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Rheumatoid Arthritis (RA) is an autoimmune disease characterized by loss of

immune tolerance and chronic inflammation. It is pathogenesis complex and

includes interaction between genetic and environmental factors. Current

evidence supports the hypothesis that gut dysbiosis may play the role of

environmental triggers of arthritis in animals and humans. Progress in the

understanding of the gut microbiome and RA. has been remarkable in the last

decade. In vitro and in vivo experiments revealed that gut dysbiosis could shape the

immune system and cause persistent immune inflammatory responses.

Furthermore, gut dysbiosis could induce alterations in intestinal permeability,

which have been found to predate arthritis onset. In contrast, metabolites

derived from the intestinal microbiota have an immunomodulatory and anti-

inflammatory effect. However, the precise underlying mechanisms by which gut

dysbiosis induces the development of arthritis remain elusive. This review aimed to

highlight the mechanisms by which gut dysbiosis could contribute to the

pathogenesis of RA. The overall data showed that gut dysbiosis could contribute

to RA pathogenesis by multiple pathways, including alterations in gut barrier

function, molecular mimicry, gut dysbiosis influences the activation and the

differentiation of innate and acquired immune cells, cross-talk between gut

microbiota-derived metabolites and immune cells, and alterations in the

microenvironment. The relative weight of each of these mechanisms in RA

pathogenesis remains uncertain. Recent studies showed a substantial role for

gut microbiota-derived metabolites pathway, especially butyrate, in the

RA pathogenesis.
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Introduction

Although the precise etiopathogenesis of rheumatoid arthritis

(RA) is not well understood, it is characterized by loss of immune

tolerance and chronic inflammation (Zhang et al., 2015; Liu et al.,

2016; Zhang et al., 2020; Li et al., 2022). The accumulation and

activation of immune cells, including dendritic cells, macrophages,

neutrophils, and T cell subsets, within the synovial tissue is a cardinal

feature of RA (Buckley and McGettrick, 2018). Abnormalities in the

immune response lead to dysregulated cytokine secretion and

autoantibodies production. Anticitrullinated protein antibodies

(ACPA) and rheumatoid factor (RF) are hallmark autoantibodies of

RA (Burmester et al., 2014; Yue et al., 2019). The inflammatory

environment produced by lymphocytes, macrophages, and fibroblast-

like synoviocytes causes synovitis, leading to joint destruction (Opoku

et al., 2022).

Although the trigger that leads to loss of immune tolerance is

unknown, previous studies have shown that individuals at risk for RA

showed IgA-ACPA before the onset of arthritis (Bos et al., 2014;

Mankia and Emery, 2016; Yue et al., 2019). Therefore, a breach of

tolerance at mucosal surfaces (lungs, gut, or oral mucosa) is

considered an initial event in the pathogenesis of RA that can occur

many years before disease onset. Experimental evidence has suggested

that microbial factors may be possible initiators of autoimmunity

(Moen et al., 2005). However, despite multiple efforts, it has not yet

been possible to identify any microorganism causing RA.

Gut dysbiosis, an altered intestinal microbiota composition, has

been implicated in the pathogenesis of multiple rheumatic diseases,

such as RA, psoriatic arthritis, and axial spondyloarthritis (Gill et al.,

2022; Wang et al., 2022b). The role of gut dysbiosis in the

pathogenesis of RA has been widely studied from experimental

animal models. Growing evidence has suggested the role of gut

microbiota in the onset of arthritis. Studies in mice (Rosser et al.,

2014; Liu et al., 2016; Jubair et al., 2018; Maeda and Takeda, 2019;

Peng et al., 2019; Aa et al., 2020), rats (Huang et al., 2019; Peng et al.,

2019; Yue et al., 2019; Xu et al., 2020; Xu et al., 2022a), and pigs

(Mansson et al., 1971) consistently demonstrate that gut dysbiosis is

associated with inflammatory arthritis development.

The germ-free condition has been found to alleviate arthritis

symptoms in spontaneous mouse models of RA (K/BxN, SKG, and

IL-1 receptor antagonist deficient mouse models) (Van deWiele et al.,

2016; Rogier et al., 2017). However, the introduction of segmented

filamentous bacteria into germ-free mice caused the production of

autoantibodies and arthritis (Ivanov et al., 2009). Furthermore,

studies in rodents have shown that the intestinal microbial

community undergoes marked changes in the pre-clinical immune-

priming phase and precede the onset of inflammatory arthritis

(Rogier et al., 2017; Jubair et al., 2018; Doonan et al., 2019; Zhang

et al., 2019). In addition, differences in the gut microbiota before

arthritis onset between collagen-induced arthritis (CIA)-susceptible

and CIA-resistant mice are consistent with the view that bacteria can

influence RA development (Liu et al., 2016).

Alteration of the gut microbiota via fecal microbiota

transplantation (FMT) has been used to demonstrate the causal

relationship between arthritis and microbiome composition. FMT
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from mice susceptible to CIA into germ-free mice increased the

severity of arthritis. Similarly, the FMT enriched in Prevotella copri

from RA patients exacerbates the arthritis of SKG mice (Maeda et al.,

2016). In another study with mice, it was found that gut-induced

dysbiosis by oral inoculation of Porphyromonas gingivalis exacerbated

arthritis (Sato et al., 2017; Hamamoto et al., 2020). Conversely, it has

been demonstrated that oral administration of Prevotella histicola in

either preventive or therapeutic reduces arthritis severity (Marietta

et al., 2016).

In a recent study, Chriswell et al. showed that Subdoligranulum

didolesgii, a human gut commensal, triggers synovitis in the germ-free

DBA/1 mice, along with deposition of complement and

immunoglobulins (Chriswell et al., 2022). Significantly, mice

monocolonized with S. didolesgii developed arthritis without an

adjuvant trigger. Furthermore, serum transfer from arthritic mice

into gnotobiotic mice injected intraperitoneally led to a rapid onset

of arthritis.

Early administration of probiotics may be a potential strategy for

moderating clinical arthritis. Treatment with B. adolescentis before

arthritis can ameliorate inflammation through rebalancing immune

responses and modulating the gut-associated responses such as gut

microbiota, short-chain fatty acids (SCFAs), and gut permeability

(tight-junction proteins) in the CIA mouse model (Fan et al., 2020a).

To date, limited studies have assessed the relationship between

fungal gut microbiota, helminths, and RA. Lee et al. showed that

intraperitoneal injections of a fungal cell wall component (zymosan or

fungal b-glucan) into SKG mice in a specific pathogen-free induced

autoimmune arthritis. In contrast, injections of an antifungal agent

and antifungal cell wall component did not (Lee et al., 2022). In the

CIA mice model (male DBA/1), gastrointestinal helminths

(Heligmosomoides polygyrus and Trichuris muris) can protect

against intestinal mucosa inflammatory conditions by modulating

the gut microbiota and suppressing the inflammation associated with

gut dysbiosis. The ability of helminths to relieve CIA has been

attributed to their capacity to secrete molecules (ES-62) that exert

immunoregulation and limit host pathology (Doonan et al., 2019).

These findings indicate that some gut bacteria species and fungi

can induce arthritis in a genetically predisposed animal. Interestingly,

significant changes in the fecal microbiota composition occur during

pre-clinical and early onset arthritis stages of the CIA model.

Therefore, gut dysbiosis plays a role in arthritis pathogenesis in

various animal models of RA.

In recent years, studies have explored the association of gut

microbiota with RA. Multiple studies have demonstrated that the gut

microbiota composition on fecal samples differs between RA patients

and healthy controls (HCs) (Scher et al., 2013; Zhang et al., 2015; Chen

et al., 2016; Maeda et al., 2016; Pan et al., 2017; Yue et al., 2019;

Kishikawa et al., 2020; He et al., 2022; Wang et al., 2022a). Despite

discrepancies about the species involved, certain intestinal bacteria

appear to be the link between gut dysbiosis and RA (Table 1). These

findings suggested that gut bacteria can contribute to the pathogenesis

of RA. In a recent meta-analysis, gut dysbiosis in RA patients was

characterized by a depletion of anti-inflammatory butyrate-producing

bacteria (i.e., Faecalibacterium) and enrichment of pro-inflammatory

bacteria (i.e., Streptococcus) (Wang et al., 2022b).
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TABLE 1 Summary of studies evaluating the role of Gut Microbiota in Rheumatoid Arthritis patients.
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Although the underlying mechanisms of the gut-joint axis still

need to be investigated in more detail, new data suggest that gut

microbiota is likely among the key players within the gut–joint axis.

Gut dysbiosis precedes the onset of disease and could lead to changes

in systemic immune responses, loss of tolerance, and the development

of arthritis (Wang et al., 2022b). Notably, modifications in gut

microbiota showed beneficial effects on symptom relief in animal

models of RA, which were associated with the modulation of the

immune response (Horta-Baas et al., 2021). However, the precise

underlying mechanisms by which gut dysbiosis induces the

development of arthritis remain unknown. This review aimed to

highlight the mechanisms by which gut dysbiosis plays a role in the

pathogenesis of RA.
Mechanisms that account for the gut-
joint axis in RA

Researchers have continued exploring the underlying

mechanisms linking gut dysbiosis to RA in recent decades.

Evidence suggests that gut dysbiosis can contribute to arthritis

susceptibility through multiple pathways. Alterations in gut barrier

function, molecular mimicry, alterations in the ratio of T helper 17

(Th17)/regulatory T (Treg) cells, an imbalance of T follicular helper

cells (Tfh)/T follicular regulatory (Tfr) cells, cross-talk between

microbiota-derived metabolites and immune cells, and alterations

in the gut microenvironment are the mechanism proposed to explain

a gut-joint axis through the interaction of gut microbiota with the

host immune system (Figure 1) (Larsen, 2017; Picchianti-Diamanti

et al., 2018; Zhang et al., 2020; Iljazovic et al., 2021a).
Alterations in gut barrier function

Gut barrier function is part of the host’s defense against

microorganisms, preventing pathogens from invading the intestine

into the systemic circulation and extra-intestinal tissues and

triggering immune responses (Correa-Oliveira et al., 2016; Xu et al.,

2022b). The gut mucosal barrier, a monolayer of intestinal epithelial

cells connect via tight junctions, separates the host from enormous

amounts of antigens of both dietary and microbial origin. Mucus

plays a vital part in this barrier by permitting access to host tissue for

many diffusive molecules while limiting both the entry and

colonization of microbes (Foster et al., 2017).

Zonulin is an enterotoxin secreted by enterocytes in response to

dietary and microbial stimuli that disengages proteins zonula

occludens-1 (ZO-1) and occludin from the tight junction (TJ)

complex, leading to intestinal barrier damage, an increased

permeability, translocation of bacterial products in the blood, and

initiation of inflammatory responses (Xu et al., 2022b; Tajik et al.,

2020; Audo et al., 2022). Zonulin induces T-cell-mediated mucosal

inflammation and may control immune cells’ transmigration from

the gut into the joints (Tajik et al., 2020).

The gut barrier is controlled by fine-tuned communications

between gut microbiota and the host immune system (Litvak et al.,

2018). Luminal antigen sampling by enterocytes via the transcellular

pathway and dendritic cells regulates molecular trafficking between
T
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the intestinal lumen and the submucosa, leading to either tolerance or

immune response to non-self. The loss of mucosal barrier function

affects bacterial and antigen trafficking and allows microbes and their

products to cross into the lamina propria and sub-epithelial spaces.

The interaction of Toll-like receptors (TLR) and pathogen-associated

molecular patterns (PAMP) on microbes have the potential to activate

the immune system, leading to the production of pro-inflammatory

cytokines such as interleukin (IL)-6 (IL-6), tumor necrosis factor-

alpha (TNF-a), or IL-1b to eliminate the pathogen (Chiang et al.,

2019; Opoku et al., 2022; Parantainen et al., 2022).

The disruption of the epithelial barrier function occurs in the pre-

clinical phase of RA in murine models and humans (Tajik et al., 2020;

Audo et al., 2022). Gut dysbiosis might trigger the breakdown of gut

barrier integrity and the leakage of microbiota or their metabolites

into gut tissue and even venous or lymphatic circulation, enabling

exposure of the immune cells to bacterial antigens leading to local and

systemic inflammation, increased pro-inflammatory cytokines such

as TNF-a and IL-17A, and differentiation of autoreactive Th17 cells

(Figure 2) (Berthelot et al., 2019; Chiang et al., 2019; Man et al., 2020;

Tajik et al., 2020; Garabatos and Santamaria, 2022; Zhao et al., 2022).

The migration of self-reactive cells to the joints can cause cartilage

and bone damage (Zhao et al., 2022).

Translocation of gut bacteria (dead or alive) to joints from the

intestine may lead to joint inflammation in RA patients. In agreement

with these findings, some studies demonstrated that DNA from a

variety of bacterial species (Prevotella, Fusobacterium, Porphyromonas,

and Bacteroides) or bacterial cell wall constituents had been observed in

serum and synovial fluids from RA patients (van der Heijden et al.,

2000; Reichert et al., 2013; Zhang et al., 2015; Larsen, 2017; Zhao et al.,

2018; Cheng et al., 2022). A recent study demonstrated that microbial
Frontiers in Cellular and Infection Microbiology 05
invasion of the joint synovial fluid happens in the fourth stage of RA

(RAS4) and that Prevotella copri was also found abundant in most

synovial fluid samples of RA patients in RAS4 (Cheng et al., 2022).

It is still unclear how this bacterial nucleic acid (and perhaps still

living bacteria from microbiota) reaches cartilage. Possible

mechanisms, including bacteria or their components, are transported

to the joints via the mesenteric lymphoid organs or the bloodstream.

Another possibility includes that bacterial DNA is secondary to the

migration of immune cells trafficking from the intestine harboring

DNA (macrophages or leukocytes) (van der Heijden et al., 2000;

Martinez-Martinez et al., 2009; Temoin et al., 2012; Berthelot et al.,

2019; Cheng et al., 2022). Tajik et al. show that zonulin-dependent

transmigration of immune cells from the gut into the joints occurs

during the onset of arthritis. Furthermore, larazotide (a zonulin

antagonist) treatment attenuated the enhanced intestinal permeability

and blocked the migration of immune cells from the intestine to the

joints (Tajik et al., 2020).

Enterobacteriaceae and Klebsiella’s lipopolysaccharide (LPS)

could promote inflammation by increasing intestinal permeability

(Chiang et al., 2019). The fiber-containing diet in mice colonized with

P. copri increased inflammatory cytokine production, adaptive

immunity activation, and gut barrier dysfunction (Jiang et al.,

2022). In rodents, intestinal inflammation occurred earlier than the

onset of arthritis, and restoration of the intestinal barrier by probiotics

(Bifidobacterium adolescentis), butyrate, or using larazotide, was

found to attenuate arthritis (Tajik et al., 2020; Fan et al., 2020a;

Audo et al., 2022).

New-onset RA (NORA) patients had altered gut barrier integrity

with lower expression of TJ proteins occludin and claudin-1 in

intestinal epithelial cells on ileal mucosal and decreased ZO-1 in
FIGURE 1

Mechanisms explained the relationship between intestinal dysbiosis and the development of rheumatoid arthritis.
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the colon, as well as increased serological gut permeability markers

(i.e., zonulin/ZRPs, LBP and sCD14) (Tajik et al., 2020; Audo

et al., 2022).

The gut microbiota produces metabolites that can maintain

intestinal barrier function. Butyrate, a microbiota-derivated

metabolite, contributed to the intestinal barrier function by

multiple mechanisms. Butyrate increased the expression of the TJ

protein claudin-1 and induced the redistribution of the TJ proteins

occludin and ZO-1 in the cellular membrane (Tajik et al., 2020; Xu

et al., 2022b). These protective effects seem largely concentration-

dependent, with higher doses causing epithelial barrier disruption

(Blaak et al., 2020).

Furthermore, butyrate is an essential regulator of intestinal barrier

function through stimulation of mucin synthesis and quality (Blaak

et al., 2020; Marazzato et al., 2022). Luminal-derived butyrate is a

primary form of energy for the epithelial cells; 70% of the total

amount of oxygen consumed by human colonocytes in vitro was used

for butyrate oxidation (Correa-Oliveira et al., 2016; Van de Wiele

et al., 2016; Kang et al., 2017; Lin and Zhang, 2017; Cani, 2018; Blaak

et al., 2020; Fan et al., 2020b). These findings showed that butyrate is

essential for a healthy colonic epithelium. Similarly, Indole-3-

formaldehyde (3-IALD), a tryptophan metabolite, plays a role in

maintaining intestinal epithelial barrier integrity and suppressing

inflammatory responses dependent on AHR/IL-22 in mice (Xu

et al., 2022b).
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Some studies have investigated the mechanisms by which

intestinal bacteria can alter the permeability of the intestinal

barrier. Studies in vitro and in murine models of arthritis have

demonstrated the arthrogenic role of Collinsella. In vitro

experiments showed that the CACO-2 cell line cultured in the

presence of Collinsella aerofaciens enhances gut permeability by

decreasing the expression of tight junction protein ZO-1 in

epithelial cells (Chen et al., 2016). In the humanized murine model

of arthritis, DQ8 mice orally gavaged with C. aerofaciens showed an

increase in gut permeability, and inoculation of C. aerofaciens into

CIA-susceptible mice induces severe arthritis (Zhang et al., 2015;

Chen et al., 2016). The overabundance of Collinsella in the gut

microbiome has been reported in RA patients (Chen et al., 2016; El

Menofy et al., 2022; Ruiz-Limon et al., 2022). In a recent study, C.

aerofaciens was elevated exclusively in early RA (Cheng et al., 2022).

Therefore, the overabundance of C. aerofaciens might contribute to

the early breach in gut barrier integrity. In another study, the

expansion of Collinsella was independently associated with

inflammatory activity in RA patients (Ruiz-Limon et al., 2022).

These findings suggest that the genus Collinsella seems to have an

essential role in the pathogenesis of RA and its severity.

Similarly, the mucin-degrading activity of Akkermansia

muciniphila can affect gut barrier function (Lin and Zhang, 2017).

In the CIA mouse model, an overabundance of A. muciniphila was

observed at the onset of arthritis (Peng et al., 2019). In one study,
FIGURE 2

Effect of intestinal dysbiosis on intestinal permeability and B and T cell polarization during the development of rheumatoid arthritis. Increased Zonulin secretion is
followed by increased intestinal permeability (“leaky gut”) associated with the disassembly of ZO-1 protein from the tight junction complex. Bacteria or their
components are transported to the joints via secondary lymphoid organs or the bloodstream. After encountering the microbiota-derivated antigen presented by
antigen-presenting cells (APCs), naive CD4+ T cells differentiate into various subsets, including at least Th1, Th17, and Tfh cells.
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patients with active RA had a higher relative abundance of

Akkermansia than those with inactive RA (Chiang et al., 2019).

This effect may be related to its ability to degrade mucus and thus

increase the exposure of resident immune cells to gut microbial

antigens (Chiang et al., 2019). Furthermore, Akkermansia has also

been associated with pro-inflammatory pathways, including the

upregulation of B- and T-cell receptor signaling and the induction

of M1-like macrophage response (Fan et al., 2021).

On the other hand, a probiotics-rich diet has been reported to

ameliorate some RA symptoms by restoring barrier mechanisms in

the gut mucosal (Opoku et al., 2022). Therapeutic administration of

human gut-derived Prevotella histicola reduced the incidence and

severity of CIA. P. histicola increased expression of ZO-1, preserving

gut epithelium integrity in the context of inflammation (Marietta

et al., 2016). Lactobacillus and Bifidobacterium could limit the

development of autoimmune diseases in genetically susceptible

individuals by increasing the expression of TJ proteins (Hills et al.,

2019). Bacteroides fragilis sphingolipids promote gut barrier integrity

(Garabatos and Santamaria, 2022).
Molecular mimicry

Gut bacteria can activate the immune system and trigger T-cell

responses against self-antigens by molecular mimicry (Jethwa and

Abraham, 2017; Zhang et al., 2020). The molecular mimicry or

crossreactivity hypothesis proposes that an exogenous substance

(i.e., a microbial agent with antigenic similarity to self-antigens)

may trigger an immune response against self-antigens (Rashid and

Ebringer, 2012). Prevotella contributes to arthritis development in

mice by activating autoreactive T cells specific for the arthritis-

relevant autoantigen Ribosomal Protein L23a (RPL23A) (Garabatos

and Santamaria, 2022). Similarly, peptides derived from Bacteroides

fragilis, Candida albicans, and Streptococcus sanguis are similar to

collagen-type-II and induced cross-reactive responses in the CIA

model (Costalonga et al., 2002; Yordanov et al., 2005; Zheng et al.,

2020; Zhou et al., 2020).

Pianta et al., using discovery-based proteomics to detect HLA-

DR-presented peptides in synovia or peripheral blood mononuclear

cells, identified N-acetylglucosamine-6-sulfatase (GNS) and filamin A

(FLNA) as targets of T and B cell responses in 52% and 56% of RA

patients, respectively. GNS and FLNA were present in synovial fluid

and inflamed synovial tissue (Pianta et al., 2017). The HLA-DR-

presented GNS peptide has an evident homology with epitopes from

Prevotella sp. (arylsulfatase protein) and Parabacteroides sp. (protein

N-acetylgalactosamine-6-sulfatase). Similarly, the HLA-DR-

presented FLNA peptide has homology with epitopes from proteins

of Prevotella sp. (WP_028897633) and Butyricimonas sp.

(WP_065219401.1). Therefore, sequence homology between T cell

epitopes of two self-proteins and multiple gut microbial peptide

epitopes may link gut microbiota and autoimmunity in RA.

Zhang et al. (Zhang et al., 2015) describe several gut microbial

proteins as molecular mimicry for human self-antigens (collagen XI

and HLA-DR4/1). Molecular mimicry of RA-associated antigens such

as Collagen XI by gut microbial genes from Clostridium, Eggerthella,

Gordonibacter, Bacteroides, Eubacterium, Klebsiella, Coprococcus, and

Citrobacter was also suggested, with a number of the genes belonging
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to metagenomic linkage groups enriched in RA gut samples. RA-

enriched genes from Citrobacter, Allistipes, Clostridium, Shigella,

Bacteroides, Ruminococcus, Escherichia, Collinsella, and Klebsiella

mimicked motifs in HLA-DRB1*04013.

Microbial antigens can be presented to CD4+ T cells by dendritic

cells and macrophages, leading to the differentiation of inflammatory

T cell subtypes. Therefore, molecular mimicry may partly explain the

relationship between alterations in intestinal barrier function and the

development of autoimmunity in RA patients.
Gut dysbiosis induces the development of
chronic inflammation and autoimmunity

The leading site of inflammation RA is the synovium, which

includes a cellular surface layer of macrophages and fibroblast-like

synoviocytes and an underlying tissue layer that contains fibroblasts,

blood vessels, and lymphatics arrayed within a loose collagenous

matrix. Immune cells ingress into the synovium is a critical process in

the pathogenesis of RA (Qu et al., 2019). Pro-inflammatory cytokines

and chemokines stimulate macrophages, neutrophils, T cells, and B

cell infiltration (Block et al., 2016). Th1 and Th17 cells produce

excessive pro-inflammatory cytokines, stimulating B cells to produce

autoantibodies and macrophages to produce pro-inflammatory

cytokines (Wang et al., 2019c; Fan et al., 2020a). These cytokines

lead to synovial hyperplasia, pannus formation, and destruction of

cartilage and joints. Pro-inflammatory cytokines induce fibroblasts to

produce matrix metalloproteinases and RANKL (receptor activator of

nuclear factor kB ligand), which mediate the destruction of bone and

cartilage tissue, leading to the development of RA (Zhao et al., 2022).

Gut dysbiosis can lead to inflammation in the intestinal mucosa

and tissue damage, promoting the loss of immune tolerance and the

development of autoimmunity (Inda et al., 2019). Gut microbiota,

primarily through microbiota-derived metabolites, has a role in

regulating T cell functions and could disrupt gut immune

homeostasis through abnormal antigen presentation and

modulating the adaptive immunity, especially in the polarization of

näive T cells to Th17 cells and generation of autoreactive B cells (Lin

and Zhang, 2017; Wang et al., 2019b; Di Gangi et al., 2020; Zhang

et al., 2020; Garabatos and Santamaria, 2022; Marazzato et al., 2022).

Gut dysbiosis leads to inflammation by alterations in the ratio of

Th17/Treg cells and an imbalance of Tfh/Tfr cells.
Gut microbiota can modulate the
Th17/Treg balance

Bacterial strains from the human intestine can regulate the

differentiation and activation of Th17 and Treg cells (Narushima

et al., 2014). Intestinal mucosa contains many Th17 and Treg cells

(Zhao et al., 2022). Th17 cells usually are in the gut in a microbiota-

dependent manner, maintaining tissue homeostasis and fighting

against extracellular bacteria and fungi. Contrarily, intestinal Treg

cells maintain immune tolerance to dietary antigens and gut

microbiota, retain tolerance to self-antigens, and suppress the

activation and proliferation of self-reactive effector T cells (Horta-

Baas et al., 2017; Haase et al., 2018; Schinnerling et al., 2019; Sun et al.,
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2019). Microbiota-induced Tregs attenuate intestinal damage caused

by exaggerated immune responses against pathogens (Kamada et al.,

2013). Under physiological conditions, the functions of Th17 and

Treg cells are in balance (Chiang et al., 2019).

Th17 mainly secrete IL-17 and IL-22 and intervenes in developing

chronic immune-mediated inflammatory diseases, including RA

(Feng et al., 2022). IL-17A is a potent inducer of matrix

metalloproteinases, recruits neutrophils to the joint, and stimulates

osteoclastogenesis resulting in cartilage and bone destruction

(Amdekar et al., 2013; Pineda et al., 2014; Lee et al., 2015; du Teil

Espina et al., 2019; Huang et al., 2019; Marazzato et al., 2022).

Alteration in the ratio between Th17 and Treg cells plays a crucial

role in the early phase of RA development (Figure 2) (Lee et al., 2015;

Marazzato et al., 2022).

Gut-derived Th17 cells are thought to be essential in the link

between gut microbiota and RA (Buckley and McGettrick, 2018). In

animal models of arthritis, a pathogenic role of gut-derived Th17 cells

has been demonstrated (Table 2). Microbiota from CIA-susceptible

mice showed an altered ratio of Th17/Tregs cells, characterized by

increased Th17 cells and reduced Treg cells (Pineda et al., 2014; Liu

et al., 2016; Wu et al., 2018). Before the onset of CIA, Th17 cells

aggregate in germinal centers. The release of autoantibodies and

cytokines into circulation carries them to tissues and organs,

leading to the activation of macrophages culminating in the release

of pro-inflammatory cytokines (IL-6, IL-1, TNF-a, and IL-17). Germ-

free mice conventionalized with the gut microbiota from CIA-

susceptible mice, which have higher levels of serum IL-17, develop

greater severity of arthritis (Liu et al., 2016). Maeda et al.

demonstrated that FMT from RA patients in germ-free SKG mice

could activate autoreactive T cells and an increased number of Th17

cells in the intestine compared with SKG mice inoculated with fecal

microbiota of HCs (Maeda et al., 2016).

On the contrary, some bacterial gut microbiota species exert an

anti-inflammatory effect by stimulating Treg cells. Therapeutic
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administration (preventive or therapeutic approach) of human

gut-derived P. histicola reduced the incidence and severity of CIA

in HLA DQ8-transgenic mice by triggering the generation of IL-10-

producing Treg cells, decreasing Th17 responses in the intestine and

CD11c+CD103+ dendritic cells in the gut and the spleen (Marietta

et al., 2016). Rats orally gavaged with B. adolescentis before

immunization had significantly higher Tregs frequency and lower

TNF-a than that in the late B. adolescentis treated group (Fan

et al., 2020a).

In the mouse gut, colonic Treg induced by Clostridium bacteria

are vital players in gut homeostasis and prevent colitis (Alameddine

et al., 2019). In the human colon microbiota, Clostridium IV

Faecalibacterium prausnitzii induces the formation of Treg cells via

the activation of dendritic cells and causes the secretion of IL-10 by T

cells (Garabatos and Santamaria, 2022; Wang et al., 2022b). Another

gut bacteria, Bacteroides fragilis, via its carbohydrate antigen

polysaccharide A (PSA), may promote the differentiation of Treg in

vitro or mice through dendritic cell modulation. Furthermore, PSA

stimulates Treg cells and suppresses Th17 cell responses through an

IL-2-dependent mechanism (Horta-Baas et al., 2017).

In humans, gut bacteria have been shown to influence the

polarization of T-cell subpopulations. At the phylum level,

Verrucomicrobiota showed a positive correlation with the absolute

number of Tregs, while Firmicutes showed a negative correlation with

the total number of Th17 cells in RA patients (Wang et al., 2022a).

Increased abundance of Prevotella and Collinsella in patients with RA

are correlated with the production of Th17 cell cytokines. Bacterial

species associated with increased Th17 or Treg are presented in

Figure 1 (Liu et al., 2016; Sun et al., 2019; Fan et al., 2020b;

Garabatos and Santamaria, 2022; Yang et al., 2022). Human-

derived Clostridia are potent inducers of Treg cells (Narushima

et al., 2014). Bacterial strains belonging to Clostridia cluster IV and

XIVa stimulate the secretion of transforming growth factor beta

(TGF-b) by intestinal epithelial cells, promoting the expansion of
TABLE 2 Summary of possible underlying mechanisms by which intestinal dysbiosis contributes to the development of arthritis in rodents with collagen-
induced arthritis.

Model Animal Key findings

Marietta
et al.

CIA DBA/1 mice Mice gavaged with P. histicola showed reduced IL-2, IL-17, TNF-a, and increased IL-4 and IL-10.
Mice treated with P. histicola showed a reduction in anti-CII antibodies.
Mice treated with P. histicola had increased numbers of CD103+ intestinal dendritic cells.
P. histicola treated mice had a significantly lower gut permeability.

Hiu et al. CIA DBA/1J mice The butyrate treatment alleviated arthritis severity.
IL-1b, IL-6, and IL-17A were significantly downregulated in the butyrate group. In contrast, butyrate upregulated the mRNA
expression level of IL-10 in synovial tissues.
Butyrate promoted the polarization of Treg but not Th17 cells.

Xu et al. CIA Sprague–
Dawley rats

Did not find a correlation between changes in gut bacteria
and changes in amino acids metabolites (tryptophan, histidine, and phenylalanine)
Gut dysbiosis was characterized by bacteria related to butyrate metabolism.
Tripterygium glycosides could lead to a variation in metabolites in the tryptophan and phenylalanine pathways.

Jiang et al. CIA DBA/1J mice P. copri was capable of activating the TLR4 pathway and producing LPS-induced inflammation.
The fiber-containing diet-fed (FCD) mice displayed elevated levels of anti-collagen antibodies and more Th17 cells in the
mesenteric lymph nodes.

Tajik et al. CIA DBA/1J mice Intestinal inflammation and an increase in intestinal permeability precede the onset of arthritis.
Th1 and Th17 cells accumulate in the intestine before arthritis onset.
Butyrate levels drop before the onset of arthritis,
Reducing intestinal barrier permeability attenuates arthritis.
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Treg cells in the colonic lamina propria (Kamada et al., 2013; Lin and

Zhang, 2017; Sun et al., 2019).

The Th17/Treg cells ratio is skewed in favor of Th17 cells in RA

patients compared to controls. One study demonstrated an alteration in

Th17/Treg balance, with higher Th17 levels and lower Treg levels in the

peripheral blood, from early RA patients compared to HCs (Marazzato

et al., 2022). Furthermore, RA patients present an impaired function of

circulating Treg cells and an increase in Th17 cells in plasma and

synovial fluid (Horta-Baas et al., 2017). Treg cells in RA patients show a

decreased suppressive activity, which can be related to the potential of

Treg cells to convert into Th1-like Treg cells, secreting interferon-

gamma (INF-g) as well as Th17-like Treg cells, secreting IL-17 (Haase

et al., 2018; Fan et al., 2020b). In a recent study, Wang et al. found that

the number of Tregs and Th17/Tregs ratio were negatively correlated

with disease activity in RA patients (Wang et al., 2022a). In another

study, Chiang et al. demonstrated a positive correlation between the

abundance of the phylum Euryarchaeota with serum levels of IL-6 or

IL-17A (Chiang et al., 2019). These results indicate a correlation

between gut microbiota and RA disease activity.
Gut microbiota can modulate the
Tfh/Tfr balance

The production of antibodies occurs through B cells, which

require Tfh cells for activation. B cells produce antibodies against

extracellular pathogens and toxins. Antibodies are produced within

germinal centers, regulated by interactions between B, Tfh, and Tfr

cells (Ribeiro et al., 2022). Tfh cells are a CD4 T cell lineage that

interacts with B cells to form germinal centers, promote

differentiation into plasma cells, promote class-switching, somatic

hypermutation, and the generation of high-affinity antigen-specific

memory B cells and antibody-producing cells (Diamanti et al., 2016;

Wang et al., 2019b; Zeng et al., 2022). Therefore, Tfh cells control

initiation and the outcome of the germinal center B cell response. IL-6

and IL-21 can induce naive CD4+ T cells to differentiate into Tfh cells.

Furthermore, IL-21 produced by Tfh cells is a factor that potently

promotes B cell activation (Xie et al., 2019).

Microbial antigens can induce differentiating of B cells, with the

help of Tfh cells, to plasma cells. Segmented filamentous bacteria are

responsible for the induction of Tfh cells in Peyer’s patches (PP).

Using the K/BxN mice model, Teng et al. demonstrated that PP Tfh

cells were essential for segmented filamentous bacteria-induced

arthritis despite producing auto-antibodies occurring in systemic

lymphoid tissues, not PP. Consequently, gut microbiota can

regulate arthritis development by driving the induction and gut Tfh

cells migration to the systemic lymphoid tissues and inducing

autoantibody production (Teng et al., 2016).

Excessive Tfh cell activity can lead to autoimmunity. The proper

regulation of Tfh cell differentiation is essential for normal immune

function and for preventing autoimmune disease. Tfr cells can

suppress Tfh cell-mediated humoral immunity by downregulating

the production of effector cytokines such as IL-4, IFN-g, and IL-21,

which are essential for B cell activation and class switch

recombination (Wang et al., 2019b; Takahashi et al., 2020).

Consequently, Tfr cells maintain tolerance during the B cell
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response. The increase of Tfh and decrease in the number of Tfr

cells are associated with the growth of self-reactive B cells, which lead

to the production of high levels of self-reactive autoantibodies (Xie

et al., 2019; Wang et al., 2019c; Cao et al., 2020; Takahashi

et al., 2020).

Self-reactive antibodies are present in approximately 70 to 80% of

RA patients (Table 1). Some studies show that the imbalance of Tfh

and Tfr cells may be involved in the association between intestinal

dysbiosis and RA pathogenesis. Block et al. demonstrated that

antibiotic treatment of IL-17-deficient mice inhibited arthritis,

refuting the concept of a role for Th17 cells in gut-regulated K/BxN

mice-induced arthritis. Instead, the authors proposed that the ability

of the gut microbiota to regulate arthritis was dependent on Tfh cells

(Block et al., 2016). In another study, Zeng et al. showed that Tfh and

Tfr cells were increased in spleen germinal centers in the CIA mice

model and their levels and functions returned to normal after the

anti-TNF-a and anti-IL-1b treatment (Zeng et al., 2022). Although

the Tfh/Tfr ratio did not change significantly, the relative

enhancement of B cell function remained as the final result, which

may be related to the relatively higher Tfh cell level.

Two studies in experimental models report a relationship between

microbiota-derivated metabolite butyrate and alterations with Tfh/Tfr

cells. Dietary butyrate supplementation conferred anti-inflammatory

benefits in a CIA mice model (DBA/1). A butyrate-rich diet started on

the first day of collagen immunization significantly lowers the overall

incidence of arthritis and reduces the severity of joint inflammation.

These effects were explained by rebalancing Tfh cells and Tregs and

reducing antibody production (He et al., 2022). In another study,

butyrate prevented arthritis development in the CIA and SKG mice

model. However, butyrate does not prevent collagen antibody-induced

arthritis (CAIA) or the development of CIA when butyrate begins after

booster immunization. These findings suggested that butyrate

suppresses the initial phase of Tfh cell-mediated autoimmune

responses rather than the effector phase of arthritis development

(Takahashi et al., 2020).

In RA patients, a reduced number of Tfr cells has been associated

with the elevation of autoantibodies and disease severity (Takahashi

et al., 2020). Wang et al. have shown that both circulating Tfh and Tfr

cells were increased in RA patients compared with HCs. The percent

Tfh cells positively correlated with the serum levels of serum RF,

ACPA, and disease activity score in 28 joints (DAS28) index.

Conversely, the Tfr/Tfh ratio was negatively correlated with the

level of serum RF, ACPA, and DAS28 (Wang et al., 2019c).

Similarly, Cao et al. found that peripheral blood Tfh cells were

increased in RA patients, while the frequency of Tfr cells and the

ratio of Tfr/Tfh were significantly decreased compared to HCs.

Furthermore, the Tfr/Tfh ratio was positively correlated with RF

and negatively correlated with the DAS28 index (Cao et al., 2020).

In another study, Ribeiro et al. reported that the frequency of

circulating Tfh and Tfr cells was decreased in patients with RA and

that the Tfr/Tfh ratio was similar to HCs (Ribeiro et al., 2022). These

results show inconsistent results on the role of the Tfr/Tfh ratio in the

pathogenesis of RA. Further studies are required to determine the role

of alterations in Tfh and Tfr cells in RA’s pathogenesis and whether

the gut microbiota modulates these cells during the development

of arthritis.
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Cross-talk between microbiota-derived
metabolites and immune cells

Recent works revealed that the relationship between gut dysbiosis

and RA could be mediated by gut microbiota-derived metabolites (Yu

et al., 2021; Yao et al., 2022). Microbiota-derived metabolites are

critical for immune regulation (Haase et al., 2018; Iljazovic et al.,

2021b; Yang et al., 2022). Gut dysbiosis may lead to alterations in fecal

metabolites, and a deficiency of beneficial bacteria and their

metabolites may stimulate the inflammatory response (Yu et al.,

2021). Among gut bacterial metabolites, SCFAs, amino acids, and

their metabolites have been implicated in the pathogenesis of RA

(Chen et al., 2021).
Short-chain fatty acids

SCFAs are small organic acids produced by intestinal bacteria

through the fermentation of the cecum and colon’s undigested food

components (mainly dietary fiber and carbohydrates) (Marazzato

et al., 2022). SCFAs can regulate multiple metabolic pathways both in

the gut and outside the intestine and are associated with a variety of

physiological processes, such as energy balance, maintenance of the

intestinal barrier, sugar/lipid metabolism, and immunomodulatory

properties, thus contributing to disease prevention (Xu et al., 2022b).

The main SCFAs produced by intestinal bacteria in the human

gut are acetate, propionate, and butyrate. Other SCFAs, include

pentanoate, hexanoate, and heptylate (Jiang et al., 2022). Gram-

negative bacteria, such as Bacteroides, primarily generate propionate

and acetate, whereas gram-positive bacteria, such as Firmicutes,

produce large amounts of butyrate (Lin and Zhang, 2017; Lee et al.,

2019; Zhang and Frenette, 2019; Marazzato et al., 2022). Propionate

and acetate are absorbed at the gut level and pass through

bloodstream circulation, reaching and affecting distant tissues.

Conversely, butyrate carries on its functions within the gut

(Marazzato et al., 2022). The concentration of fecal SCFAs depends

on dietary intake, the host’s gut microbiota community and host-

microbiota metabolite flux, and the liver’s and small intestine’s

absorptivity (Fan et al., 2020a).

The immunomodulatory properties of SCFAs are related to their

effect on the innate and acquired immune system cells by inhibiting

histone deacetylase (HDACs) (Correa-Oliveira et al., 2016; Lee et al.,

2019). SCFAs could regulate neutrophils and macrophages and thus

modulate the magnitude of inflammatory responses (Zhang and

Frenette, 2019; Man et al., 2020; Wang et al., 2020). Acetate and

propionate activate cell surface receptor GPR43 to induce neutrophil

chemotaxis (Hills et al., 2019). Both in vivo and in vitro studies have

demonstrated that SCFAs stimulate the polarization of M2

macrophages, which mainly exert an anti-inflammatory function

(Jiao et al., 2020). At the level of intestinal macrophages, SCFAs

cause down-regulation of the pro-inflammatory cytokine profile (Jiao

et al., 2020). Furthermore, SCFAs play a role in colonic Treg cell

homeostasis, reduced IgG, IgA, and IgE secretion, and plasma cell

differentiation in human B cells in a dose-dependent manner (Xu

et al., 2022b)
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Neutrophils play essential roles in the pathogenesis of RA by

promoting inflammation and facilitating autoantibody production

(Cecchi et al., 2018; Zhang and Frenette, 2019; Aa et al., 2020). In RA,

increased recruitment of neutrophils in synovial fluid occurs at the

onset of this disorder (Zhang et al., 2015). Macrophages are one of the

most abundant cell types in the synovium and are centrally involved

in the pathogenesis of RA (Mondanelli et al., 2019; Yang et al., 2020).

Activated synovial macrophages produce cytokines (IL-1b, IL-6, and
TNF-a) that promote T-cell polarization and inflammation by

activating a wide range of immune and non-immune cells (e.g.,

fibroblast and osteoclast) (Yang et al., 2020).

Results on differences between fecal SCFAs concentrations in RA

patients compared to HCs demonstrate a reduced amount of SCFAs

in samples of RA patients. In one study, levels of acetate, propionate,

butyrate, and valerate were decreased in RA patients (Yao et al., 2022).

In another study, early-RA patients presented significantly reduced

propionate levels (Marazzato et al., 2022). Similarly, Takahashi et al.

and Rosser et al. showed that the stool concentrations of butyrate

were significantly lower in new-onset RA patients and inactive RA

patients, respectively (Rosser et al., 2020; Takahashi et al., 2020). He

et al. reported significant reductions in serum and stool butyrate levels

in RA patients (He et al., 2022). Conversely, in Rosser et al. study,

there was no difference in propionate or butyrate but a significant

increase in acetate levels in serum samples of RA patients compared

to HCs.

SCFAs play a role in colonic Treg cell homeostasis.

Administration of SCFAs to mice with CIA can reduce the severity

of arthritis by their ability to increase Foxp3+IL-10–producing Tregs

(Smith et al., 2013). In another study, SCFAs positively correlated

with Tregs and negatively correlated with pro-inflammatory

cytokines (IL-17A, IL-6, TNF-a) in CIA rats (Fan et al., 2020a). In

RA patients, the levels of acetate, propionate, and butyrate positively

correlated with the frequency of B cells (Yao et al., 2022). SCFAs can

diminish B cell differentiation and the production of autoantibodies

(Piper et al., 2019; Yao et al., 2022). In addition, the production of

SCFAs is one of the proposed mechanisms by which gut microbiota

affects Treg cell differentiation (Yang et al., 2022). Colonization with

Clostridia induces differentiation of peripheral Treg cells that have a

critical role in suppressing inflammatory responses (Lin and

Zhang, 2017).
Butyrate

Butyrate is the most extensively investigated SCFAs (Hui et al.,

2019). Butyrogenic bacteria are strictly anaerobic and oxygen-

sensitive saccharolytic bacteria from the Firmicutes phylum.

Clostr id ia c lusters IV and XIVa, Bacteroides f rag i l i s ,

Ruminococcaceae, and Eubacterium are the mainly intestinal

bacteria producers of butyrate (Mizuno et al., 2017; Rogier et al.,

2019; Takahashi et al., 2020; Wang et al., 2020).

Butyrate is critically involved in maintaining mucosal integrity

and immune regulation (Guo et al., 2019; Lee et al., 2019; Garabatos

and Santamaria, 2022; Wang et al., 2022b). The butyrate drives the

metabolism of surface colonocytes toward mitochondrial beta-
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oxidation of fatty acids, which is essential for maintaining epithelial

hypoxia (Litvak et al., 2018). Gut epithelial cells directly take up

butyrate, and a lack of butyrate is associated with immune

dysregulation in the intestine (Foster et al., 2017).

Butyrate has anti-inflammatory properties by regulating

inflammatory gene expression and induction of Treg cells (Foster

et al., 2017). Butyrate regulates pro-inflammatory cytokine expression

(e.g., IL-1, IL-6, TNF-a), inhibits the expression of LPS-induced

cytokines, inhibits LPS-mediated macrophage migration, modulates

the function of dendritic cells (increased phagocytic activity and

reduced T-cell stimulatory capacity), promoted conversion of naive

T-cells into immunosuppressive Treg (Hui et al., 2019; Blaak et al.,

2020; Wang et al., 2020). Butyrate suppresses pro-inflammatory

effectors in lamina propria, macrophages, neutrophils, and

differentiation of dendritic cells (DCs) from bone marrow stem cells

via HDACs inhibition or suppressing the NF-kB activation (Correa-

Oliveira et al., 2016; Koh et al., 2016; Wang et al., 2020).

There is mechanistic evidence for the effect of butyrate on

mucosal immunity and inflammation, mainly from cell lines and

animal models. In vitro, DCs treated with butyrate increase the

expression of indoleamine 2,3-dioxygenase 1 and aldehyde

dehydrogenase 1A2. These enzymes attenuate the immune

activation through tryptophan depletion and the generation of

retinoic acid, a molecule with immunosuppressive properties

(Correa-Oliveira et al., 2016). Butyrate increased IL-10 and IL-23

production by macrophages and DCs (Correa-Oliveira et al., 2016;

Mizuno et al., 2017; Wang et al., 2019a).

The effects of butyrate in relieving arthritis appear to occur

indirectly by modulating the function of immune cells, especially

Treg cells. In cell cultures, the treatment of butyrate on naïve T cells

cultured under the Treg-cell-polarizing conditions promoted the IL-

10 expression of Treg cells and further inhibited the pro-

inflammatory cytokines secreted by Th17 cells (Hui et al., 2019).

In CIA, butyrate treatment attenuated arthritis onset, decreased

serum zonulin concentrations, and reduced inflammation-mediated

small intestinal shortening (Tajik et al., 2020). In the antigen-induced

model of arthritis (AIA), in stool samples, there was a reduction of

butyrate and acetate levels during the acute and remission phase of

arthritis compared to pre-arthritic mice (Rosser et al., 2020).

The effects of supplementation with butyrate in the pathogenesis

of RA have been evaluated in experimental mouse models. Dietary

butyrate supplementation conferred anti-inflammatory benefits in a

mouse model of arthritis by rebalancing Tfh cells and Tregs and

reducing antibody production. He et al. compared a butyrate-rich diet

(started on the first day of collagen immunization) to normal chow in

the CIA model (He et al., 2022). The butyrate supplementation

increased butyrate levels in stool and blood, accompanied by a

significantly lower overall incidence of arthritis, reduced severity of

joint inflammation, and milder arthritis. Dietary butyrate

supplementation increased serum IL-10 levels and decreased serum

IL-6 and autoantibodies. Butyrate increased the number of Tfr cells,

especially in the draining lymph nodes, and reduced germinal center

B cells. The anti-inflammatory benefits of butyrate in the DBA/1 mice

model were explained by rebalancing Tfh cells and Tregs and

reducing antibody production.
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Yao et al. demonstrated that supplementation of the three SCFAs

before the onset of CIA in mice improved arthritic symptoms,

increased the Bregs frequency, and decreased transitional B and

follicular B cell frequency (Yao et al., 2022). These therapeutic

effects were dependent on FFA2 receptors in CD19+ B cells. The

fecal levels of acetate, propionate, and butyrate were positively

correlated with the frequency of Bregs peripheral blood but not

Tregs. Interestingly, treatment before the onset of CIA significantly

improved joint inflammation and bone damage in mice, while

administration after the start of CIA was less effective (Yao et al.,

2022). Similarly, Rosser et al. reported that the supplementation with

butyrate reduces the severity of arthritis in a Breg-dependent manner.

The supplementation with butyrate before disease induction, but not

acetate and propionate, reduced arthritis in Wild-Type mice

compared to control mice (Rosser et al., 2020). However, butyrate

supplementation failed to suppress disease in B-cell-deficient mice.

These findings suggest that Bregs are necessary for the butyrate-

mediated suppression of arthritis. Butyrate activates aryl-

hydrocarbon receptor (AhR)-dependent gene transcription in B

cells, supporting Breg function and inhibiting germinal center B cell

and plasma cell differentiation. Nevertheless, butyrate no suppresses

arthritis severity in Ahrfl/-Mb1cre/+, which has a B cell-specific

deletion of AhR. Butyrate supplementation was associated with

reduced TNF-a, IL-6, IL-17 production, and Th17 cell frequency.

Interestingly, butyrate-mediated suppression was decreased in mice

after Treg was depleted with an anti-CD25 depleting antibody

treatment. Therefore, Treg also plays a role in mediating the

suppression of arthritis by butyrate. These findings are consistent

with the pleiotropic immunomodulatory effect of butyrate (Figure 3).

A recent study showed that the effect of microbial fermentation of

fiber on host health could be context-dependent and species-

dependent. Colonization of P. copri and a high-fiber diet led to the

overproduction of organic acids, including fumarate, succinate, and

SCFAs. Succinate promoted pro-inflammatory responses in

macrophages. Furthermore, supplementation with succinate

exacerbated arthritis in the CIA model. In patients with RA,

succinate is abundantly present in synovial fluids, and these fluids

elicit IL-1b release from macrophages (Jiang et al., 2022).

Gut dysbiosis in RA patients is characterized by a deficiency of

butyrate-producing bacteria and an overwhelming number of

butyrate bacteria consumers (He et al., 2022). In RA patients,

higher butyrate levels were associated with increased Treg levels

(Xu et al., 2022b). Patients with NORA displayed an increase in

Bacteroidetes and a decrease in Firmicutes, Proteobacteria, and

Actinobacteria compared to levels in HCs (Sun et al., 2019). It is

possible that the reduction of Firmicutes can lead to inflammation in

RA patients (Wang et al., 2022a).

In RA patients, total abundances of intestinal bacteria butyrate

producers were lower in patients ACPA-positive compared to ACPA-

negative patients. Conversely, butyrate consumers bacteria were

higher in ACPA-positive than ACPA-negative patients.

Furthermore, the increased abundance of butyrate-producing

bacteria was associated with a lower incidence of deformed joint

count and ACPA-positive, suggesting the potential roles of butyrate in

alleviating inflammation. These anti-inflammatory effects may be
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attributed to increased Treg polarization, decreased Tfh and Th17

(but not Th1 or Th2) cell numbers, and a decrease in the production

of pro-inflammatory cytokines. A higher proportion of circulating

Treg was associated with high levels of stool butyrate (He et al., 2022).
Amino acids

Metabolism of amino acids by intestinal bacteria may regulate

inflammation and exert modulatory effects on the immune system

(Mondanelli et al., 2019; Panfili et al., 2020; Yu et al., 2021). The cross-

talk between amino acid metabolites and the immune cells has

emerged as a possible mechanism by which gut dysbiosis could lean

toward the development of inflammation or autoimmunity during the

development of arthritis.

Microbiota-dependent tryptophan catabolites are abundantly

produced within the intestine and are known to affect the

maintenance of epithelial barrier function and immune

homeostasis. The gut microbiota can also metabolize dietary

tryptophan into indole derivatives. In host tissues, indole

derivatives are known as ligands for the AhR, a ligand-activated

transcription factor. AhR signaling contributes to immune

homeostasis by modulating T cell differentiation. Indole derivatives

are implicated in immune cell maturation and promote Treg
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differentiation while suppressing Th17 differentiation (Wang et al.,

2019a; Yu et al., 2021; Hanlon et al., 2022; Yang et al., 2022). AhR

expression and activation in DCs or T cells translate into Treg cell-

mediated immunoregulatory effects, which dampen immune

responses. However, in the presence of 6-formylindolo[3,2-b]

carbazole, activation of AhR can promote the development of Th17

cells. Therefore, AhR plays a dual depending on the ligand nature, cell

express ion, and presence of other s ignals in the cel l

microenvironment (Panfili et al., 2020).

B cell-specific deletion of AhR in mice exacerbated arthritis,

diminished IL-10 production by Bregs cells, and reduced the

frequency of Tregs cells and expansion of inflammatory Th1 and

Th17 cells compared with B cell AhR-sufficient mice (Piper et al.,

2019). Rosser et al. demonstrated that butyrate reduced experimental

arthritis severity via an increase in 5-hydroxy indole-3-acetic acid

(5-HIAA), an indole derived from the decomposition of serotonin.

The activation of AhR promoted the differentiation of B cells into

Breg cells (Rosser et al., 2020).

Tryptophan metabolism would exert protective effects in

experimental models of arthritis but not in all RA patients. RA

patients may have reduced concentrations of tryptophan,

3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid

(3-HAA), along with increased concentrations of kynurenine and

xanthurenic acid, indicating that the kynurenine pathway is active in
FIGURE 3

Pleiotropic immunomodulatory effect of butyrate.
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RA patients (Panfili et al., 2020). Few studies have evaluated the

relationship between amino acid metabolites produced by gut

microbiota and the pathogenesis of RA.

Recent work describes that the most highly enriched Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway in RA

patients was amino acid metabolism (e.g., alanine, aspartate, and

glutamate) (Wang et al., 2022a). Two studies in Chinese RA patients

reported that the amino acid pathways were significantly altered

between the RA patients compared to HCs. Wang et al. (Wang

et al., 2018) demonstrated decreased levels of tryptophan and

glycine in RA patients compared to HCs; treatment with

methotrexate returned amino acid levels to baseline. In another

study by Yu et al., according to KEGG pathway enrichment

analysis, the amino acid biosynthesis pathways were depleted in the

RA group. These amino acids included L-arginine and ornithine,

aromatic amino acids, and branched amino acids. Furthermore, RA

patients exhibited lower levels of tryptophan metabolites in feces (Yu

et al., 2021).
Alterations in the gut microenvironment

The metabolic activity of the microbiota could also affect

pathogen colonization. The butyrate influences the gut microbiota

by driving the metabolism of surface colonocytes toward

mitochondrial beta-oxidation of fatty acids, which is essential for

maintaining epithelial hypoxia. The consequent epithelial hypoxia

helps maintain a microbial community dominated by obligate

anaerobic bacteria, which benefit from converting fiber into SCFAs

(Litvak et al., 2018).

The metagenomic analysis from stool samples of RA patients

demonstrates an altered redox environment (Scher et al., 2013; Zhang

et al., 2015; Kishikawa et al., 2020). Iron transport-related genes were

enriched in early RA patients (Jeong et al., 2019). Kishikawa et al.

showed that the abundance of the R6FCZ7 gene, related to the redox

reaction, was significantly decreased in the metagenome of RA

patients compared to HCs (Kishikawa et al., 2020). The R6FCZ7

sequences were linked to Bacteroides uniformis, Bacteroides

rodentium, Bacteroides fragilis, and Bacteroides spp. These findings

have suggested that the redox function of the microbiome, especially

the genus Bacteroides, may have an essential role in the pathology of

RA (Kishikawa et al., 2020).
Discussion

This review highlights the multiple mechanisms by which

alterations in the gut microbiota contribute to the pathogenesis of

RA. The relationship between gut dysbiosis and joint diseases, called

the ‘gut–joint axis,’ has been suggested to be involved in the

pathogenesis of arthritis, such as RA, Psoriatic Arthritis, and

Spondyloarthritis. The association of gut dysbiosis with chronic

inflammation and the fact that gut dysbiosis is essential to trigger

arthritis in experimental mice models suggest a role of gut dysbiosis in

the onset of RA. It has been hypothesized that the interactions
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between gut microbiota and host lead to mucosal inflammation and

the breaking of immune tolerance (Chiang et al., 2019).

There is evidence that RA may be associated with changes in the

composition of fecal bacterial communities. However, some studies

have demonstrated the association between fungal microbiota,

gastrointestinal helminths, and RA. Findings derived from animal

models suggest that gut dysbiosis is related to the onset of RA, a stage

in which activation of the autoimmune system occurs, leading to

chronic inflammation (Burmester et al., 2014).

Growing evidence reveals the mechanisms underlying the link

between gut microbiota, their metabolites, and cells (immune and

non-immune) involved in RA pathogenesis. Gut dysbiosis affects the

functions of the intestine and other organs, including joints.

Consequently, persistent gut dysbiosis is associated with intestinal

inflammation and increased Th17/Treg cell ratio. It can contribute to

a break in immunological tolerance and tissue damage by various

mechanisms, including translocation of bacteria across the gut

barrier, T helper cell skewing, and crossreactivity with autoantigens.

A possible hypothesis could be that gut dysbiosis trigger the migration

of self-reactive B or T cells from intestinal sites to secondary lymphoid

organs and arthritic joints. However, the mechanisms by which gut

dysbiosis can contribute to RA onset are still incompletely understood

and remains to be further elucidated.

Experimental animal models have been helpful in the

understanding of the mechanism associated between gut dysbiosis

and arthritis. Most studies have focused on the effects of a specific

family or strain of bacteria or gut microbiota derivatives on the

differentiation of Treg and Th17 cells. In contrast, other types of cells

have been less well-studied (i.e., neutrophils, osteoclasts, or fibroblast-

like synoviocytes).

Evidence suggests that gut dysbiosis is involved in the

pathogenesis of RA, but to date, finding proof of causality is still a

significant challenge in this field. This review showed the recent

findings highlighting the complex regulatory networks between gut

microbiota and the immune system. Gut microbiota diversity is easily

altered by multiple factors such as drugs, diet, health status, hygiene,

and surrounding environmental microorganisms. Furhermore, the

inflammatory and metabolic pathways are complex networks context-

dependent by various factors, including genetics, diet, cell status, and

environmental factors (Yang et al., 2022). The mechanism of gut

microbiota involvement in the occurrence and development of

inflammatory diseases is very complex, and research on how

intestinal metabolites and the host interact to affect diseases is a hot

topic (Xu et al., 2022a). Further studies are needed to assess the

impact of intestinal dysbiosis and gut microbiota-derived metabolites

rather than specific bacterial species to understand the mechanisms

involved in RA pathogenesis.

A more comprehensive understanding of the underlying

mechanisms in the relationship between gut dysbiosis and RA will

help to develop new treatment strategies. The study of gut microbiota-

derivated metabolites is of great interest due to their therapeutic

potential (He et al., 2022). The beneficial effects of butyrate obtained

in animal studies warrant further investigation of its therapeutic

potential in the form of butyrate-rich diets or by butyrate

supplementation. Similarly, considerable evidence shows that
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alterations of the intestinal barrier are related to the onset of AR, and

that gut dysbiosis could influence the inflammatory activity of RA

patients through the regulation of gut permeability. Therefore, future

studies may employ strategies to avoid a leaky gut (e.g., diet, SCFAs

supplementation, or zonulin antagonists).

The authors hope this review’s results can provide a valuable

resource for future research to advance our understanding of the

possible underlying mechanism in the relationship between gut

dysbiosis and RA.
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