the viability of bacteria is higher than that for conventional

antibiotics owing to their amphipathic nature (Camesano et al.,

2015). Thus, the amphipathic nature of AMP either kills the

bacteria via membrane disruption or enters cells by interacting

with their biomolecules vital for intracellular functions without

membrane disruption (Benfield and Henriques, 2020). The

therapeutic potential of AMPs has paved the way for their

exploration as coating candidates to curb CAUTI. Two novel

AMP candidates, RK1 and RK2, were immobilized on PDMS and

UC surfaces via an allyl glycidyl ether (AGE) polymer brush

interlayer (Table 3). The AMP-coated catheters showed

antimicrobial action against E. coli, S. aureus, and C. albicans

without exerting any toxicity on smooth muscle cells. The

combinatorial effect of the AGE polymer brush and AMPs

showed a synergistic interaction, repelling cell adhesion and

biofilm formation (Li et al., 2014).

Furthermore, the same group of researchers tested the effect of

an AMP candidate, CWR11 (arginine-tryptophan-rich peptide

coated on a PDMS-functionalized catheter surface). Notably, it

affected a wide range of pathogens via disruption of the

membrane without exerting any toxicity (Lim et al., 2013). Later,

in 2014, this was improved by adopting a bioinspired PDA-based

coating for AMP grafting. CWR11 was tethered onto catheter

surfaces by depositing a thin film of PDA onto the PDMS surface

to enhance the attachment of CWR11. The CWR11-deposited UC

showed bactericidal properties for 21 days against both gram-

positive and gram-negative bacterial pathogens without affecting

host immunity and uroepithelial cells. The net effect of the

experimental trial is a proof-of-concept that demonstrates the

potential role of PDA–CWR11-functionalized catheters in

combating CAUTIs (Lim et al., 2015).

Meanwhile, a hydrophilic polymer coating (AMP coating on

PU) with anti-adherence properties was developed and

examined in vitro. The AMP was labeled at the C-terminus

(RRWRIVVIRVRRC) with cysteine, and PU tethered with AMP-

coated UC decreased free-living cells and sessile cells by >70%

and >99%, respectively. The study was extended to a suitable in

vivo CAUTI mouse model and observed to be biocompatible

with the host cells and, in parallel, inhibited the viability of cells

when compared to an uncoated surface. The AMP-brush coating

also showed host bladder epithelial fibroblast cells in cell-based

assays (Yu et al., 2017).

Another potent AMP, lasioglossin-III (Lasio-III) peptide, was

chemically modified with a cysteine at the N-terminal, also known

as CysLasio-III. CysLasio-III was immobilized on the UC with the

support of a PEG spacer and site-directed coupling at the N-

terminus of the peptide. Immobilization on the UC was enabled

using sulfhydryl coupling to direct the proper orientation of

CysLasio-III, as it influences the biological activity against gram-

positive and gram-negative pathogens. The biological activity of
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CysLasio-III was examined and was found to be effective against E.

coli and E. faecalis biofilms for four days. This is the first proof-of-

concept to demonstrate the biocompatibility and application

potential of site-directed sulfhydryl immobilization of CysLasio-

III on UC ability against CAUTI-relevant pathogens (Mishra

et al., 2014).

An improved AMP-impregnated PEG–polycaprolactone

(PCL)-coated UC showed controlled release with antimicrobial

properties. Once the ratios of the PEG and PEG–PCL

copo lymers were var i ed , they resu l t ed in d i ff e r en t

morphologies and indirectly affected the AMP release profiles.

The formulation with 10% (w/w) PEG–PCL in PCL exerted a

controlled AMP release for >2 weeks with a moderate initial

burst release. The optimized coating was further evaluated on a

silicone catheter, and it outperformed in reducing biofilm

formation than the other silver-based antimicrobial catheters

with antimicrobial performance and sustainability lasting less

than a week. However, the potential therapeutic value of AMPs

in UC is still challenged by various suboptimal coating strategies

using non-specific immobilization chemistry, changing the

orientation of AMPs and associated toxicities in the host cells

(Mishra et al., 2014). Research based on AMPs is at an early stage

and needs to be evaluated in in-vivo conditions, focusing on

peptide degradation and chemical reactions.
8.5 Bacteriophages

In the era of increasing AMR, alternate therapy with

bacteriophages competes with other antimicrobial therapies as

they confer a selective advantage. The advantage of phage therapy

is its ability to act against microbes and prevent them from

acquiring AMR (Maszewska et al., 2018).Several studies have

reported that the challenge can be overcome with the

“bacteriophage cocktail”. Detailed research on the effect of various

combinations of 13 phages against the free/sessile form of 50

uropathogenic P. mirabilis was conducted. The cocktails of

phages 39APmC32, 65APm2833, and 72APm5211 inhibited

bacterial biofilms. In 2022, the same group identified a potent

cocktail using lytic phages (Isf-Pm1 and Isf-Pm2) to inhibit P.

mirabilis biofilms. Notably, phages deficient in lysogenization can

impact the 4-log reduction of P. mirabilis biofilms on silicone

catheters. RT-PCR data revealed the downregulation of genes

associated with QS and adhesion (Mirzaei et al., 2022).

An infection-responsive surface-coated UC was designed to

release a therapeutic dose of bacteriophage in response to elevated

urinary pH and delay catheter blockage. The design is dual-layered,

wherein the lower layer is the hydrogel “reservoir” immobilized

with a bacteriophage cocktail. The upper layer holds the pH-

responsive polymer (poly (methyl methacrylate-co-methacrylic

acid) (EUDRAGIT®S 100)) that acts as a trigger layer to release

the appropriate dose of phages in response to urine pH changes.

The dual-layered UC coatings were stable in the presence or

absence of pathogens deficient in urease. In addition, naked-eye

visualization showed a drastic clearance of the crystalline biofilm
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(Milo et al., 2017). Thus, phage therapy is considered an alternative

to prevent biofilm formation and blockage in UC and is a better

solution to the issues faced in clinical settings.
8.6 Quorum sensing disruptors

Microbial biofilms are driven by bacterial communication

known as quorum sensing, which has gained attention for

overcoming antimicrobial resistance. Anti-QS agents act as

barriers to biofilm formation by interrupting inter-/intra-species

communication. These agents can either be quorum-quenching

enzymes that degrade signalling molecules or quorum-sensing

inhibitors that block signalling molecules and auto-inducers

(Rémy et al., 2018; Majik et al., 2020).
8.7 Quorum-sensing inhibitors

Quorum-sensing inhibitors are highly specific to target QS

regulators that do not interfere with the metabolic processes of

bacteria but inhibit microbial pathogenicity without developing

resistance (Soto, 2014). Researchers have examined the effect of

known QS inhibitors, such as p-nitro phenyl glycerin and tannic

acid, against P. mirabilis, and the data showed significant inhibition

of biofilm growth. In search for various natural biofilm inhibitors,

3-methyl-2(5H)-furanone (furans), 2´-hydroxycinnamic acid

(phenyl-acyl), was found to marginally inhibit biofilm formed by

K.pneumoniae on urethral catheters by acting as an antagonist

against, N-hexanoyl-homoserine lactone (C6-AHL) (Cadavid and

Echeverri, 2019). 2,5-dimethyl-4-hydroxy-3(2H)-furanone

(DMHF), an aromatic compound found in berries and pineapple,

was found to be effective against Candida tropicalis, isolated from

foley urinary catheters. The DMHF-coated catheter inhibited

biofilm formation completely in comparison to silicone, latex and

foley catheters (Devadas et al., 2019). In addition, nanoparticle have

been explored for modulating QS to reduce bacterial pathogenicity

and suppress bacterial adhesion and colonization (Jones et al.,

2009). Similar studies were extended to a natural anthraquinone,

chrysophanol, isolated from an endolichenic fungus (ELF),

talaromyces wortmannin MN243726, which was used to

functionalize NPs (CP-AgNPs) for anti-QS and antifouling

therapies. The anti-adherence/anti-fouling properties of the CP-

AgNP-coated UC surfaces were effective at inhibiting the growth of

P. aeruginosa PAO1 and E. coli in static/dynamic conditions. A

comparative evaluation of CP-AgNP-coated latex/silicon with the

citrate-capped AgNPs and UC surfaces showed a several-fold

increase in the same effect observed above. This observation was

significant because they were also able to influence the

downregulation of pathogenicity without exerting toxicity on the

host cells. The study was extended in vivo, where CP-AgNPs

showed a strong influence in preventing biofouling and provided

excellent protection to patients with UC-associated UTIs

(Prateeksha et al., 2021).
Frontiers in Cellular and Infection Microbiology 17
8.7.1 Quorum-quenching enzymes
Quorum-sensing interaction throws light upon Quorum

Quenching, al lowing researchers to disrupt bacterial

communication and biofilm formation using various modes of

action. One possible way to interrupt QS is signal inactivation by

enzymatic degradation or modification. This led to the discovery of

quorum-quenching enzymes, such as acylase and amylase (Fetzner,

2015; Murugayah and Gerth, 2019). Multilayer UC coatings with

either acylase or amylase suppressed the biofilm formation of P.

aeruginosa and S. aureus. In a recent study, hybrid nanocoatings

with QS-signal-degrading acylase enhanced biofilm inhibition of

clinically relevant bacterial pathogens in both mono and mixed

species in static and dynamic conditions. Moreover, quorum

quenching, and matrix-degrading enzymes offset the growth of

biofilms for up to seven days in an in vivo animal model (Ivanova

et al., 2015). In addition, lactonases produced by Bacillus

thuringiensis (AiiA), archaeon Sulfolobus solfataricus(SsoPox)

hydrolysis the AHL’s secreted by the pathogen to protect

themselves could also be tested as a potential catheter coating to

prevent degrade QS signal and inhibit biofilm formation(Rémy

et al., 2016; Bzdrenga et al., 2017).
8.8 Bacterial interference

CAUTI-associated microbes compete differentially with each

other in the process of nutrient acquisition and surface

colonization. During this competition for survival, they

antagonize or interfere with other bacteria, affecting their

colonization and invasion of host defense (Falagas et al., 2008).

The natural mechanism has been extrapolated to the treatment of

CAUTI in clinical settings. UC pre-exposure to E. coli 83972

antagonized the colonization of uropathogens (Providencia

stuartii, uropathogenic lactose-negative E. coli, and C. albicans)

(Trautner et al., 2003). However, the broad therapeutic interference

warrants in-vivo validation.
8.9 Natural polymers and bioactive
materials

Various naturally occurring polymers and bioactive molecules

provide eco-friendly solutions for catheter-associated infections

(Rubini et al., 2019). One such natural polymer is chitosan, a

marine polysaccharide isolated from the shell chitin of crustaceans

(eg. marine crab Portunus sanguinolentus). Chitosan-based UCs are

hydrophilic, with enhanced broad-spectrum activity against microbes.

They eradicated the pre-formed biofilms and downregulated other

virulence factors, such as slime production and QS-regulated genes

(agrAC, bhp) in S. epidermis and transition in the morphogenic switch

(yeast to hyphal) in C. albicans (Rubini et al., 2021).

Salicylic acid is a bioactive molecule that plays a major role in

polymeric coating, which is coated onto a UC via polymer (PU).

Such coatings on UCs favored the sustained release of salicylic acid
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and prolonged its effect against microbial biofilm formation of P.

aeruginosa and E. coli. In another study, the inner lumen of UCs

coated with salicylic acid-releasing polymer reduced E. coli biofilms

for five days under physiological conditions. Essential oil nano-

biosystem pellicles prepared using Rosmarinus officinalis inhibited

the adherence ability and development of biofilms on the catheter

surface by C. albicans and C. tropicalis clinical strains (Nowatzki

et al., 2012). In summary, naturally occurring biomolecules have

shown antibacterial and antifouling activity under in vitro

conditions; however, they must be tested in in vivo CAUTI

models to validate their efficacy.
9 Current challenges in design

It is evident from the compiled research data above that

tremendous efforts are being made across the globe by various

research groups to find a phenomenal solution against CAUTI in the

form of urinary catheter coatings while taking various elements into

account. However, very few anti-fouling strategies or antimicrobial

coatings have reached the clinical trial stage or the commercial market

owing to the gap between in vitro and in vivo assays in the laboratory

environment and actual human anatomy. The foremost step in an in

vitro assay is the growth of bacterial cultures in laboratory media, such

as artificial urine media, Muller Hinton agar, and Tryptic Soy Agar;

however, they failed to recapitulate the catheterized bladder

environment (Sarigul et al., 2019). Additionally, the flow pattern of

urine, real stress conditions, and compound stresses in the bladder were

not considered under in vitro conditions (Xiong et al., 2021).

Another concern is the concentration of O2 required for

bacterial growth in urine culture. Numerous in vitro studies have

been conducted in shaking environments, as they supply O2 to

enhance bacterial growth. The level of O2 absorbed into the system

is higher than the level of O2 that can be observed in patient/healthy

urine samples. This implies that the outcomes differ because in vitro

research circumstances do not replicate those of in vivo studies

(Giannakopoulos et al., 1997; Beebout et al., 2019).

Although murine and rabbit models remain valuable in the

laboratory to test various urinary catheter coatings and drugs, they

fail to accurately mimic human bladder conditions. Human and

mouse bladders vary in anatomical features and the expression of

biomarkers on the epithelial surface. The human urothelium has 5–7

layers of cells due to the presence of intermediate cells, whereas the

mouse urothelium has 3–4 layers of cells. This creates differences in

the microenvironment and variations in cytokeratin profiles (Laguna

et al., 2006; Murray et al., 2021). It is imperative to study CAUTI and

various treatment modalities using small animal models and cell

cultures; however, its limitations must be considered.
10 Conclusion and future outlooks

This review describes the morbidity and prevalence of CAUTIs as

well as recent developments in anti-adhesive or antimicrobial
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catheters employing a variety of therapeutic modalities. Despite

several advancements in catheter coatings, CAUTI remains a cause

of nosocomial infections across the globe, and the dawn of antibiotic

resistance and its effect on antibiotic treatment efficacy is alarming.

Going forward, researchers must look into new approaches that

primarily prevent the adherence of bacteria to the catheter surface,

for which physiochemistry or the surface topography of the catheter

can be modified. Second, preventing biofilm formation would aid in

the fight against multidrug resistance, as it is practically impossible

to eradicate biofilms once they are formed due to the polymicrobial

environment and conferred antibiotic resistance. This can be

achieved by interrupting the quorum sensing system using

quorum sensing inhibitors, more specifically, by blocking the

efflux pumps critical for biofilm formation or degrading the

signaling molecules using quorum quenching enzymes. This is an

alternate approach to overcome antibiotic resistance, as it neither

imposes survival stress on the microorganisms nor induces the

development of antibiotic resistance. Furthermore, the synergistic

effects of drugs can be explored to identify an antibiotic resistance

breaker using drug cocktails in combination with adjuvants in the

form of nanocomposites or nanocarriers. The use of nanomaterials

as a drug-loaded system on the catheter coating would be an added

advantage, as it can be exploited to meet our needs. Other

alternative strategies to combat antibiotic resistance include

multi-mechanism approaches, antimicrobial peptides, phage

therapy, and the use of natural bioactive molecules.
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