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Combined analysis of gut
microbiome and serum
metabolomics reveals novel
biomarkers in patients with
early-stage non-small cell
lung cancer

Boxiong Ni, Xianglong Kong, Yubo Yan, Bicheng Fu,
Fucheng Zhou and Shidong Xu*

Department of Thoracic Surgery, The Third Affiliated Hospital of Harbin Medical University,
Harbin, China
Non-small cell lung cancer (NSCLC) is the predominant form of lung cancer and is

one of the most fatal cancers worldwide. Recently, the International Association

for the Study of Lung Cancer (IASLC) proposed a novel grading system based on

the predominant and high-grade histological patterns for invasive pulmonary

adenocarcinoma (IPA). To improve outcomes for NSCLC patients, we combined

serummetabolomics and fecal microbiology to screen biomarkers in patients with

early-stage NSCLC and identified characteristic microbial profiles in patients with

different grades of IPA. 26 genera and 123 metabolites were significantly altered in

the early-stage NSCLC patients. Agathobacter, Blautia, Clostridium, and

Muribaculacea were more abundant in the early-stage NSCLC patients

compared with healthy controls. For the different grades of IPA, the

characteristic microorganisms are as follows: Blautia and Marinobacter in IPA

grade type 1; Dorea in IPA grade type 2; and Agathobacter in IPA grade type 3. In

the metabolome results, the early-stage NSCLC group mainly included higher

levels of sphingolipids (D-erythro-sphingosine 1-phosphate, palmitoyl

sphingomyelin), fatty acyl (Avocadyne 1-acetate, 12(S)-HETE, 20-Carboxy-

Leukotriene B4, Thromboxane B3, 6-Keto-prostaglandin f1alpha, Sebacic acid,

Tetradecanedioic acid) and glycerophospholipids (LPC 20:2, LPC 18:0, LPC 18:4,

LPE 20:2, LPC 20:1, LPC 16:1, LPC 20:0, LPA 18:2, LPC 17:1, LPC 17:2, LPC 19:0).

Dysregulation of pathways, such as sphingolipid metabolism and sphingolipid

signaling pathway may become an emerging therapeutic strategy for early-

NSCLC. Correlation analysis showed that gut microbiota and serum metabolic

profiles were closely related, while Muribaculacea and Clostridium were the core

genera. These findings provide new biomarkers for the diagnosis of early-stage

NSCLC and the precise grading assessment of prognostic-related IPAs, which are

of clinical importance and warrant further investigation of the underlying

molecular mechanisms.
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Introduction

Lung cancer, one of the deadliest malignancies, poses a huge

threat to human health with increasing morbidity and mortality

worldwide (Siegel et al., 2018). It consists of non-small cell lung

cancer (NSCLC) and small cell lung cancer (SCLC), with NSCLC

being the most common form, accounting for more than 80% of lung

cancers (Herbst et al., 2018; Duma et al., 2019). Lung adenocarcinoma

(LADC), the most common pathologic type of NSCLC, is an

important factor that discriminates patient prognosis (Travis et al.,

2015). Recently, a novel grading system based on the predominant

and high-grade histological patterns for invasive pulmonary

adenocarcinoma (IPA) has been proposed by the International

Association for the Study of Lung Cancer (IASLC) (Moreira et al.,

2020). The model has consistently been found to correlate with

prognosis and consists of: Grade 1: lepidic predominant tumor;

Grade 2: acinar or papillary predominant tumor, both with no or

less than 20% of high-grade patterns; and Grade 3: any tumor with

20% or more of high-grade patterns (solid, micropapillary and or

complex gland). The established grading system is based on

prognostic-related histological criteria and has utility and

prognostic significance for IPA (Hou et al., 2022). Importantly,

most lung cancer patients are initially diagnosed at an advanced

stage of the disease, often with a poor prognosis. Therefore,

developing biomarkers with high sensitivity and specificity to assess

lung cancer progression and treatment effects will greatly improve

disease management and patient survival.

The gut microbiome, recognized as the second genome of humans

(Qin et al., 2010), has attracted considerable attention in recent

decades. It contains more than 100 times genes than the human

genome and performs key roles on human health. Dysregulation of

the gut microbiota has been found to be associated with many cancers

(Matson et al., 2018; Santoni et al., 2018), and disruption of

metabolite balance caused by altered microbiome homeostasis may

promote tumorigenesis. Recent studies have shown that the

occurrence and development of NSCLC are also related to the

human gut microbiota, and the interactions between these microbes

can affect the function of multiple pathways including metabolism,

inflammation, and immunity (Zhuang et al., 2019; Zheng et al., 2020;

Lu et al., 2021; Zhao et al., 2021). These studies suggest that gut

microbiota signatures have the potential to diagnose and assess the

development and progression of non-small cell lung cancer.

Despite extensive progress in linking the gut microbiome to lung

disease (the ‘gut-lung axis’) (Keely et al., 2012; Dumas et al., 2018;

Zhang et al., 2020a), so far, the interactions between the gut

microbiome and metabolome in patients with early-stage NSCLC

have not been reported. Here, we recruited 43 patients with early-

stage non-small cell lung cancer and 35 healthy individuals, and their

stool and serum samples were tested and analyzed accordingly.

Comparing the composition of gut microbiota and serum

metabolites by bioinformatics analysis to search for early

pathogenesis and potential biomarkers in patients with non-small

cell lung cancer. On the other hand, we sought to link gut microbiota

changes with a novel grading system for pulmonary adenocarcinoma,

thereby providing a rationale for accurate diagnosis and typing of

early-stage lung cancer.
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Materials and methods

Study design and samples

A total of 78 participants who came to the Department of

Thoracic Surgery of the Third Affiliated Hospital of Harbin Medical

University were recruited, including 43 patients with early-stage non-

small cell lung cancer and 35 healthy relatives of these patients

(Table 1). Sixty-three serum (35 NSCLC and 28 healthy) and

seventy-eight stool (43 NSCLC and 35 healthy) samples were

collected. Fecal and serum samples were collected according to

protocols approved by the local ethics committee, and written

informed consent was obtained from all participants.

Collate clinical parameter information (including age, gender,

body mass index (BMI), tumor stage, novel adenocarcinoma grade,

smoking, family history, etc.), and exclude any unhealthy conditions

by electrocardiogram and chest X-ray results. The main exclusion

criteria were as follows: (1) ≤ 18 years old or > 80 years old, (2)

individuals who had received antibiotics or probiotics in the past 3

months, (3) underlying diseases such as diabetes and hypertension.
Sample collection

Fecal and serum samples were collected in the morning after an

overnight fast (≥8 h). The stool samples were divided into 3 equal parts

(200 mg each), placed in sterile cryovials, and immediately transported

to the laboratory for storage at -80°C. Blood samples were collected in

coagulation tubes. After the blood was collected, the blood was gently

mixed up and down for about ten times, and then centrifuged at 1800g

for 10 minutes. The supernatant (serum) was collected in a 1.5 ml

centrifuge tube, centrifuged at 13,000 g for 2 min, and the supernatant

was transferred to a cryovial and stored at -80°C for further analysis.
DNA extraction

DNA from different samples was extracted using the CTAB

according to manufacturer ‘s instructions. Analyze the integrity and

fragment size of the extracted DNA using 1% agarose gel

electrophoresis. And NanoDrop 2000 (Thermo Scientific, USA) was

used to measure the extracted DNA quality.
16S rDNA sequencing

PCR amplification was performed using the following primers:

341F (5 ’-CCTACGGGNGGCWGCAG-3 ’) and 805R (5 ’-

GACTACHVGGGTATCTAATCC -3’). The 5’ ends of the primers

were tagged with specific barcodes per sample and sequencing

universal primers. And then the PCR products were purified by

AMPure XT beads (Beckman Coulter Genomics, Danvers, MA,

USA) and quantified by Qubit (Invitrogen, USA). The amplicon

pools were prepared for sequencing and the size and quantity of

the amplicon library were assessed on Agilent 2100 Bioanalyzer

(Agilent, USA) and with the Library Quantification Kit for Illumina
frontiersin.org
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(Kapa Biosciences, Woburn, MA, USA), respectively. The libraries

were sequenced on NovaSeq PE250 platform.
Microbiome data analysis

Paired-end reads were assigned to samples based on their unique

barcodes and truncated by cutting off the barcode and primer

sequence. Merge paired-end reads using FLASH (Reyon et al.,

2012). Raw reads were quality filtered according to fqtrim (v0.94)

under specific filter conditions to obtain high quality clean labels.

Chimeric sequences were filtered using Vsearch software (v2.3.4)

(Caporaso et al., 2010). After dereplication using DADA2, the

representative sequence with single-base accuracy is obtained, that

is, the ASV (Amplicon Sequence Variants) feature table and feature

sequence. Alpha diversity and beta diversity were calculated by

QIIME2 after random normalization to the same sequences, and

the graphs were drawn by R package. Blast was used for sequence

alignment, and the characteristic sequences of each representative

sequence were annotated with the SILVA database. LEfSe (Segata

et al., 2011) analysis and Wilcoxon rank sum tests were used to
Frontiers in Cellular and Infection Microbiology 03
identify genera that were differentially abundant between groups of

subjects. Other diagrams were implemented using the R package

(v3.5.2) and GraphPad Prism software.
Analysis of serum samples

Metabolites in serum samples were extracted using 80% methanol

buffer. 400 µL of pre-chilled 80% methanol was added to 100 µL of the

sample, vortex for 1 min, incubated for 5 min at room temperature,

then overnight at -20°C. After centrifugation at 4000 g for 20 min, the

supernatant was transferred to a new 96-well plate. QC samples were

prepared by pooling together 10 mL of each extract. Metabolites were

stored at -80°C prior to liquid chromatography-mass spectrometry

(LC-MS) analysis (Want et al., 2006; Barri and Dragsted, 2013).
Non-targeted metabolomics analysis

UHPLC-MS/MS analyses were performed using a Vanquish

UHPLC system (Thermo Fisher, Germany) coupled with an
TABLE 1 Characteristics of health people and early-stage NSCLC patients.

Characteristics Early-stage NSCLC
(n = 43)

Healthy control
(n = 35)

P value

Age (mean ± SD) 58.63 ± 9.92 55.8 ± 8.44 0.178

Male/female (No.) 18/25 18/17 0.399

BMI (kg/m2) (mean ± SD) 24.99 ± 3.42 24.29 ± 2.82 0.323

Tumor type, n (%) —

ADC 38 (88.37) —

SCC 5 (11.63) —

Disease stage, n (%) —

0 1 (2.33) —

I 34 (79.07) —

II 8 (18.6) —

Novel IASLC grading of IPA, n (%) —

I 7 (16.28) —

II 12 (27.91) —

III 10 (23.26) —

Smoking status, n (%) 0.172

Smoker 16 8

Non-smoker 27 27

Tumor metastasis, n (%) —

Non-metastasis 43 (100) —

Metastasis 0 —

Family history, n (%) 0.132

Yes 27 16

No 16 19
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Orbitrap Q ExactiveTMHF-X mass spectrometer (Thermo Fisher,

Germany). The sample was injected onto a Hypesil Gold column (100

× 2.1 mm, 1.9 mm) using a 12-minute linear gradient at a flow rate of

0.2 mL/min. The eluents for positive polarity mode were 0.1% formic

acid–water (A) and methanol (B). The eluents used for negative

polarity mode were 5 mM pH 9.0 ammonium acetate (A) and

methanol (B). The Q ExactiveTM HF-X mass spectrometer was

operated in positive/negative mode with a spray voltage of 3.5 kV, a

capillary temperature of 320°C, a sheath gas flow of 35 psi, an

auxiliary gas flow of 10 L/min, S-lens RF class 60, Auxiliary gas

heater temperature 350°C.
Metabolomic data analysis

Statistical analysis was performed using statistical software R (R

version R-3.4.3), Python (Python 2.7.6 version) and CentOS (CentOS

6.6 version). When the data were not normally distributed, area

normalization was used for positive state transformation method.

These metabolites were annotated using the following databases:

the KEGG database (https://www.genome.jp/kegg/pathway.html), the

HMDB database (https://hmdb.ca/metabolites) and the LIPIDMaps

database (http://www.lipidmaps.org/). Partial least squares

discriminant analysis (PLS-DA) was performed in metaX (Wen

et al., 2017). Metabolites with VIP > 1 and P value < 0.05 and fold

change (FC) ≥ 1.2 or FC ≤ 0.833 were considered differential

metabolites. Volcano plots were used to filter metabolites of interest

based on log2 (fold change) ≥ 0.263 or log2 (fold change) ≤ -0.263,

and -log10 (P-Value) metabolites from ggplot2 in R language. For

cluster heatmaps, data were normalized using z-scores of regions of

differential metabolite intensity and plotted in R by the heatmap

package. The functions of these metabolites and metabolic pathways

were investigated using the KEGG database. Metabolic pathway

enrichment of differential metabolites was carried out.
Statistical analysis

Patient characteristics were expressed as mean ± standard

deviation (SD), differences between groups were compared using

the c2 test or independent samples t-test. Wilcoxon rank-sum test

(for two groups) and Kruskal-Wallis test (for more than two groups)

were used to compare differences among microbial groups. Student’s

t-test and fold change analysis were used to compare metabolites

between groups. The relationship between microorganisms and

metabolites was assessed using Spearman rank correlation analysis.

Values of P < 0.05 were considered as statistically significant.
Results

Gut microbial profile of early-stage
NSCLC patients

To determine whether gut microbial changes were associated with

early-stage NSCLC, we examined different groups of fecal microbiome

samples, including 43 NSCLC patients and 35 healthy individuals, by
Frontiers in Cellular and Infection Microbiology 04
16S rRNA gene sequencing. All patients with non-small cell lung

cancer are in the early stage and have not developed distant

metastasis, including stage 0 (adenocarcinoma in situ, AIS) (2.33%),

stage I (79.07%), and stage II (18.6%). The detailed clinical

characteristics of all participants are shown in Table 1. There were

no significant differences in age, gender, smoking status body mass

index (BMI) and family history between the two groups (P > 0.05).

Using amplicon sequence variants (ASVs) to track the dynamics

of bacterial abundance in feces from different groups, Venn plots

visualized the number of ASVs shared and unique between the

healthy control (HC) group and the early-stage NSCLC group

(Figure 1A). We found the two groups shared 1821 ASVs, and the

early-stage NSCLC group had more unique ASVs than HC group

(Supplementary Table 1). And then we analyzed the community

structure of gut microbes (Supplementary Table 2). At the phylum

level, Firmicutes, Bacteroidota, Proteobacteria, and Actinobacteriota

were the main components in both the HC group and early-stage

NSCLC group, with the abundance of Firmicutes and Proteobacteria

being higher in the NSCLC group (Figure 1B). At the family level,

compared to the HC group, the abundance of Lachnospiraceae,

Bacteroidaceae, and Enterobacteriaceae were higher in early-stage

NSCLC group, while the abundance of Bifidobacteriaceae,

Prevotellaceae and Veillonellaceae were lower (Figure 1C). At the

genus level, apart from the similar abundance of Faecalibacterium in

both HC group and NSCLC group, Bacteroides and Escherichia-

Shigella were slightly more abundant in early-stage NSCLC group,

while Bifidobacterium, Megamonas, Prevotella_9 and Dialister were

relatively lower (Figure 1D).

Next, statistical analysis of microbial abundance was performed.

Both early-stage NSCLC group and HC group showed comparable

numbers of observed OTUs (operational taxonomic units). The

Shannon and Simpson indexes both showed that community

diversity was similar among the two groups. The Chao1 index

showed no significant differences in community richness between

early-stage NSCLC group and HC group. These data suggest that

global community alpha diversity is similar between early-stage

NSCLC group and HC group (Figure 2A). When comparing

microbial community structure, beta diversity showed differences

between the two groups (Figure 2B).
Specific gut microbiome signatures in early-
stage NSCLC patients

We next compared gut microbes with significant differences in

expression abundance between HC and early-stage NSCLC groups at

the phylum and genus levels. In total, 1 phylum and 12 genera were

significantly decreased in the abundance of early-stage NSCLC

patients (Figure 3B), while 14 genera were conversely enriched

(Figure 3A). Desulfobacterota, the only phylum with significant

differences between these two groups, was more abundant in the

HC group. At genus level, Agathobacter, Blautia, Clostridium, an

uncharacterized genus of family Muribaculacea, Cetobacterium, an

uncharacterized genus of family Pasteurellaceae and eight other

genera were significant abundant in early-stage NSCLC than in HC

group, whereas Lanchnoclostridium, Prevotella, Lachnospia,

Catenibacterium, Oscillospira, UGG-003, Lachnospiaceae_UGG-010,
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an uncharacterized genus of family vandinBe97, Acidaminococcus,

Prevotellaceae_NK3B31_group, Oxalobacter were significantly

enriched in the HC group.

Linear discriminant analysis (LDA) effect size (LEfSe) (Segata

et al., 2011) was then used to generate cladograms to reveal differences

in taxa abundance between early-stage NSCLC and HC (Figure 4A).

There were 25 and 8 bacterial taxonomic clades that were significantly

different in HC and early-stage NSCLC groups, respectively [log10

(LDA score) > 3] (Figure 4B). We found that Clostridia class was

significantly higher in the early-stage NSCLC group. Agathobacter

and Blautia were the prominent gene level biomarkers for early-stage

NSCLC group. For healthy controls, the Desulfovibrionia and

Negativicutes were the abundant class, and Prevotella_9, Prevotella,

Lachnospira and Catenibacterium were the most prominent genus
Frontiers in Cellular and Infection Microbiology 05
level biomarkers. Overall, these findings demonstrated that the early-

stage NSCLC group had relatively lower microbial abundance than

the HC group and was sufficient enough to distinguish healthy

individuals from early-stage NSCLC patients.
Gut microbial compositions correlate with a
novel grading system of IPA

Adenocarcinoma was the main type of pathology in NSCLC (38/

43, 88.37%). In this study, after ruled out adenocarcinoma in situ (1

case) and minimally invasive adenocarcinoma (8 cases), we classified

invasive pulmonary adenocarcinoma (IPA) into three groups (grade

1, n =7; grade 2, n =12; grade 3, n =10) according to the new grading
BA

FIGURE 2

Comparison of a- and b-diversity of gut microbiota in HC and early-stage NSCLC groups (A) Differences in a diversity between early-stage NSCLC and HC
based on the observed outs, shannon, simpson and chao1. (B) PCoA shows b diversity differences between the two groups (Bray-Curtis, R = 0.032, P< 0.05).
B

C D

A

FIGURE 1

The characteristics of gut microbiota community structure (A) The Venn diagram shows unique and common ASVs in early-stage NSCLC and HC.
(B–D) The top 10 representative species and their proportions in the two groups at the level of phylum (B), species (C), and genus (D).
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system proposed by the IASLC (Moreira et al., 2020; Deng et al.,

2021). Differences in microbial composition between healthy patients

and IPA patients with different grades under the new grading system

were analyzed at the phylum and species levels (Supplementary

Figure 2). Relative abundance analysis showed clear distinctions

between high and low abundance taxa, and used color gradients to

reflect similarities and differences in the composition of multiple

samples at each taxonomic level. As shown in Supplementary

Figure 2, according to the change of the color gradient, the

differences between the four groups of samples can be seen

intuitively. The data showed that the dominant flora of IPA

patients in each group was different from that of healthy people,

suggesting a correlation between the florae features and the

histopathological process of invasive lung adenocarcinoma.

Next, we analyzed biomarkers between IPA patients with different

grades and healthy controls by multi-level LEfSe (Figure 4C). There

were significant differences in 7, 7, 3, and 4 bacterial taxonomic clades
Frontiers in Cellular and Infection Microbiology 06
in the healthy group and in the invasive pulmonary adenocarcinoma

grades type 1, type 2, and type 3 group, respectively [log10 (LDA

score) > 3] (Figure 4D). The key species were Erysipelatoclostridium

in HC; Blautia and Marinobacter in IPA grade type 1; Dorea in IPA

grade type 2; and Agathobacter in IPA grade type 3. These results

showed that the fecal gut microbiota was specific for a novel graded

type of invasive lung adenocarcinoma.
General overview of the serum metabolome

Previous studies have revealed that gut microbiota has a

significant impact on blood metabolite profiles (Wikoff et al., 2009;

Wilmanski et al., 2019). To further explore changes in gut microbe-

host interactions, we performed LC-MS/MS-based non-targeted

metabolomic analysis of serum from healthy individuals and

patients with early-stage NSCLC. A total of 866 metabolites were
B

A

FIGURE 3

Differences in gut microbiota abundance between early-stage NSCLC and HC (A) Increased microbiota abundance in early-stage NSCLC at the genus
level (P< 0.05). (B) Decreased microbiota abundance in early-stage NSCLC at the phylum and genus levels (P< 0.05). P values were calculated using the
two-tailed Wilcoxon rank-sum test.
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identified and quantified, including 553 positive ions and 313 negative

ions (Supplementary Table 3).
Differentially abundant metabolites between
HC and early-stage NSCLC groups

Supervised multivariate statistical analysis using partial least

squares discriminant analysis (PLS-DA) to maximize screening for

differential metabolites across groups. The PLS-DA score plot showed a
Frontiers in Cellular and Infection Microbiology 07
clear separation between the HC group and the early-stage NSCLC

group (Figure 5A). Permutation tests indicated that the data were not

overfit, the R2Y and Q2 values were 0.87 and -0.4, respectively,

validating the OPLS-DA model (Figure 5B). The differentially

expressed metabolic ions are screened by p value of the t-test and

variable difference contribution (VIP), where VIP≥1.0, P< 0.05 as the

filter condition. A total of 123 different metabolites were identified in

serum between the HC and early-stage NSCLC groups (Supplementary

Table 4), most of which were upregulated. Figures 6 revealed the

changes in these metabolites. In the HC group, the abundant
BA

FIGURE 5

Principal component analysis. (A) PLS-DA score plot shows the difference in metabolites between groups. (B) Comparison of real and permuted model
parameters in validation tests.
B

C D

A

FIGURE 4

Linear discriminant analysis (LDA) combined with effect size (LEfSe). (A) Cladograms of the phylogenetic distribution of the microbiota with significant
differences between early-stage NSCLC and HC analyzed by LefSe. (B) Histogram of the distribution of LDA values for LEfSe analysis of intestinal flora in
the two groups (LAD score ≥ 3). (C) Cladograms of the phylogenetic distribution of the microbiota with significant differences across IPA grade I, grad II,
grade III and HC analyzed by LefSe. (D) Histogram of the distribution of LDA values for LEfSe analysis of intestinal flora in four groups of samples (LAD
score ≥ 3). The listed bacterial floras are significantly gathered for their respective groups (P < 0.05, Kruskal‐Wallis test).
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metabolites mainly included carbohydrates and carbohydrate

conjugates (Deoxyribose 5-phosphate), steroids and steroid

derivatives (Testosterone sulfate, Glycocholic acid, D-erythrose 4-

phosphate) and amino acids, peptides and analogs (Ergothioneine).

In contrast, metabolites with higher levels in the early-stage NSCLC

group mainly included sphingolipids (D-erythro-sphingosine 1-

phosphate, palmitoyl sphingomyelin), fatty acyl (Avocadyne 1-

acetate, 12(S)-HETE, 20-Carboxy-Leukotriene B4, Thromboxane B3,

6-Keto-prostaglandin f1alpha, Sebacic acid, Tetradecanedioic acid) and

glycerophospholipids (LPC 20:2, LPC 18:0, LPC 18:4, LPE 20:2, LPC

20:1, LPC 16:1, LPC 20:0, LPA 18:2, LPC 17:1, LPC 17:2, LPC 19:0). In

order to show the relationship between samples and the expression

differences of metabolites in the two groups more intuitively, we

performed hierarchical clustering analysis, and the results for the top

50 metabolites of p values with significant differential expression were

shown in Supplementary Figure 3.

The KEGG pathway enrichment analysis was then performed on

the differentially abundant metabolites (Supplementary Table 5). The

results showed that the differential metabolites of early-stage NSCLC

and HC were mainly involved 20 pathways (Figure 7), including

sphingolipid metabolism, sphingolipid signaling pathway, primary

bile acid biosynthesis, the pentose phosphate pathway, carbon

metabolism, arginine biosynthesis, phenylalanine, tyrosine and

tryptophan biosynthesis, etc.
Multi-omics analysis revealed differences
between HC and early-stage NSCLC groups

To further investigate microbiota-metabolite interactions

associated with early-stage NSCLC, we assessed correlations

between 27 genera and 32 metabolites (Figure 8A; Supplementary

Table 6). The results showed that the abundance of several microbial

genera in the early-stage NSCLC group were positively correlated

with serum metabolite levels (Sperman’s correlation analysis, P<0.05,

Figure 8A). Then, based on the above microbiome data, a co-

occurrence network was constructed to elucidate the major
Frontiers in Cellular and Infection Microbiology 08
interactions between the early-stage NSCLC associated microbiome

and metabolites (Figure 8B). The results showed correlations between

Muribaculacead, Clostridium, Blautia, Agathobacter and the related

metabolites. From the graph, Muribaculacea and Clostridium seemed

to be the core genera given that they were positively correlated with

metabolites enriched in early-stage NSCLC and negatively correlated

with certain metabolites enriched in HC (eg, Deoxyribose 5-

Phosphate and Testosterone sulfate).
Discussion

Lung cancer is the malignant tumor with the highest morbidity

and mortality worldwide. NSCLC, the most common form of lung

cancer, has a poor prognosis mainly because it is diagnosed at an

advanced stage. One way to improve outcomes for patients with

NSCLC is early diagnosis. With the development of imaging

technologies such as CT imaging, positron emission tomography-

computed tomography (PET-CT), and magnetic resonance imaging

(MRI), the detection rate of early-stage NSCLC has increased

significantly. However, no effective early-stage NSCLC biomarkers

are currently available. In this study, we explored the changes in gut

microbiota and serum metabolic profiles of patients with early-stage

NSCLC, and combined these two omics to search for possible

pathogenesis and potential biomarkers. At the same time, we also

identified for the first time the characteristics of the intestinal flora of

lung adenocarcinoma patients with different grades under the new

grading system (Moreira et al., 2020; Deng et al., 2021), which is of

great significance for precise treatment and control of prognosis.

Changes in gut flora abundance are closely related to the

occurrence and development of cancer (Schwabe and Jobin, 2013;

Garrett, 2015). In the present study, we provided evidence that early-

stage NSCLC patients have lower abundances of Bacteroidota and
FIGURE 6

The significant different metabolites between early-stage NSCLC and
HC group by Volcano plot Blue dots on the left are metabolites down-
regulated in NSCLC vs HC, red dots on the right represent metabolites
up-regulated in NSCLC vs HC, grey dots are metabolites that are not
significantly different.
FIGURE 7

The KEGG pathway enrichment scatter plot displays important
discriminatory metabolic processes of early-stage NSCLC vs HC patients.
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Actinobacteriota, while relatively higher abundances of Firmicutes

and Proteobacteria (Figure 1B), suggesting the potential links between

gut bacteria and early-stage NSCLC. In general, dysregulation of

gastrointestinal metabolism is repeatedly associated with a decreased

Firmicutes/Bacteroidota ratio (Etxeberria et al., 2015; Li et al., 2018),

which was found opposite in our study. We attempted to identify the

reasons for the differences from the populations included and the

experimental design. Since our subjects were all newly diagnosed and

treated patients and their relatives represented healthy controls, the

influence of genetic factors was excluded. We consider that the

differences may be due to subject selection criteria or patient

heterogeneity. On the other hand, previous studies included lung

cancer patients with multiple pathological types (such as small cell

lung cancer, NSCLC, etc.) or with different stages (such as advanced

lung cancer, etc.). While in this study, we focused on exploring the gut

microbiota of patients with early-stage NSCLC.

In the search for key discriminating microorganisms, it was found

that Agathobacter and Blautia were the prominent differential genera

of early-stage NSCLC (Figure 4B). Previous clinical studies have

shown that two butyrate-producing gut bacteria (Agathobacter and
Frontiers in Cellular and Infection Microbiology 09
Blautia) can favorably modulate the host immune response, were

enriched in advanced NSCLC patients with better prognosis, and

could become potential biomarkers for metastatic NSCLC patients

treated with immune checkpoint inhibitors (Hakozaki et al., 2020;

Martini et al., 2022). Consistently, Clostridia, another significantly

genus increased in early-stage NSCLC, is thought to produce short-

chain fatty acids (SCFAs) that provide essential nutrients and energy

to colonic epithelial cells, induce regulatory T cells, and have anti-

inflammatory effects by enhancing epithelial barrier integrity

(Scaldaferri et al., 2013). All these indicated that the gut microbiota

of patients with early-stage NSCLC is closely related to host

immunity. Since multiple gut microbiota can disrupt host

homeostasis by affecting the level of the host immune system,

changes in this balance will lead to chronic inflammation and

immune-related diseases, thereby promoting or attenuating the

carcinogenic process (Kau et al., 2011; Zeng et al., 2016; Khan et al.,

2020). In our study, the subjects were all early-stage NSCLC patients,

and the abundance of these immune-related gut microbiota was

significantly increased, which may slow down the further

development of NSCLC by modulating the host immune system.
B

A

FIGURE 8

Multi-omics approaches revealed microbiota-metabolite interactions in early-stage NSCLC patients Heatmap demonstrates the correlations between 27
differentially abundant genera and 32 differentially abundant metabolites (Spearman’s correlation analysis). P-value, *p<0.05; **p<0.01; ***p<0.001 (B)
Early-stage NSCLC associated networks based on integrated fecal microbiome and serum metabolome.
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Correspondingly, the key differential genus in HC were Prevotella_9,

Prevotella, Lachnospira and Catenibacterium (Figure 4B). Prevotella

belongs to the Prevotaceae family of the genus Bacteroides, which has

a variety of bacterial species and is the dominant genus in the human

gut. Furthermore, studies have shown that Prevotella decreases with

lung cancer progression (Qin et al., 2022) and that changes in NSCLC

patients are associated with response to immunotherapy (Jin et al.,

2019b). Lachnospira was reported as a “favorable” gut microbiome

that protects the host from cancer by producing butyrate, which plays

an important role in suppressing tumor growth, regulating immunity,

and participating in anti-inflammatory responses (Daniel et al., 2017).

Previous studies found that both Prevotella and Lachnospira were

decreased in lung cancer patients (Liu et al., 2019; Zhang et al., 2019;

Qin et al., 2022), which is consistent with our findings (Figure 3B).

These results suggested that tumor development is intricately linked

to the immune system (Hanahan and Weinberg, 2011), and that

carcinogenesis is often caused by dysbiosis rather than by the activity

of specific pathogenic microorganisms (Matson et al., 2018; Jin

et al., 2019a).

Adenocarcinoma is the most common pathological type in

NSCLC. A novel grading system for lung adenocarcinoma proposed

by IASLC will help identify prognostic groups and provide a common

approach to prognostic stratification of lung adenocarcinoma patients

who may benefit from emerging management and treatment options.

This study was the first to identify specific gut microbiota in patients

with different grades of invasive lung adenocarcinoma (Figures 4C,

D), which is of great help in understanding cancer progression and

prognosis in patients with lung adenocarcinoma more accurately.

Differences in the microbiome may not be used to clearly explain

the role of the microbiome in health and disease (Integrative, 2014).

Therefore, the use of a prospective multi-omics approach combined

with comprehensive analysis of microbes and metabolites may be a

way to reveal disease pathogenesis. In this study, compared with

healthy people, serum glycerophospholipids (eg: LPC 20:2, LPC 18:0,

LPC 18:4, LPE 20:2, LPC 20:1, LPC 16:1, LPC 20:0, LPA 18:2, etc.)

were significantly higher in early-stage NSCLC patients (Figure 6).

Glycerophospholipids are one of the main components of cell

membranes, and are involved in many important life processes

such as cell transmembrane transport, energy metabolism, signal

transduction and cancer development (Lee et al., 2012; Santos and

Schulze, 2012). High serum phospholipids and fatty acids in lung

cancer patients have been previously reported (Ros-Mazurczyk et al.,

2017; Zhang et al., 2020b), and our findings were consistent with

previous studies (Zhao et al., 2021). Analysis of pathway enrichment

using differential metabolites found that sphingolipid metabolism and

sphingolipid signaling pathways were enriched in early-stage NSCLC

vs HC. Sphingolipid metabolism has been shown to be the most

dysregulated pathway in NSCLC patients (Petrache and Berdyshev,

2016), and alterations in gene expression patterns in this metabolic

pathway were found to be strongly associated with poor prognosis in

NSCLC patients (Meng et al. , 2021). Sphingolipids (D-

erythrosphingosine 1-phosphate and palmitoyl sphingomyelin), the

metabolites significantly upregulated in early-stage NSCLC (Figure 7),

can regulate various biological processes by controlling the signaling

functions in cancer cell signaling networks, such as growth,
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proliferation, migration, invasion and/or metastasis (Hannun and

Bell, 1987; Dressler et al., 1992). Currently, emerging therapeutic

strategies targeting enzymes involved in sphingolipid metabolism

and/or signaling for cancer therapy are presented. Furthermore, our

results found primary bile acid biosynthesis and bile secretion

pathways enriched in early-stage NSCLC vs HC (Figure 7).

Disorders of bile acid metabolism have been shown to be associated

with poor prognosis and promote the further development of

aggressive lung adenocarcinoma (Nie et al., 2021). In this study, a

multi-omics analysis of changes in the microbiome and metabolome

was performed, and it was found that the abundance of gut

microbiota was closely related to serum metabolic activity. For

example, Clostricium, one of the genera with significant higher

abundance in the early-stage NSCLC group in the LEfSe analysis

(F igure 4B) , was pos i t ive ly corre la t ed wi th mul t ip l e

glycerophospholipid (LPC 20:0, LPC 16:1, LPC 18:4, LPC 18:0, LPC

19:0). Moreover, Muribaculaceae , another characteristic

microorganism of early-stage NSCLC (Figure 3A), was found to be

associated with various phospholipids (LPC 18:4, LPC 17:2, LPE 20:2,

LPC 20:2, etc.) and faty acyl (Sebacic acid, Tetradecanedioic acid).

Previous studies found thatMuribaculaceae is an important predictor

of intestinal short-chain fatty acid concentration and that its acetate

products regulate animal fat metabolism (Ormerod et al., 2016; Smith

et al., 2019). These findings have potential clinical implications for

patients with early-stage NSCLC.
Conclusion

In summary, our results suggested that abnormalities in gut

microbiota and metabolomics are closely related to the occurrence

and development of early-stage NSCLC. Our multi-omics analysis

further discovered the possible relationship between certain gut

microbiota and serum phospholipids and fatty acids in early-stage

NSCLC patients, and provided a basis for future research on the

pathogenesis and treatment of NSCLC. It is worth mentioning that

this study has the following limitations. First of all, our sample size for

IPA grading is relatively small, and more sample data is needed to

support it. On the other hand, most of the patients in this study were

from northeastern China, which may have a certain impact on the

progression of lung disease due to the colder regions and poor air

quality in winter. In addition, the microbiome of this study was based

on 16sRNA gene sequencing, which may be less comprehensive than

metagenomic sequencing. Importantly, more later functional

experiments are needed to further verify the possible targets

screened in this study, so as to provide a stronger theoretical basis

for the screening of early-stage NSCLC targets.
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