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Diarrhea is a severe bovine disease, globally prevalent in farm animals with a

decrease in milk production and a low fertility rate. Cryptosporidium spp. are

important zoonotic agents of bovine diarrhea. However, little is known about

microbiota and short-chain fatty acids (SCFAs) changes in yaks infected with

Cryptosporidium spp. Therefore, we performed 16S rRNA sequencing and

detected the concentrations of SCFAs in Cryptosporidium-infected yaks.

Results showed that over 80,000 raw and 70,000 filtered sequences were

prevalent in yak samples. Shannon (p<0.01) and Simpson (p<0.01) were both

significantly higher in Cryptosporidium-infected yaks. A total of 1072 amplicon

sequence variants were shared in healthy and infected yaks. There were 11 phyla

and 58 genera that differ significantly between the two yak groups. A total of 235

enzymes with a significant difference in abundance (p<0.001) were found

between healthy and infected yaks. KEGG L3 analysis discovered that the

abundance of 43 pathways was significantly higher, while 49 pathways were

significantly lower in Cryptosporidium-infected yaks. The concentration of

acetic acid (p<0.05), propionic acid (p<0.05), isobutyric acid (p<0.05), butyric

acid (p<0.05), and isovaleric acid was noticeably lower in infected yaks,

respectively. The findings of the study revealed that Cryptosporidium infection

causes gut dysbiosis and results in a significant drop in the SCFAs concentrations

in yaks with severe diarrhea, which may give new insights regarding the

prevention and treatment of diarrhea in livestock.
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Introduction

The long-haired ruminant yak is a plateau bovine species living

in the 3000-5000 m high-altitude regions and is mostly found on the

Qinghai Tibet plateau (Li et al., 2022a). Diarrhea is a serious bovine

problem detected globally in livestock farms associated with a

decrease in fertility rate and milk production, especially neonatal

diarrhea is usually found with high morbidity and mortality (Han

et al., 2017; Li et al., 2019a; Lan et al., 2021)

Previously, studies revealed that diarrhea contributed tomore than

50% of calf mortality in Canada (Smith et al., 2014), and affected 19% of

the cattle population in the USA (Smulski et al., 2020), which indeed

was the cause of huge economic detriment. Like other bovine animals,

diarrhea has been commonly reported in yaks (Diao et al., 2020; Cui

et al., 2022; Li et al., 2022a). There have been many biological factors

which are associated for diarrhea and leading cause of death in calves

(Kim et al., 2021). Many pathogens like bovine viral diarrhea virus,

Noroviruses, Escherichia coli, Salmonella spp., and Cryptosporidium

spp. have been commonly observed in infected cattle (Meganck et al.,

2014; Cui et al., 2022). Among others, Cryptosporidium spp. are

important zoonotic protozoa infecting various animal species (Li

et al., 2019b; Kandeel et al., 2022), and are also generally recognized

as the primary agent of cattle diarrhea (Li et al., 2019a; Li et al., 2019b).

A previous study reported that the infection of Cryptosporidium spp.

was an important issue in UK and Scotland (Smith et al., 2014). As yaks

and cattle species are economically important for native herdsmen in

China (Cheng et al., 2022), infectious diseases like those caused by

Cryptosporidium spp. may not only affect animal health but are also

potential threats leading to public health concerns.

Intestine microbiota is composed of millions of complex and

diverse microorganisms, which contribute greatly to host health,

nutrition absorption, host metabolism, and immunological

development (Zeineldin et al., 2018). Previous studies demonstrated

that this bacteria was related to various diseases like Type 2 diabetes

(Martinez-Lopez et al., 2022), acute pancreatitis (Mei et al., 2022),

obesity (Salazar et al., 2022), and diarrhea (Han et al., 2017; Zeineldin

et al., 2018; Li et al., 2022b). Short-chain fatty acids are metabolic

products of microbiota, which contribute to the cellular metabolism of

the host (Bachem et al., 2019), regulating immune function and

suppressing inflammatory reactions (Abdalkareem Jasim et al., 2022).

In our previous study, we observed prominent changes in intestinal

microbiota in a horse infected with Cryptosporidium spp. (Wang et al.,

2022). However, scarce information is available about microbiota and

SCFAs changes in plateau yaks infected with Cryptosporidium spp.

Therefore, this study was conducted to explore intestinal microbiota

and SCFAs response to natural Cryptosporidium infection in

plateau yaks.
Materials and methods

Samples

Fecal samples (n=40) were collected from free-ranged yaks in

Xining, Qinghai (North latitude 31˚36´-39˚19´, east longitude
Frontiers in Cellular and Infection Microbiology 02
89˚35´-103˚04´) and examined for Cryptosporidium spp. by

employing nested PCR (Chen et al., 2022) and positive samples

were saved for further analysis. In this study, all the

Cryptosporidium spp. positive samples (n=4) with equal number

of negative samples (n=4) were sequenced and divided into infected

(INF) and healthy (H) groups, respectively.
DNA extraction and PCR amplification

The extraction of total genomic DNA was performed by

utilizing a commercial TIANamp Stool DNA Kit (Tiangen

Biotech (Beijing) Co., Ltd, China) according to the product’s

specifications. Fecal DNA concentration, purification, and

quality examination were performed through NanoDrop 2000

UV-Vis spectrophotometer (Thermo Scientific, USA) and 1.2%

agarose gel electrophoresis, respectively. Then the hypervariable

regions of bacterial 16S rRNA gene (V3-V4) were amplified

using primers 338F and 806R as described in a previous study

(Wang et al., 2019). All PCR products were individually

subjected to agarose gel electrophoresis, gel extraction, and

purification using the PureLink™ PCR Purification kit

(Invitrogen™, USA). Finally, the purified DNA products were

quantified by piloting QuantiFluor™-ST as guided by the

instruction manual (Promega, USA).
Library construction, Illumina miSeq
sequencing, and bioinformatics analysis

Library construction was carried out by employing

commercial Hieff NGS® OnePot II DNA Library Prep Kit for

Illumina® (Yeasen, China) according to the product ’s

instructions, and sequenced through the Illumina NovaSeq

platform (Illumina, San Diego, USA). Quality control of

sequencing data was performed by employing QIIME2

(https://docs.qiime2.org/2019.1/) to generate amplicon

sequence variant (ASV) (Callahan et al., 2016) and taxonomy

table (Bokulich et al., 2018). Analysis of variance was performed

using ANCOM (Analysis of Composition of Microbiomes), One-

way ANOVA, Kruskal Wallis, LEfSe (LDA (Linear Discriminant

Analysis) score >2), DEseq2 (p<0.05 and log2 (FoldChange) > 2),

clustering heatmap (with Z-score > 0.5 or < -0.5) and

evolutionary tree (p<0.05) methods to reveal differences in

bacterial abundance among yak samples (Segata et al., 2011;

Love et al., 2014; Mandal et al., 2015). Microbial alpha diversities

analyses were performed through QIIME2 by calculating indices

including observed OTUs, Chao1, Shannon, and Faith’s.

Microbial beta diversities of principal coordinate analysis

(PCoA), nonmetric multidimensional scaling (NMDS)

(Vazquez-Baeza et al., 2013), and partial least squares

discriminant analysis (PLS-DA) were carried out to explore the

structural variation of microbial communities across yak

samples. The evolutionary relation tree was constructed by

using ggtree in R package.
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Function analysis

The potential KEGG Ortholog (KO) functional profiles of yak

microbiota was predicted with PICRUSt (Langille et al., 2013) by

annotating with MetaCyc and ENZYME database. One-way

ANOVA was used to analyze the data, while Duncan test was

used as post-hoc test to measure the individual differences in

microbial function between the yak groups with a p<0.05 as

statistically significant.
SCFAs detection

The concentrations of SCFAs in fecal samples were detected by

employing GC-MS (Hsu et al., 2019; Zhang et al., 2019), and the

differences between yak groups were explored via t-test.
Statistical analysis

The differences between different yak groups were calculated by

the chi-square test piloting IBM SPSS Statistics (SPSS 22.0). P values

< 0.05 were considered as statistically significant.
Results

Analysis of 16S rDNA sequencing data

In the current study, over 80,000 raw and 70,000 filtered

sequences were obtained in yak samples. The non-chimeric

sequences ranged from 62,133 to 73,453 in healthy yaks, and

68,173 to 74,350 in infected yaks (Table 1). There were a total of

1072 shared ASVs between the healthy (group H) and infected

(group INF) groups. (Figure 1A). Alpha diversity index analysis

showed that there was no significant difference in chao1, faith, and

observed features between group H and INF, respectively. Shannon

(p<0.01) and Simpson (p<0.01) were both significantly higher in

group INF than in group H (Figure 1B).
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Grouping of yak microbiota in
different taxa

The sequence percentage in different taxa of group H and INF is

shown in Figure 2A. At the phylum level, the dominant phyla were

Firmicutes (69.61%), Proteobacteria (8.97%), and Actinobacteria

(8.72%) in group H, while Firmicutes (56.38%) and Bacteroidetes

(29.83%) were the main phyla in group INF (Figure 2B). At the class

level, Clostridia (51.13%) and Bacilli (17.28%) were the primary

classes in healthy yaks, while Clostridia (51.13%) and Bacteroidia

(29.83%) were the major classes in infected yaks (Figure 2C). At the

order level, Clostridiales (51.13%), Lactobacillales (8.20%), and

Bacillales (8.10%) were the primary orders in healthy yaks, while

Clostridiales (51.04%) and Bacteroides (29.83%) were the main

orders in infected yaks (Figure 2D). At the family level, the main

families were unclassified, Ruminococcaceae and Lachnospiraceae in

groups H and INF (Figure 2E). At the genus level, unclassified

(52.06%), Pseudomonadaceae Pseudomonas (6.13%), and

Lactobacillus (6.00%) were the dominating genera in healthy yaks,

while unclassified (69.25%), Prevotellaceae Prevotella (5.13%) and

Arthrobacter (2.45%) were the main genera in infected yaks

(Figure 2F). At the species level, the main bacteria in group H

were unclassified (87.85%), Veronii (6.11%), and Alactolyticus

(1.66%), while unclassified (95.15%), Flavefaciens (1.50%) and

Veronii (1.12%) were the main bacteria in group INF (Figure 2G).
Shifts of yak microbiota infected
by Cryptosporidium

To reveal the microbiota difference between healthy and

infected yaks, beta diversity analysis was carried out through

NMDS, PCoA, Qiime 2b, and PCA analysis. The results showed a

huge difference in composition and structure between samples from

group H and group INF animals (Figure 3). To explore the

microbiota changes caused by Cryptosporidium in different taxa, a

clustering heatmap (top 20 abundance) and evolutionary tree (top

50 abundance) with heat map analysis were plotted. The results

revealed that at the order level, infected yaks showed an abundance

of Bacteroidia and Deltaproteobacteria, while healthy animals
TABLE 1 The sequence data statistic analysis.

Samples input filtered percentage of input
passed filter denoised merged percentage of

input merged
non-

chimeric
percentage of input

non-chimeric

H1 93773 86437 92.18 82758 76547 81.63 73453 78.33

H2 88135 81010 91.92 77501 71312 80.91 67743 76.86

H3 91889 85557 93.11 82297 76216 82.94 72913 79.35

H4 80446 74466 92.57 71353 65482 81.4 62133 77.24

INF1 89759 83135 92.62 78940 72488 80.76 68173 75.95

INF2 92942 86291 92.84 82357 75217 80.93 71848 77.3

INF3 89810 83187 92.63 80203 75295 83.84 74350 82.79

INF4 88245 81820 92.72 78721 73786 83.61 71099 80.57
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showed abundance of Bacilli, Erysipelotrichi, Betaproteobacteria,

Alphaproteobacteria, and Nitriliruptoria as expressed in the

clustering heatmap. The evolutionary tree also showed an obvious

abundance difference in Betaproteobacteria, Fibrobacteria, SJA_176,

4C0d_2, Nitriliruptoria, Clostridia, and Bacilli between groups H

and INF (Figure 4A). At the order level, the clustering heatmap

revealed significant differences in the abundance of Bacteroidales,

Lactobacillales , Burkholderiales , Erysipelotrichales , YS2,

Turicibacterales and Enterobacteriales between healthy and

infected animals. Evolutionary tree detected remarkable

differences in the abundance of Oceanospirillales, Burkholderiales,

Enterobacteriales, Fibrobacterales, Turicibacterales, RB046, YS2,

Nitriliruptorales, Clostridiales and Lactobacillales between healthy

and infected animals (Figure 4B). At the family level, there was a

noteworthy difference of Clostridiaceae , Prevotellaceae ,

Lactobacillaceae, Peptostreptococcaceae, BS11, Christensenellaceae,

Oxalobacteraceae, Paraprevotellaceae, Streptococcaceae and

Erysipelotrichaceae between groups H and INF as revealed by

the clustering heatmap. Evolutionary tree analysis showed a

clear difference of Halomonadaceae , Oxalobacteraceae ,

Enterobacteriaceae, Streptococcaceae, Peptostreptococcaceae,

Tur i c i ba c t e r a c ea e , Die t z i a c e a e , Sangu i ba c t e r a c ea e ,

Nitriliruptoraceae, Christensenellaceae, Clostridiaceae and
Frontiers in Cellular and Infection Microbiology 04
Lactobacillaceae between healthy and infected yaks (Figure 4C).

At the genus level, interesting difference of Lactobacillus,

Prevotellaceae_Prevotella, Ralstonia, Streptococcus, SMB53,

Turicibacter, and Adlercreutzia was found between the two

yak groups. Evolutionary tree analysis demonstrated that the

abundance o f Ha lomonada c ea e , Oxa l oba c t e ra c e a e ,

Streptococcaceae, Clostridiaceae, Turicibacteraceae, Planococcaceae,

Erysipelotrichaceae, Sanguibacteraceae, Coriobacteriaceae,

Paraprevotel laceae , Ruminococcaceae , Lachnospiraceae ,

Clostridiaceae, Lactobacillaceae and Lachnospiraceae were

significantly different between the two yak groups (Figure 4D). At

the species level, the abundance of alactolyticus, celatum, reuteri,

butyricum, ruminicola, prausnitzii, biforme, p_1630_c5, and

aerofaciens were noticeably different in groups H and INF.

Evolutionary tree analysis uncovered that the abundance of

alactolyticus, ruminis, p_1630_c5, biforme, umbonata, aerofaciens,

prausnitzii, butyricum, celatum and reuteri were significantly

different between healthy and infected animals (Figure 4E).

To further uncover the marker bacteria between healthy and

Cryptosporidium-infected yaks, we performed one-way ANOVA

and Kruskal Wallis tests to determine the significance of the

difference and depicted results by DESeq 2 volcano diagram and

LEfSe chart, respectively. Results showed that at the phylum level,
BA

FIGURE 1

ASV venn map and Alpha diversity index analysis. (A) Venn map, (B) Alpha diversity index. ** refers to significance level, p<0.05.
B
C D

E F G

A

FIGURE 2

Statistical analysis of yak microbiota in different taxa. (A) Sequence percentages in different taxa, (B) Phylum, (C) Class, (D) Order, (E) Family,
(F) Genus, (G) Species.
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the abundance of SR1 (p<0.0001), Bacteroidetes (p<0.0001),

Armatimonadetes (p<0.0001), Fibrobacteres (p<0.01), and

Synergistetes (p<0.01) were visibly higher in infected yaks, while

Cyanobacteria (p<0.0001) , Proteobacteria (p<0.0001) ,

Armatimonadetes (p<0.0001), Euryarchaeota (p<0.0001),

Actinobacteria (p<0.01), Firmicutes (p<0.01), and Elusimicrobia

(p<0.05) were significantly lower (Figure 5A). At the genus level,

the abundance of YRC22 (p<0.0001), Prevotellaceae_Prevotella

(p<0.0001), CF231 (p<0.0001), L7A_E11 (p<0.0001), BF311

(p<0.0001), Desulfovibrio (p<0.0001), Succiniclasticum (p<0.0001),

Desemzia (p<0.0001), Anaerovorax (p<0.0001), Pseudobutyrivibrio

(p<0.0001), Acinetobacter (p<0.0001), Fibrobacter (p<0.0001),

Ruminococcaceae_Ruminococcus (p<0.0001), Anaerorhabdus

(p<0.0001), Treponema (p<0.0001), Selenomonas (p<0.001),

Clostridium (p<0.001), Shuttleworthia (p<0.001), Dehalobacterium

(p<0.001), TG5 (p<0.01), unclassified (p<0.01), Anaerostipes

(p<0.01), Syntrophomonas (p<0.01), Brachymonas (p<0.01),

Pyramidobacter (p<0.01), SHD_231 (p<0.05), Butyrivibrio

(p<0.05), Desulfobulbus (p<0.05), RFN20 (p<0.05), and

Anaerofustis (p<0.05) were significantly higher in infected yaks,

while Turicibacter (p<0.0001), Lactobacillus (p<0.0001),

Sporosarcina (p<0.0001), Ralstonia (p<0.0001), Akkermansia

(p<0.001), Streptococcus (p<0.001), Methylobacterium (p<0.01),

Adlercreutzia (p<0.01), Faecalibacterium (p<0.01), Roseburia
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(p<0.01), Paenibacillus (p<0.01), Methanosphaera (p<0.01),

P s e u d o m o n a d a c e a e _ P s e u d o m o n a s ( p < 0 . 0 1 ) ,

Peptostreptococcaceae_Clostridium (p<0.01), Slackia (p<0.01),

Cupriavidus (p<0.01), Halomonas (p<0.01), Gemmiger (p<0.01),

Dietzia (p<0.01), Blautia (p<0.05), Agrobacterium (p<0.05),

Ne s t e r e n k o n i a ( p < 0 . 0 5 ) , S a n g u i b a c t e r ( p < 0 . 0 5 ) ,

Phascolarctobacterium (p<0.05), Actinomycetospora (p<0.05),

Bifidobacterium (p<0.05), SMB53 (p<0.05), and Dorea (p<0.05)

were significantly lower in infected animals (Figure 5B).
Cryptosporidium infection potentially
affected the microbiota function of yaks

The prediction of yaks’ microbiota function was carried out by

PICRUSt2, and the functional difference between yaks was explored

by using one-way ANOVA and Duncan test through R language as

previously reported (Zhai et al., 2020). A total of 235 enzymes with a

significant difference in abundance (p<0.001) were found between

healthy and infected yaks, with 119 higher and 116 lower

abundance enzymes in INF yaks (Figure 6A). Only one different

MetaCys pathway of pentose phosphate pathway (non-oxidative

branch) was found between the two yak groups (Figure 6B). KEGG

L1 analysis found that the abundance of genetic information
B C DA

FIGURE 3

Beta diversity analysis between yak groups. (A) NMDS, (B) PCoA, (C) Qiime 2b, (D) PCA.
B C D EA

FIGURE 4

Clustering heatmap and evolutionary tree with heat map analysis of yak microbiota in different taxa. (A) Class, (B) Order, (C) Family, (D) Genus,
(E) Species.
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processing was prominently higher in infected yaks, while cellular

processes and environmental information processing were

significantly lower (Figure 7A). KEGG L2 analysis revealed that

the abundance of biosynthesis of other secondary metabolites,

glycan biosynthesis, and metabolism, metabolism of cofactors and

vitamins, and nucleotide metabolism were remarkably higher in

INF yaks, while amino acid metabolism, chemical structure

transformation maps, lipid metabolism, metabolism of other

amino acids, xenobiotics biodegradation, and metabolism were

conspicuously lower (Figure 7B). KEGG L3 analysis discovered

that the abundance of 43 pathways was significantly higher in INF

yaks, while 49 pathways were significantly lower (Figure 7C).
Cryptosporidium infection decreased the
concentration of SCFAs in yaks

The concentration of acetic acid (p<0.05), propionic acid

(p<0.05), isobutyric acid (p<0.05), butyric acid (p<0.05) and

isovaleric acid was significantly lower in infected yaks,
Frontiers in Cellular and Infection Microbiology 06
respectively, while there was no significant difference of valeric

acid and caproic acid between H and INF groups (Figure 8).
Discussion

Cattle diarrhea is still an important worldwide issue on farms,

despite observing advanced preventive measures such as herd

management, animal facilities and care, feeding and nutrition, and

timely medication (Wei et al., 2021). The infectious Cryptosporidium

was one of the main causative agents of diarrhea with limited available

effective treatments (Li et al., 2019a). The harsh climatic conditions

with heavy snowfall in the long frigid season (from October to May,

with average temperature −15 to −5°C) didn’t permit collection of

many samples in the Plateau region. Also, very few positive samples

(n=4) were observed out of total collected samples (n=40) in the

present study. However, a prevalence as low as 1.3% of

Cryptosporidium spp. positive samples has been reported in yaks in

China region (Li et al., 2020). Moreover, despite the harsh climatic

conditions and the low number of positive samples available for
BA

FIGURE 5

Cryptosporidium infection changes microbiota in different taxa through DESeq 2 volcano plot and LEFSe analysis. (A) Phylum, (B) Genus.
B

A

FIGURE 6

Cryptosporidium infection affected enzyme and MetaCys pathway abundance of yaks. (A) Enzyme (p<0.001), (B) MetaCys (p<0.05). "a, b" are showing
significance relation.
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analysis, this number was above the minimum required for high

throughput sequencing, and validation of changes of the microbiota

(Ray et al., 2019). In the current study, we performed 16S rDNA

sequencing of fecal samples collected from healthy and

Cryptosporidium-infected yaks. Results showed that Cryptosporidium

infection increased the alpha diversity index of Shannon (p<0.01) and

Simpson (p<0.01) (Figure 1B), which demonstrated the increased

microbiota complexity of infected animals. The current results are in

line with our previous results found in Cryptosporidium-infected horses

(Wang et al., 2022). Beta diversity analysis through NMDS, PCoA,

Qiime 2b, and PCA analysis revealed microbiota differences between

healthy and infected yaks (Figure 3), which were confirmed by

comparing the dominating gut microbiota in different taxa

(Figures 2, 4). Then we explored the significantly different bacteria

between the H and INF groups through DESeq 2 volcano diagram and

LEfSe chart analysis. The results showed that a total of 11 phyla and 58

genera were significantly different (Figure 5), which is in accordance

with the previously reported results in a study conducted on infected

people and horses (Chappell et al., 2016; Wang et al., 2022). The

increased genera in yaks were in line with previous studies that found a
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higher abundance of Desulfovibrio and Butyrivibrio in colitis patients

(Berry and Reinisch, 2013; Gryaznova et al . , 2021),

Prevotellaceae_Prevotella in diarrheic pigs (Yang et al., 2017),

Anaerovorax in slow growth performers in nursery pigs (Zhai et al.,

2020), Succiniclasticum in LPS induced dual-flow continuous culture

system (Dai et al., 2019), Pseudobutyrivibrio in chronic kidney people

(Wu et al., 2020), Anaerorhabdus in pulmonary fibrosis persons (Tong

et al., 2019), Selenomonas in gastric cancer patients (Zhang et al., 2021),

Anaerostipes in diabetic nephropathy patients (Du et al., 2021),

Pyramidobacter in endoscopic sphincterotomy surgery gallstone

patients (Shen et al., 2021), and Anaerofustis in Alzheimer people

(Hou et al., 2021). The genus of Acinetobacter is an underrated food-

borne pathogen (Amorim and Nascimento, 2017). A previous study

found Acinetobacter in acute diarrhea of children (Polanco and Manzi,

2008). The genus of Treponema is the main pathogen in bovine

dermatitis (Mamuad et al., 2020), Clostridia are clinical species and

some of them may cause severe infections like colitis (Sanchez Ramos

and Rodloff, 2018). Those increased genera may have contributed

greatly to diarrhea caused by Cryptosporidium.The lower abundance of

genera in yaks was in accordance with the results revealing Turicibacter
B

C

A

FIGURE 7

Cryptosporidium infection potentially affected the microbiota function of yaks. (A) KEGG L1 (p<0.05), (B) KEGG L2 (p<0.05), (C) KEGG L3 (p<0.05).
"a, b" are showing significance relation.
FIGURE 8

Concentration of SCFAs in yaks. Significance is presented as *p < 0.05; data are presented as the mean ± SEM (n = 4).
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and Lactobacillus in Salmonella-infected pigs (Garrido et al., 2021),

Akkermansia and Roseburiain in colitis in mouse (Bu et al., 2021; Li

et al., 2021), Adlercreutzia in influenza virus-infected mouse (Lu et al.,

2021), Faecalibacterium in pre-eclampsia people (Chen et al., 2020),

Methanosphaera in sheep without treatment of anthelmintic (Moon

et al., 2021), Slackia in Vogt-Koyanagi-Harada patients (Li et al., 2022a;

Li et al., 2022b), Gemmiger in immune-mediated inflammatory people

(Forbes et al., 2018), and Dorea in HIV patients (Xu et al., 2021).

Those deficient genera in Cryptosporidium-infected animals may be

the reason for diarrhea in yaks. The genus of Cupriaviduswas related

to mycotoxin biodegradation (AL-Nussairawi et al., 2020), and

the dropped Cupriavidus in yaks may affect mycotoxin metabolism

in yaks. The previous study uncovered probiotics of Dietzia as

a new therapy for Crohn’s disease (Click, 2015), and Blautia,

Phascolarctobacterium, and Bifidobacterium are probiotic genera

(Papizadeh et al., 2017; Chen et al., 2021; Liu et al., 2021), which

demonstrated that Cryptosporidium led diarrhea may be due to the

decrease of probiotics in the microbiota.

The shifted intestine microflora also changed their functions, as

235 significantly different enzymes were found between healthy and

infected yaks (p<0.001) (Figure 6A). Only one obvious different

MetaCys pathway of pentose phosphate pathway (non-oxidative

branch) was found between the two yak groups (Figure 6B). Also,

KEGG L3 analysis discovered that the abundance of 92 pathways

was significantly different between healthy and infected animals

(Figure 7C). Those results may infer that Cryptosporidium broke the

balance of gut microbiota, which affected the microbiota function

and caused diarrhea in yaks.

In the present study, significantly lower concentrations of SCFAs

were found in Cryptosporidium-infected animals (Figure 8),

consistent with yak diarrhea (Li et al., 2022a), LPS-induced piglets

(Yang et al., 2021), and dextran sulfate sodium-induced colitis in

mouse (Xu et al., 2020). SCFAs play very important roles in host

physiology and energy homeostasis (Chambers et al., 2018). Among

them, acetate and propionate can provide energy to peripheral tissues

(den Besten et al., 2013). A previous study reported that acetate was

responsible for maintaining intestine barrier integrity by inhibiting

pathogens infection (Skonieczna-Żydecka et al., 2018). In a recent

study, it was found that acetate could regulate IgA reactivity

(Takeuchi et al., 2021), and propionate contributed to intestinal

epithelial turnover and repair (Bilotta et al., 2021). Butyrate is

highly related to intestine structure, energy providing to epithelial

cells, and regulates immune function (Abdalkareem Jasim et al.,

2022). Isobutyric acid and isovaleric acid may be related to mucosal

and inflammation responses (Li et al., 2022a). Therefore, the

decreased SCFAs in Cryptosporidium-infected yaks might have

affected the intestinal barrier and immunity of the host (Aho et al.,

2021), which potentially caused diarrhea in plateau yaks.

In conclusion, Cryptosporidium is an important zoonotic

protozoon causing severe diarrhea in young animals; however,

limited treatment measures are available. Here we reveal that

Cryptosporidium infection causes dysbiosis and results in reduced

SCFAs in yaks with severe diarrhea, which may give new insights

regarding the prevention and treatment of diarrhea in livestock. The

low sample size remains the limitation of our study.
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