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Computed tomography–based
COVID–19 triage through a deep
neural network using mask–
weighted global average pooling

Hong-Tao Zhang1†, Ze-Yu Sun2†, Juan Zhou1, Shen Gao1,
Jing-Hui Dong1, Yuan Liu1, Xu Bai1, Jin-Lin Ma1, Ming Li1,
Guang Li2, Jian-Ming Cai1* and Fu-Geng Sheng1*

1Department of Radiology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China,
2Algorithm Center, Keya Medical Technology Co., Ltd, Shenzhen, China
Background: There is an urgent need to find an effective and accurate method

for triaging coronavirus disease 2019 (COVID-19) patients from millions or

billions of people. Therefore, this study aimed to develop a novel deep-

learning approach for COVID-19 triage based on chest computed tomography

(CT) images, including normal, pneumonia, and COVID-19 cases.

Methods: A total of 2,809 chest CT scans (1,105 COVID-19, 854 normal, and 850

non-3COVID-19 pneumonia cases) were acquired for this study and classified

into the training set (n = 2,329) and test set (n = 480). A U-net-based

convolutional neural network was used for lung segmentation, and a mask-

weighted global average pooling (GAP) method was proposed for the deep

neural network to improve the performance of COVID-19 classification between

COVID-19 and normal or common pneumonia cases.

Results: The results for lung segmentation reached a dice value of 96.5% on 30

independent CT scans. The performance of the mask-weighted GAP method

achieved the COVID-19 triage with a sensitivity of 96.5% and specificity of 87.8%

using the testing dataset. The mask-weighted GAP method demonstrated 0.9%

and 2% improvements in sensitivity and specificity, respectively, compared with

the normal GAP. In addition, fusion images between the CT images and the

highlighted area from the deep learning model using the Grad-CAM method,

indicating the lesion region detected using the deep learning method, were

drawn and could also be confirmed by radiologists.

Conclusions: This study proposed a mask-weighted GAP-based deep learning

method and obtained promising results for COVID-19 triage based on chest CT

images. Furthermore, it can be considered a convenient tool to assist doctors in

diagnosing COVID-19.

KEYWORDS

coronavirus disease 2019 (COVID-19), computed tomography (CT), deep learning,
global average pooling (GAP), artificial intelligence
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Introduction

At the beginning of 2020, the coronavirus disease 2019

(COVID-19) infection spread rapidly worldwide. The symptoms

of COVID-19 infection are similar to common pneumonia such as

pneumonia caused by bacteria and influenza viruses, mainly

including fever, malaise, dry cough, and sore throat (Guan et al.,

2020; Jiang et al., 2020). Early detection and diagnosis of patients

with COVID-19 infection can greatly hinder the spread of the

disease and alleviate the patient’s symptoms. Therefore it is an

urgent need to find an effective and accurate method for diagnosing

COVID-19 patients from common pneumonia.

Currently, diagnosing COVID-19 relies largely on reverse

transcription-polymerase chain reaction (RT-PCR) testing of

samples from the throat (Ai et al., 2020). However, RT-PCR for

COVID-19 diagnosis has some limitations: the test is not

universally available, turnaround times can be lengthy, and the

reported sensitivities vary. Patients with respiratory symptoms who

do not have a confirmed diagnosis of COVID-19 may undergo

computed tomography (CT) for different indications, including the

diagnosis of suspected pneumonia. CT imaging is another critical

tool in the initial screening of COVID-19 pneumonia, serves as an

alternative or adjunct to RT-PCR diagnosis, and plays a vital role in

early detection, observation, and evaluation of the disease (Bao

et al., 2020; Ye et al., 2020; Garg et al., 2022). However, chest CT

images usually consist of approximately 100 slices, and it is very

time-consuming for radiologists to check whether they are COVID-

19 images. With the rapid spread of COVID-19 virus and the large

increase in CT data, the development of computer-aided detection

system with artificial intelligence to assist radiologists in the

diagnosis of COVID-19 patients has become an urgent and

necessary task.

Therefore, this study aims to propose a mask-weighted global

average pooling (GAP)-based deep learning method for COVID-19

triage based on chest CT images. COVID-19 triage is a slightly

different problem compared to common classification problems

(Jaipurkar et al., 2018; Wodzinski et al., 2019; Prakash et al., 2022;

Ker et al., 2019). Conventional CNNs perform convolution

operations in the lower layers of the network and concatenate the

last convolution layer’s feature map to the fully connected layer,

followed by a softmax logistic regression layer, for classification.

This structure bridges the convolutional structure with traditional

neural network classifiers. It treats convolutional layers as feature

extractors, and the resulting feature is classified traditionally.

However, fully connected layers have many more parameters, and

GAP layers were proposed (Li et al., 2022; Bao et al., 2023). General

GAP calculates the mean value of the entire feature image. The fully

connected layer maps all pixels as the input for the classifier, and the

GAP maps the entire image as one pixel as the input for the

classifier. Therefore, the number of parameters and the model

complexity are significantly reduced.

In medical images, the pixel information is much more

associated with the concrete clinical structure. Furthermore, GAP

with different weight factors according to the different tissues will be

useful in reducing the inference of background noise. Therefore, in
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the medical image classification task, the entire image is sometimes

unrequired, and a specified organ region of the image is sufficient.

In the COVID-19 triage particularly, COVID-19-related suspicions

are all in the lung region, and clinical information is much more

useful for this triage problem.

In this paper, we developed an AI algorithm using a mask–

weighted GAP method for COVID-19 triage. The main novelty of

this paper are summarized:
1. We developed a computer-aided diagnostic algorithm with a

3D convolutional neural network to achieve the diagnosis

of COVID-19 patients from common pneumonia based on

chest CT images.

2. A mask-weighted GAP method which used the segmented

lung region mask to reduce the non-lung region inference

for the COVID-19 classification was proposed to improve

the accuracy of the COVID-19 triage.

3. The amount of data used in this study is large, containing a

total of 2809 cases, covering several public datasets and a

private datasets.
Related work

During the past two years, many classifications and

segmentation deep learning algorithms have been developed to

assist radiologists in COVID-19 identification (Harmon et al., 2020;

Islam et al., 2020; Fan et al., 2022; Shaik and Cherukuri, 2022) and

severity qualification (Li et al., 2020; Qin et al., 2020).

Md. Islam (Islam et al., 2020) proposed a deep learning-based

system combining a convolutional neural network (CNN) and long

short-term memory (LSTM) networks to detect COVID-19

automatically based on radiographs. In the proposed system,

CNN was used for feature extraction, and LSTM was used to

classify COVID-19 based on these features. This can help doctors

diagnose and treat COVID-19 patients easily. Harmon S A

(Harmon et al., 2020) developed and evaluated an AI algorithm

for the detection of COVID-19 on chest CT using data from a

globally diverse, multi-institution datasets. Fan X (Fan et al., 2022)

built a parallel bi-branch model (Trans-CNN Net) based on

Transformer module and CNN module is proposed by making

full use of the local feature extraction capability of CNN and the

global feature extraction advantage of Transformer. Bosowski et al.

(Bosowski et al., 2021) introduced deep ensembles that benefit from

a wide range of architectural advances, alongside a new fusing

approach to deliver accurate predictions of COVID-19 cases on a

number of datasets of chest X-ray images.

Li et al. (Li et al., 2020) developed a fully automated artificial

intelligence system to quantitatively assess the disease severity and

progression of COVID-19 using thick-section chest CT images. Le

Qin (Qin et al., 2020) developed a predictive model and scoring

system to enhance the diagnostic efficiency for COVID-19, and CT

features and scores were evaluated at the lung segment level

according to the lesion position, attenuation, and form. In most
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of these studies, the disease severity and progression of COVID-19

have been assessed.

These methods above applied AI techniques to the detection and

evaluation of COVID-19 pneumonia based on medical imaging data

in different modalities and achieved better performance. However,

there are some shortcomings in these methods, either some studies

use a small amount of data from a single source, which makes it

difficult to verify the generalization ability of the model, or some

studies use non-CT data, such as X-ray images, which have low

sensitivity in clinical applications. Inspired by the above-mentioned

researches, this study proposed a mask–weighted global average

pooling–based deep learning method for COVID–19 triage based on

chest CT images.
Material and methods

Patients

This study included two types of datasets: public and private.

The public dataset consisted of two different data sources:

COVID-19 lung CT lesion segmentation challenge (An et al.,

2020; Roth et al., 2022) (https://covid-segmentation.grand-

challenge.org/Data/) and MosMeddata (Morozov et al., 2020)

(https://www.kaggle.com/datasets/andrewmvd/mosmed-covid19-

ct-scans). The first public dataset contained images of 249

COVID-19 patients, while the second contained images of 856

COVID-19 patients and 254 non-pneumonia patients (n = 1,110).

The private dataset was acquired from our Hospital, which

contained images of 850 pneumonia and 600 normal patients.

These data were mixed, and a total of 2,809 scans were used in

this study, including 854 normal, 850 common pneumonia, and

1,105 COVID-19 cases. For each category, 15%-20% of the scans

were randomly selected as the test set and the remaining as the

training set. To verify the performance of the COVID-19 triage, we

made the test set have roughly the same number of CT scans

between COVID-19 and non-COVID-19 patients. Information on

these datasets is presented in Table 1.
Workflow

The workflow chart of the COVID-19 triage algorithm is

illustrated in Figure 1. First, pre–processing was performed on all
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the data. Second, segmentation of the lung region and cutting out of

the lung region mask and CT image were performed. Third,

according to the lung region mask and CT image, a deep neural

network was used to perform the COVID-19 classification.
CT image pre-processing

Because the data had different spacings and sizes, the first pre–

processing step was image resampling to obtain the isotropic

volume, and the pixel spacings between the x, y, and z directions

were the same. Subsequently, to reduce the variation between

different datasets, we calculated each scan’s mean and standard

deviation and used Z-score normalization to normalize the images.
Lung segmentation

Lung segmentation was based on the CNNmethod using the U-

Net model (Kalpana et al., 2022; Papetti et al., 2022). There are two

paths in the model network: the left path, which encodes the image

features, and the right path, which decodes the features and localizes

the target tissue. The left-contracting path follows the typical

architecture of a convolutional network. It consists of the

repeated application of two 3 × 3 × 3 convolutions, each followed

by a rectified linear unit (ReLU) and a 2 × 2 × 2 max pooling

operation with stride 2 for downsampling. Every step in the

expansive path consists of an up–sampling of the feature map,

followed by a 2 × 2 × 2 convolution that halves the number of

feature channels, concatenation with the correspondingly cropped

feature map from the contracting path, and two 3 × 3 × 3

convolutions, each followed by a ReLU. Herein, the input of our

three–dimensional (3D) U-net model was the output of the pre-

processing step, which was the resampled isotropic volume with a

size of 128 × 128 × 128. The output of the 3D U-net model was the

segmentation mask of the lung region.

The training dataset for lung segmentation was an open dataset

named LUNA16 (Armato et al., 2011), which can be accessed on the

LUNA16 website. LUNA16 has 888 volumes of lung data, with a

slice thickness greater than 2.5 mm. Furthermore, lung

segmentation is sufficient for COVID-19 classification,

considering the application scenario and cost of manual labeling.

Therefore, we randomly selected 300 volumes of data for training

and 30 for validation. The same pre–processing method was applied
TABLE 1 Dataset information.

Non-pneumonia CAP COVID-19

Public Dataset A 0 0 249

Public Dataset B 254 0 856

Private Dataset 600 850 0

Total number 854 850 1,105

Training Set 726 724 879

Test Set 128 126 226
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to these data to reduce both the graphics processing unit (GPU)

memory limitation and training time.
COVID-19 classification using mask-
weighted GAP

The COVID-19 classification method was based on the residual

network (ResNet) (Kibriya and Amin, 2022; Malik et al., 2022; Suganya

and Kalpana, 2023), which received the state-of-the-art performance

award at the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) 2015 for classification, localization, detection, Common

Objects in Context (COCO) detection, and segmentation tasks.

A conventional ResNet was used for one-image classification.

However, our input was one series of images, and these 3D CT

images can be used in two ways. One method used 3D convolution

and modifies the original ResNet to 3D ResNet, and the other used

two–dimensional (2D) convolution for the series of images and

combines several 2D output features. Herein, we adopted the

second method, considering the sparse information on suspected

COVID-19 and the large memory usage of 3D convolution. In our

classification method, the input CT image and mask were first

resized to 224 × 224, and the ResNet model of one image outputted

feature maps with a size of 2048 × 7 × 7. Then, a weight-mask GAP

method was applied to the feature maps before the classifier layer.

Inspired by the idea of attention, we increased the weight factors of

lung regions closely related to the COVID-19 classification during

GAP operation, which was used to improve the sensitivity of lung

regional lesions and reduce the interference of background noise.

The mask-weighted GAP calculation is shown in Equation (1).

IfeatureweightedGAP =o
i=7

i=0
o
j=7

j=0
Ismoothedmask(i,j)� Ifeature(i,j) (1)
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Ifeature is the output feature image from the last convolution

layer of the ResNet50. Ismoothedmask is the lung mask region,

downscaled to 7 × 7, followed by Gaussian smoothing; the last

normalized summation of all pixel values was 1. The downscale

operation made the lung mask the same size as the final feature

map, and the smoothing operation made the weighting factor vary

smoothly considering the spatial relationship. The conventional

GAP was used to obtain the average value of Ifeature; however, the

mask–weighted GAP combined the different weights from

Ismoothedmask and Ifea ture to obtain the final value of

IfeatureweightedGAP. If the weighted mask values were all the same, it

would be equal to the conventional GAP; particularly, the weighting

value of the lung region area would be larger than that of the non–

lung region area to guarantee that the feature focused on the lung

region containing the suspected COVID-19.

In the COVID-19 classification method, the model’s input was

CT image and lung region masks according to the results of the lung

segmentation model. The model’s output was the probability of

each case being predicted as COVID-19.
Statistical analysis

We compared the classification performance using several

metrics such as accuracy, sensitivity, specificity, F1 score, and area

under the curve (AUC) (Lu et al., 2023).

The accuracy of a test is its ability to differentiate between

positive and negative cases correctly. The sensitivity of a test is its

ability to identify positive cases correctly. The specificity of a test is

its ability to identify negative cases correctly. The F1 score is the

weighted average of precision and recall.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)
FIGURE 1

Workflow chart of the whole COVID-19 triage algorithm. There are the following modules: pre-process, lung segmentation, and classification. A 3d-
Unet model was used for lung segmentation and the input of this module is the isotropic volume after pre-process module. The cropped isotropic
image by the lung mask region is the input of classification module. Before the classifier, a weight-mask GAP is applied to the feature maps
extracted by resnet-50 model.
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Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

F1score =
2TP

2TP + FN + FP
(5)

True positive (TP) is the number of cases correctly predicted as

positive, true negative (TN) is the number of cases correctly

predicted as negative, false positive (FP) is the number of cases

incorrectly predicted as positive, and false negative (FN) is the

number of cases incorrectly predicted as negative.

The AUC is an index used to measure the performance of a

classifier. The AUC provides a method to measure the accuracy of a

diagnostic test. The larger the area, the more accurate the diagnostic

test. The AUC of the receiver operating characteristic (ROC) curve

can be measured using the following equation (6), where t = (1 -

specificity) and ROC (t) is sensitivity.

AUC =
Z 1

0
ROC(t)dt (6)

For the segmentation task, the validation metric is usually the

Dice coefficient (DC). The DCmeasures the spatial overlap between

the two segmentation regions. The DC is 2 × area of overlap divided

by the total number of pixels in both images. The larger the DC

value, the better the segmentation result. Therefore, DC was

adopted to measure the lung segmentation performance in

this study.
Results

All experiments in this study were performed on ubuntu 20.04.

The model was trained using the deep learning framework Pytorch

1.8.1 and CUDA 11.4. All experiments were run on one NVIDIA

DGX Station, with four NVIDIA Tesla V100 DGXS 32GB GPUs

and one Intel(R) Xeon(R) CPU E5-2698 CPU. The model was

trained using the optimizer Adam with an initial learning rate of

1e-5, and the learning rate was adjusted using warm up

and CosineAnnealingLR.

There were two models for training: lung region segmentation

and COVID-19 classification models. The total training epoch for

lung segmentation and COVID-19 classification were 100 and 60

epochs, and the training time were around 6 and 10 hours

respectively. The following subsections describe the qualitative

and quantitative results of the two models.
Lung region segmentation results

The lung region mask was generated using a 3D U-net model.

The input was the original CT data, and the output was the mask of

the left and right lungs. Figure 2 shows the different image slices and

their related mask. Because lung segmentation is used for COVID-19
Frontiers in Cellular and Infection Microbiology 05
classification, being very accurate is unnecessary. Our segmentation

result was validated using the DC, which was approximately 96.5%

on 30 independent CT scans.
COVID-19 classification results

The performance of proposed mask-weighted GAP method was

evaluated on test set which included 226 COVID-19 CT scans and

254 non-COVID-19 scans. The evaluation metrics were calculated

according to the formulations described in the previous section.

Our proposed method achieved a sensitivity of 96.5% and a

specificity of 87.8%.

For comparison, we also trained a COVID-19 classification

models using general GAP and evaluated the performance on the

same test set. The results of the quantification metrics comparison

between the general GAP and mask-weighted GAP are shown in

Table 2. Our proposed method achieved a better performance, both

the accuracy and F1 score improved by more than 1%. Based on the

results, we found that mask-weighted GAP will be useful for

medical image classification of suspicions in special clinical organs.

The ROC curve comparison between the experimental results of

ResNet50 with GAP and mask-weighted GAP is shown in Figure 3.

The mask-weighted GAP obtained an AUC value of 0.967 for

COVID-19 classification, whereas the general GAP method

obtained an AUC value of 0.962. Therefore, the mask-weighted

GAP will be more useful for medical image classification of

suspicions in special clinical organs because of the attention to

regions containing these suspicions.
Visualization check of COVID-19 triage

To confirm the COVID-19 triage result, Grad-CAM (Zhao

et al., 2023) was adopted to fuse the key region for the

classification decision on the original image. A good visualization

method uses heavy colors to highlight the suspected region and light

colors to indicate the normal region. The colored region is the most

important in deciding whether the current image is a COVID-19

image; red indicates a high probability, while green and blue are the

next priority. The fusion image will not include a significantly

colored region if the CT image is normal. Figure 4 shows the

suspected COVID-19 region highlighted in red; however, the

normal region on the CT image is without a significant color. The

fusion color map is useful in confirming the importance of CNN

feature regions to distinguish COVID-19 suspects.
Discussion

In this study, we developed and evaluated a lung mask-weighted

GAP-based deep learning method for COVID-19 triage based on

chest CT scans. A total of 2,809 scans, including 854 normal, 850

common pneumonia, and 1,105 COVID-19 cases, were used for

classification, and 330 data volumes with lung masks were used for
frontiersin.org
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lung segmentation. The U-net-based model achieved a DC of

approximately 96.5% in the lung segmentation task, and the

mask-weighted GAP method achieved an accuracy of 91.9%,

sensitivity of 96.5%, specificity of 87.8%, and AUC of 96.7% in

the COVID-19 classification task. In addition, a Grad-CAM

method was adopted to confirm the COVID-19 triage results.

The lung mask-weighted GAP achieved better performance

than the normal GAP classification method. The lung mask-

weighted GAP showed a 1% improvement in all metrics.

This may be because the lung mask-weighted GAP method

focuses the model on the lung region containing the suspected

COVID-19, reduces the influence of the background region, and

highlights the classification features of tissue regions. In

addition, the lung mask-weighted GAP could also improve the

sensitivity of suspect feature contribution and specificity by

reducing the effects of artifacts in the lung region, such as

ground–glass opacity or consolidation features. In addition,

according to the ROC curve, our COVID-19 classification

model is a high-sensitivity model, which is important in

screening COVID-19 patients. In our experiments, the AI
Frontiers in Cellular and Infection Microbiology 06
algorithm took only 10s to complete the classification of one

case, which can reduce the pressure of radiologists and improve

the efficiency of diagnosis.

This study also had several limitations. First, we only performed

COVID-19 diagnosis based on chest CT scans using the deep

learning method. While we developed an algorithm to detect the

infection lesion, this study did not report a quantitative analysis of

the infection lesion. Second, respiration and heart motion due to

motion artifacts may reduce the accuracy of the deep learning

method. However, this study excluded several severe motion artifact

cases. In the future, the training data should include motion artifact

cases for both COVID-19 and normal scans. Finally, our study data

included COVID-19, pneumonia, and normal cases; therefore, the

diagnosis of these three cases should be developed using a deep

learning method in future work.

In this study, we have verified the effect of mask-weighted on

GAP. In the future, we will apply the mask-weighted method to

more methods such as attention model (Rehman et al., 2023) and

transformer model (Yang et al., 2023), hoping to further improve

the performance.
TABLE 2 The classification results of the proposed Mask-weighted GAP and the comparison with normal GAP based on resnet50.

Model
(resnet50)

Accuracy Sensitivity Specificity F1 score

Normal GAP 90.4% 95.6% 85.8% 90.4%

Mask-weighted GAP 91.9% 96.5% 87.8% 91.8%
FIGURE 2

CT images and related mask. First raw are original CT image, second raw are the corresponding segmentation results. In the figure, the background
is shown in black, the right lung is shown in blue, and the left lung is shown in green.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1116285
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fcimb.2023.1116285
FIGURE 4

Fusion images with Grad-CAM, which indicate the import region for classification. First row are normal cases, second row are COVID-19 cases. RGB
color indicate the high risk for suspects, light color indicate the normal region.
FIGURE 3

The ROC cure comparison of the two experiment results of resnet50 with GAP and with mask weighted GAP. Vertical axis is false positive rate, while
horizontal axis is true positive rate. The blue cure is the result of mask weighted GAP, while the red cure is the result of GAP.
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Conclusions

A lung mask–weighted GAP-based deep learning method was

developed to diagnose COVID-19 and non-COVID-19 cases based

on chest CT scans. The evaluation results confirmed that this deep

learning-based method was feasible.
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