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Malaria disrupts the rhesus
macaque gut microbiome
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Previous studies have suggested that a relationship exists between severity and

transmissibility of malaria and variations in the gut microbiome, yet only limited

information exists on the temporal dynamics of the gut microbial community

during a malarial infection. Here, using a rhesus macaque model of relapsing

malaria, we investigate howmalaria affects the gut microbiome. In this study, we

performed 16S sequencing on DNA isolated from rectal swabs of rhesus

macaques over the course of an experimental malarial infection with

Plasmodium cynomolgi and analyzed gut bacterial taxa abundance across

primary and relapsing infections. We also performed metabolomics on blood

plasma from the animals at the same timepoints and investigated changes in

metabolic pathways over time. Members of Proteobacteria (family

Helicobacteraceae) increased dramatically in relative abundance in the animal’s

gut microbiome during peak infection while Firmicutes (family Lactobacillaceae

and Ruminococcaceae), Bacteroidetes (family Prevotellaceae) and Spirochaetes

amongst others decreased compared to baseline levels. Alpha diversity metrics

indicated decreasedmicrobiome diversity at the peak of parasitemia, followed by

restoration of diversity post-treatment. Comparison with healthy subjects

suggested that the rectal microbiome during acute malaria is enriched with

commensal bacteria typically found in the healthy animal’s mucosa. Significant

changes in the tryptophan-kynurenine immunomodulatory pathway were

detected at peak infection with P. cynomolgi, a finding that has been described

previously in the context of P. vivax infections in humans. During relapses, which

have been shown to be associatedwith less inflammation and clinical severity, we
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observed minimal disruption to the gut microbiome, despite parasites being

present. Altogether, these data suggest that the metabolic shift occurring during

acute infection is associated with a concomitant shift in the gut microbiome,

which is reversed post-treatment.
KEYWORDS
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1 Introduction

Infection by Plasmodium species persists as a global health issue,

resulting in over 200 million cases of malaria and approximately

600,000 deaths annually (World Health Organization (2021)). The

malarial parasite has coevolved with its insect and vertebrate hosts

over tens of thousands of years and causes infections ranging from

mild/asymptomatic to severe (Ewald (1983); Waters et al. (1991);

Mackintosh et al. (2004)). Subclinical infections in partially immune

individuals, especially in regions of high malaria endemicity

contribute to sustained transmission (Ippolito et al. (2018)). Gut

permeability is closely linked to intestinalmicrobiota and elements of

the mucosal immune system. A balanced intestinal microbiome not

only helps maintain the microbial homeostasis and immunologic

tolerance but also helps modulate the metabolic process that

influences the intestinal permeability (Lim et al. (2018); Zheng et al.

(2020)). This can occur due to effects on the productionof short chain

fatty acids that play an important role in enterocyte development or

through bacterial factors that influence intestinal barrier function.

The host-parasite relationship during malarial infections

prominently manifests itself as an immune response from the

host. Such deviation from immune homeostasis may directly or

indirectly impact the host microbiota composition duringmalarial

infections (Mukherjee et al. (2020)). This deviation leads to

speculation that a tripartite interaction exists between host-

Plasmodium-microbiota that may impact the outcome of

malarial infections (Ippolito et al. (2018); Mukherjee et al.

(2020)). Major advances in biomedical sequencing technologies

have enabled researchonelucidating the roleof the gutmicrobiome

in malarial pathophysiology. A considerable number of studies

have investigated the impact of the gutmicrobiotaofmosquitoes on

malarial transmission through interference with Plasmodium

colonization in the gut, and, by affecting different aspects of

mosquito physiology, notably impacting the mosquito lifespan

(Boissiere et al. (2012); Romoli and Gendrin (2018); Zoure et al.

(2020)).However, there are limited reports on thepotential changes

in the gut microbiota of mammalian hosts upon acute malarial

infection and relapse episodes.

Recent studies support that gut microbiota modulates

Plasmodium infections in mammals (Yooseph et al. (2015);
02
Villarino et al. (2016); Mukherjee et al. (2020)). In a murine

model, anti-a -gal antibodies induced by gut pathobiont

Escherichia coli O86:B7 have been shown to be cytotoxic to

Plasmodium sporozoites, thus protecting the mice from mosquito-

transmittedPlasmodium infection (Yilmaz et al. (2014)). Earlywork

suggests bidirectional associations between malaria and the

mammalian microbiome relating to disease phenotype, infection

risk and intestinal dysbiosis (Ippolito et al. (2018)). In 2015, a 16S

rRNA analysis by Mooney at al. demonstrated dysbiosis in mouse

gutmicrobiota upon infection by Plasmodium yoelii that was linked

to clinical disease outcomes. They observed a reduction in the

Firmicutes/Bacteroidetes ratio and Proteobacteria abundance in

the gut of the mice which led to a decrease in the resistance to

intestinal colonization with non-typhoidal Salmonella during a

concurrent malaria parasite infection (Mooney et al. (2015)). In

another 16S rRNA analysis, Plasmodium berghei ANKA infection

was linkedwith increased Proteobacteria and reduced Firmicutes in

gut microbiomes of mice. The authors indicated that altered gut

microbiomeprofiles uponmalarial infection inmicewere associated

with intestinal pathological changes including detachment of

epithelia in large intestines and increased intestinal permeability

(Taniguchi et al. (2015)).

Studies have suggested that alterations in the mammalian

host gut microbiota may influence immune responses of the host

and clinical outcomes of malarial infections. In the rodent-P.

yoelii malaria model system, mice acquired from different

vendors, with different gut microbiota, exhibited striking

differences in disease severity. These differences were linked to

a particular composition of gut microbiota with increased

abundance of Lactobacillus and Bifidobacterium spp. in

resistant mice that exhibited elevated humoral responses

compared to susceptible mice (Villarino et al. (2016)). Further,

in humans, an increased abundance of the bacterial taxa

Bifidobacterium and Streptococcus in the gut was related to a

lower risk of P. falciparum infection (Yooseph et al. (2015)).

While hostmicrobiotamay impactmalarial disease progression,

Plasmodium infection and disease may also impact host microbiota

function and abundance. During Plasmodium infection, host

immune responses, such as increases in IFN-g (Yang et al. (2014))
and TNF-a, can lead to decreases in occludin expression and other
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tight junction proteins, causing increased membrane permeability

(Martini et al. (2017)). This disruptionmay cause selective pressures

due to shifts in nutrients, or due to an introduction of new taxa to the

lumen, leading to changes in gut microbiota abundance, and thus

changes in gut microbiome function.

Changes inmicrobiota abundance and functioncanalso result in

changes in gut and bloodstreammetabolite abundance. Tryptophan,

an essential amino acid, is known to decrease in the bloodstream

during Plasmodium infections and has been previously associated

with disease severity (Leopold et al. (2019)). Gut microbes can

degrade tryptophan to produce compounds such as indole, indole

propionic acid, and indoleaceticacid.Tryptophan isalsodegradedby

the host to produce quinolinate (via the kynurenine pathway) and

serotonin (Bansal et al. (2010); Liu et al. (2019)). Several of these

metabolites are known to affect gut barrier integrity. For example,

indole has been shown to improve intestinal barrier integrity by

inducing the expression of claudin protein-encoding genes, which

increases theexpressionof the tight junctionproteinsTJP1,TJP3,and

TJP4 downstream (Bansal et al. (2010)).

Most tryptophan in the body is degraded via the host’s

kynurenine pathway, in which the tryptophan to kynurenine

reaction is catalyzed by heme-containing enzymes tryptophan

2,3-dioxygenase (TDO) or indoleamine-2,3-dioxygenase (IDO).

Prior research has found that when IDO expression is increased

in the gut mucosal layer, gastric inflammation is decreased,

leading to microbial persistence of IDO expressive organisms in

the mucosal layer (Larussa et al. (2015)). Kynurenine is a

powerful immune regulator, increasing T-cell apoptosis and

the conversion of helper T-cells to anti-inflammatory T-cells

(Boros and Vecsei, 2019; Rothhammer and Quintana, 2019).

Here, based on rectal swab data, we describe dysbiosis of the host

gut microbiome in a Plasmodium cynomolgi-rhesus macaquemodel

of relapsingmalaria.We present data on the changes in the bacterial

community structure and function upon P. cynomolgi infection of

malaria-naïve rhesus macaques, from baseline to the first peak of

parasitemia, and in comparison with clinically mild relapses (Joyner

et al. (2019)); that is, subsequent relapsingparasitemia thatdeveloped

as a result of the activation of hypnozoites in the liver (Imwong et al.

(2019)). We also compared the microbiome composition with

published data on healthy rhesus macaques (Yasuda et al. (2016)).

Finally, we profile the temporal dynamics of metabolites in the

bloodstream of these same animals during P. cynomolgi infection

to gain abetter understandingof thehostmetabolic conditionduring

the course of these infections.
2 Materials and methods

2.1 Rhesus macaque study model and
parasite infections

Rectal swabs from six rhesus macaques (n=6) were analyzed

at baseline and longitudinally while infected with P. cynomolgi.
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The monkeys assigned to the study were malaria-naive (animal

codes RAd14, RBg14, RIb13, RJn13, ROc14, and ROh14), of

Indian origin, male, 7-13 kg and 5-6 years of age. The overall

experimental design, P. cynomolgi M/B strain sporozoite

inoculations, clinical monitoring, collection of samples, and

treatment regimens have been described previously (Joyner

et al. (2019); DeBarry et al. (2022)) and the scheme is depicted

here in Figure 1A. Rectal swabs were also obtained once from

four malaria-naive control rhesus macaques to perform whole

metagenomics shotgun sequencing.
2.2 Stool sample collection and
DNA extraction

Rectal swabs/feces were collected at predefined timepoints

(TPs), chosen based on the infection dynamic (baseline, patent

parasitemia, peak infection, post peak, relapse, and sub-patent

phases) as shown in Figure 1A (Joyner et al. (2019)). Genomic

DNA was extracted from the samples using the Power Soil DNA

isolation kit (MoBio Laboratories Inc., Carlsbad, CA) according

to the manufacturer’s protocols, and stored at -80°C for further

downstream processing.
2.3 Microbiome library preparations and
16S rRNA gene sequencing

Bacterial 16S rRNA genes were amplified using bacteria-

specific PCR primers for the hypervariable V3-V4 region

(Klindworth et al. (2013)). The amplifications, barcoding, and

sequencing experiments were performed following established

protocols (Caporaso et al. (2012); Kozich et al. (2013)).

Sequencing was performed on the Illumina MiSeq platform at

the Yerkes Genomics Core at Emory University, resulting in 2 x

275 bp paired-end reads.
2.4 Bioinformatics analysis of
16S rRNA data

Quality filtering of reads and overall sequence analysis from

42 samples (six subjects at eight TPs, Table 1) were performed

using the Quantitative Insights into Microbial Ecology, QIIME 2

software (version 2019.4). Fastq files were merged, de-

multiplexed and the sequence depth for each sample was

quantified (Bolyen et al. (2019)). Defined Operational

Taxonomic units (OTU’s) were picked for taxonomic identity

assignment using the Greengenes reference database (version

13.8) at 97% similarity. The samples were then subjected to

QIIME’s core diversity analysis at 20,387 rarefaction depth for

beta diversity analysis and TP comparisons. Alpha diversity

indexes and their comparisons were computed in R, using the
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Phyloseq package (McMurdie and Holmes (2013)). The

abundance of 16S reads was first normalized to proportional

abundances and then the average proportional abundance for

each phyla was calculated from each of the TPs (Table S1). The

relative percentage abundances of taxa at the family level for

each of the subjects, at various TPs during the P. cynomolgi

infections, were plotted in R (Figure 1B). Alpha diversity was

calculated within qiime2 using estimates standard in the field:

Chao-1 Richness, Shannon, and Simpson indices (Finotello et al.

(2018)). One-way repeated measures analysis of variance

(ANOVA) was used to determine whether there were any

statistically significant differences between the mean relative

abundances of bacterial families across the rhesus macaque

subjects at various time points. In order to identify which taxa
Frontiers in Cellular and Infection Microbiology 04
significantly increased or decreased in abundance between

timepoints, a linear discriminant analysis effect size (LEfSe)

analyses was utilized with default criteria (p <0.05 by Kruskal-

Wallis test; linear discriminant analysis (LDA) score >2) and

subject pairing and plotted in cladograms based on phylogenetic

relationship (Segata et al. (2011)). Each TP was compared to its

preceding TP for LEfSe analysis. For comparisons with

previously published studies, raw sequencing data were

obtained from publicly available sources. Experimental data

and reference sequences from Yasuda and colleagues (Yasuda

et al. (2016)) were merged into a single sequence file, run

through the SEPP Fragment Insertion QIIME2 pipeline, and

inserted into the Green Genes 13.8 tree. Unifrac distances based

on the tree generated were used to run a Principal Coordinate
A

B

FIGURE 1

Experimental design and gut microbiota composition of rhesus macaques during a longitudinal P. cynomolgi infection study. (A) Experimental
schematic for the longitudinal study of P. cynomolgi infection in rhesus macaques. Baseline TP1A for eachmonkey before inoculation of P. cynomolgi
M/B sporozoites serves as comparison for the rest of the experiment. Patent parasitemic period TP1B represents progressive increase of infected RBCs
in the blood followed by peak of infection at TP2. At post-peak TP3, a decrease in hemoglobin levels, and onset of anemia may be an indication of
decreased RBC production or excessive destruction of uninfected RBCs (hemolysis). TP3A is a patent parasitemic period with increase in infected RBCs
in the blood followed by a progressive increase by TP4. TP5 is indicative of subpatent parasitemia with samples representative of the period between
relapses. Subpatent parasitemia at TP7 is below the microscopic threshold. (B) Relative abundance of predominant bacterial families in the gut of
rhesus macaques (n=6) during this longitudinal study. The reference database used was Greengenes.
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Analysis (PCoA). PICRUSt2 was used to estimate gene

functionality in the OTUs. The QIIME2-2021.2 version of the

QIIME2 PICRUSt2 plug-in was utilized with EPA-NG sequence

placement and “mp” hidden-state prediction. The data were

analyzed using ALDEx2, which creates a centered log-ratio data

distribution. T-tests with Benjamini-Hochberg correction were

used for paired TP analyses.
2.5 Whole metagenomics shotgun
sequencing for species identification

To identify the species of bacteria from the significantly

perturbed clades in the 16S analysis of our six-monkey infected

cohort, we performed whole metagenomics shotgun sequencing

on rectal swab DNA from four malaria-naive control rhesus.

DNA from rectal swabs was isolated using the QIAGEN DNeasy

PowerSoil Pro Kit, according to the manufacturer’s protocol.

Extracted DNA samples were quantified using Qubit 4

fluorometer and Qubit™ dsDNA HS Assay Kit (Thermofisher

Scientific). Between 10 and 20 million high quality reads were

generated for each sample. Unassembled sequencing reads were

directly analyzed by CosmosID-HUB Microbiome Platform

(CosmosID Inc., Germantown, MD) described elsewhere

(Hasan et al. (2014); Lax et al. (2014); Ottesen et al. (2016);

Ponnusamy et al. (2016)) for multi-kingdom microbiome

analysis and profiling of antibiotic resistance and virulence

genes and quantification of microorganisms relative

abundance. Briefly, the system utilizes curated genome

databases and a high performance data-mining algorithm that

rapidly disambiguates hundreds of millions of metagenomic

sequence reads into the discrete microorganisms engendering

the particular sequences. To identify the most abundant bacterial

species in the gut microbiome of these control animals, we

determined the relative abundance of all bacteria in the samples

and calculated the relative abundance of each one in each
Frontiers in Cellular and Infection Microbiology 05
sample. We then took the average relative abundance of each

microbe, averaged across the four control animals, and ranked

them in order of highest abundance. The top twenty most

abundant bacterial species were determined to be the species

most highly represented in the uninfected healthy rhesus

macaque gut microbiome.
2.6 Untargeted metabolomics analysis of
plasma samples

Plasma extraction and liquid chromatography mass

spectrometry (LC-MS) analysis procedures were performed as

described previously (Cordy et al. (2019)). Briefly, 50 m l of

plasma was spiked with 2.5 m l of stable-isotope-labeled internal

standards and 100 m l of acetonitrile to precipitate protein. The

clean extract was collected after centrifuging the plasma mixture

at 14,000 g for 10 minutes at 4°C. 10 m l was injected in triplicate

into a Thermo Fisher Scientific Q Exactive HF high-field mass

spectrometer using an autosampler maintained at 4°C. The

sample order was randomized prior to LC-MS sample

preparation, and then the samples were prepared for analysis

in sequential batches. The metabolites were chromatographically

separated using HILIC columns (Thermo Fisher Scientific

Accucore 50 × 2.1 mm) with a 5-minute formic/acetonitrile

gradient. Electrospray ionization was used in the positive-ion

mode. Data quality was monitored by injecting 10 m l of quality

control samples (NIST SRM 1950 and internal standards) after

every 20 samples. Raw data were preprocessed using apLCMS

(Yu et al. (2009)) and xMSanalyzer (Uppal et al. (2013)) to

extract retention time, m/z, and intensity information.

Throughout the manuscript, an m/z feature refers to a unique

combination of m/z and retention time. The preprocessed data

were further treated to correct for batch effects using ComBat

(Johnson et al. (2007)). The metabolic features were annotated

and identified using xMSannotator (Uppal et al. (2013)). The
TABLE 1 Fecal microbiota community indices for all rhesus macaque subjects at seven different TPs during the longitudinal study of P. cynomolgi
infection.

Timepoints Subjects (n) OTUs Chao1 indeces Shannon Faith’s PD

Baseline (1A) 6 6312 1066.01 ∓ 37.78 9.10 ∓ 0.27 32.08 ∓.98

Pre-peak (1B) 6 6264 1059.71 ∓ 28.88 9.01 ∓ 0.56 39.7 ∓ 5.51

Peak (2) 6 1962 334.37 ∓ 104.83 5.59 ∓ 0.42 26.08 ∓ 6.81

Post-peak (3) 6 5255 882.99 ∓ 168.67 8.66 ∓ 0.69 28.97 ∓ 2.18

Early relapse (3A) 5 4279 863.64 ∓ 210.3 8.57 ∓ 0.81 29.60 ∓ 2.24

Peak relapse (4) 4 4176 1060.32 ∓ 87.10 9.01 ∓ 0.54 33.78 ∓ 1.28

Relapse resolution (5) 5 4605 930.29 ∓ 109.64 9.00 ∓ 0.22 31.7 ∓ 1.96

Sub patent (7) 4 4874 1237.61 ∓ 42.85 9.63 ∓ 0.05 33.56 ∓ 0.66

Total=42
f
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untargeted LC-MS host plasma metabolomics data were

analyzed using the R package xmsPANDA (Uppal (2021)).

xmsPANDA output was then run through an annotation

python script using MS/MS information from standardized

metabolites that were analyzed on the same LC-MS machinery

as the experimental samples. This annotation program had an

error range of 30 seconds for retention time and 0.02 for mass to

charge ratio. The median of three LC-MS replicates was used to

quantify metabolite data. The LC-MS intensity data were used

for plotting the values of kynurenine and tryptophan

metabolites. In the longitudinal analysis shown in values

below the limit of detection were represented as 0. For the

ratio analysis of tryptophan and kynurenine, values under the

limit of detection were analyzed as half of the minimum value

seen at that TP. A paired student’s t-test was utilized for the

ratio analysis.
3 Results

3.1 Host gut bacterial community
structure during baseline, primary, and
relapse malarial infection

To identify and catalog gut microbiota during malaria

infections, we sequenced and analyzed 1,862,024 Illumina 16S

rRNA reads originating from rectal swabs/feces samples from six

na¨ıve rhesus macaques acquired at baseline and predefined TPs

during a longitudinal P. cynomolgi infection study (Joyner et al.,

2019). Sequence analysis at the phyla level showed that Firmicutes,

Bacteroidetes, Proteobacteria and Spirochaetes were the four

major phyla in all subjects at any given TP, accounting for

>90% of the total bacterial communities in all samples (Table

S1). Comparing all the TPs (Figure 1A), the difference between

baseline (TP1A) and peak infection (TP2) was noteworthy.

Proteobacteria increased dramatically during peak infection by

TP2 while Firmicutes, Bacteroidetes, Spirochaetes amongst others

decreased compared to baseline and other TPs as well (Figure 1B,

Table S1). Members of the family Helicobacteraceae, which lies

within the Epsilon subdivision of the Proteobacteria, were

significantly greater in numbers during peak infection compared

to the baseline microbial community structure (Figure 1B,

depicted in blue). Members of Ruminococcaceae belonging to

phylum Firmicutes, class Clostridia decreased considerably by

TP2 (Table S2). Another notable family, Prevotellaceae belonging

to the phylum Bacteroidetes, declined considerably by TP2

(Figure 1B, Table S2). ANOVA at the family level revealed

Helicobacteraceae were significantly increased by TP2, as shown

in Figure 5. Conversely, selected families such as Streptococca ceae,

Lactobacillaceae, Prevotellaceae, and Lachnospiraceae were

statistically lower in numbers during peak infection (Figure 5).

Alpha diversity metrics support the above results, affirming
Frontiers in Cellular and Infection Microbiology 06
lowered diversity and richness, as well as evenness during the

peak phase of infection (Table 1; Figure 2).
3.2 Gut bacterial diversity in
rhesus macaques

We obtained a cumulative 37,727 OTU’s in all 42 samples from

our six-monkey cohort, after clustering at a 97% similarity level

(Table 1). A good sequencing depth for all samples was indicated by

the rarefaction curve (subsampled at the lowest sample size) reaching

asymptote as the number of sequences increased (Figure S1). The

alpha diversity indices were calculated to evaluate the overall

microbiota richness and diversity across the seven experimental

TPs. The averages of Chao 1 richness indices for all subjects at each

TP were calculated to estimate species richness in terms of the

number of bacterial species present. To assess the evenness and

relative abundance of the gut bacterial communities, we calculated

the Shannon andSimpsondiversity indices (Kimet al. (2017)). Based

on the alpha diversity metrics, the overall fecal microbiota richness

and diversity decreased considerably during peak infection at TP2

compared to baseline and relapse stages of infection (Table 1,

Figure 2). This decrease suggests there is a loss of microbial

diversity at peak malaria leading to host gut dysbiosis. To evaluate

the similarity of gut microbial communities between the two most

distinct TPs, 1A and 2, we examined the beta diversity using a PCoA

plot based onweightedUnifrac distances as shown in Figure S2. The

PCoAplot corroborated our previous results confirming that the gut

microbiota at peak malarial infection was distinct from the baseline

and relapse microbiota. The alteration in gut microbiome between

the TPs in this study was analyzed using LEfSe (LDA score >2, p

<0.05). The LEfSe results support the findings of increased

Helicobacteraceae and decreased Firmicutes at TP2 (Figure 3B).

This analysis also revealed increased Lactobacillaceae at TP3A

(Figure 3D), the first relapse TP. Lactobacillaceae is often

associated with gut health Turroni et al., 2014. Changes in taxa

abundance were observed overwhelmingly in the primary infection

compared to the relapse infection. No significant changes were

detected between TPs 3A and 4 (Early relapse and peak relapse)

norTPs4and5(peakrelapseandrelapse resolution). Interestingly, of

the 28 taxa that decreased between TP1B (pre-peak) and TP2 (peak)

19 of those increased between TP2 (peak) and TP3 (post-peak).

These increases indicate a partial restoration of the gut microbiome

post-peak (Figure 3C). The increases of Helicobacteraceae, an

anaerobic, mucosal family, and the family Tissierellaceae (of which

most members are anaerobic or aerotolerant), at peak infection. The

increases ofHelicobacteraceae, an anaerobic,mucosal family, and the

family Tissierellaceae (of which most members are anaerobic or

aerotolerant), at peak infection may indicate damage to the

endothelium of the gut (Figure 3B). The results of this analysis

indicated that the larger changes in mucosal versus luminal bacteria

may be of interest.
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FIGURE 2

Alpha diversity metrics (Shannon, Simpson, and Chao 1 richness indices) for the gut microbial communities at various TPs during P. cynomolgi
infection of rhesus macaques. All the panels point towards lowered microbial diversity, richness, and evenness during the peak P. cynomolgi
infection TP.
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We compared our results with previously published data (Yasuda

et al. (2016)) on the biogeography of the intestinal mucosal and

lumenal microbiome in rhesus macaques using PCoA plots. As

shown in Figure 6, we found that the gut microbiota samples at

TP2 clustered together with the reference mucosal microbiome

samples from the previous study. However, the other TPs did not

seem to have a notable correlation with either themucosal or lumenal

microbiome samples. These results suggest that, at peakmalaria, there

is an increase of mucosal derived taxa such as Helicobacter spp.

In addition, we analyzed the oxygen requirement profiles of

the major bacterial clades at all TPs. The three predominant

categories observed were the microaerophiles, obligate

anaerobes, and facultative anaerobes (Figure S3). Interestingly,

the relative percentage abundance of microaerophiles increases

at TP2 (Solnick and Vandamme (2001); Gueneau and

Loiseauxdegoer (2002)), coinciding with the peak levels of P.

cynomolgi, which is also a microaerophile.

3.3 Identification of microbial species
using metagenomic sequencing

To determine the identities of the most abundant bacterial

species perturbed in the gut microbiome, we performed whole
Frontiers in Cellular and Infection Microbiology 08
metagenome sequencing on rectal swab samples collected from

four control rhesus macaques. The bacterial species found in

highest abundance in the Helicobacteraceae family was

Helicobacter macacae, a known commensal microbe of rhesus

macaques, previously identified in Yasuda et al. and other

reports, but typically shown to be adherent to the mucosa and

not present in high numbers in the luminal contents (Yasuda

et al. (2016)). Additional bacterial species identified included

members of the Prevotellaceae family (Prevotella copri) and the

Lactobacillaceae family (Lactobacillus johnsonii,Ligilactobacillus

animalis, and Limosilactobacillus reuteri) (Figure S4).
3.4 Host metabolic analysis

Untargeted metabolomics was performed on plasma

collected from venous blood taken from the same animals at

the same TPs in which rectal swabs were collected. Using LC-MS

and a high resolution metabolomics workflow (Cordy et al.

(2019)), dynamic shifts in multiple metabolites were shown to

occur during the peak infection, at TP2. Between TP1A and TP2,

95 metabolites were found to be significantly changed in

abundance (Figure 4A). Using previously published
A B C

D E

FIGURE 3

Taxonomic representation of statistically consistent differences between TPs during the longitudinal study of P. cynomolgi infection in rhesus
macaques. LefSe cladograms from LDA analysis indicate significantly increased and decreased clades between TPs. (A) At the pre-peak stage
(TP1B) Lactobacillus is decreased compared to baseline, and the phylum Actinobacteria is increased, although none of its contained clades were
individually increased. (B) Between pre-peak (TP1B) and peak (TP2) 28 families decreased in abundance. Two families increased in abundance:
Helicobacterceae and Tissierellaceae, both of which are anaerobic or aerotolerant. (C) Many taxa which decreased between pre-peak and peak
infection (TPs 1B and 2) increased between peak and post-peak (TPs 2 and 3) indicating at least a partial restoration of the gut microbiome
post-peak. (D) Lactobacillus continues to increase between post-peak and early relapse (TPs 3 and 3A). (E) While no significant changes were
seen in the peak relapse (TP4), or relapse resolution (TP5), the bacteroidetes phylum is increased in the sub-patent samples compared to the
relapse resolution (TPs 5 and 7). The insignificant data resulting from the TP3A/TP4 and TP4/TP5 comparisons is not shown in this figure.
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methodology involving the comparison of mass:charge (m/z)

ratios and retention times for reference compounds run on the

same machine, we were able to annotate seven of them (Table 2).

Among the seven, two members of the kynurenine pathway,

acetyltryptophan and hydroxykynurenine, were identified.

Acetyltryptophan peaked at TP1B and dropped significantly at

TP2 while hydroxykynurenine peaked at TP2 and dropped

significantly at TP3A (Figures 4B–D; Table 2). Other

metabolic changes measured included a decline in

hypoxanthine and an increase in multiple fatty acyl carnitines

during peak parasitemia.

3.5 Functional capability analysis

A software program for predicting the functions of microbes

within a microbial community based on 16S data alone was used

to assess whether microbes could have any involvement in the

metabolic changes occurring in the host. Phylogenetic

Investigation of Communities by Reconstruction of

Unobserved States (PICRUSt2) (Douglas et al. (2020)) was
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used to estimate active metabolic pathways of the gut

microbiome at each TP. This revealed 124 significant MetaCyc

pathways between TP1A and TP2 (t-test, p ≤ 0.05), and 592

significant individual predicted enzymes classified by Enzyme

Commission number (EC) between TP1A and TP2. ECs

connected to tryptophan metabolism as described previously

(Kaur et al. (2019)) were specifically analyzed to investigate ties

to the host metabolic shift seen at TP2, but all enzymes were

either not present in our data or were insignificant. However, the

pathway analysis did reveal a significant increase in the L-

tryptophan biosynthesis pathways at TP2 (MetaCyc ID :

TRPSYN-PWY) and its superpathway (MetaCyc ID:

COMPLETE-ARO-PWY), suggesting the possibility of

increased capacity for producing tryptophan by the gut

microbiota of the macaques while experiencing peak

parasitemia. A Spearman correlation was used to evaluate a

possible association between the prevalence of the tryptophan

biosynthesis pathway in the gut and host tryptophan and

kynurenine levels during primary infection (TP1A-TP3). This

analysis revealed host kynurenine and tryptophan levels to be
A

B D

C E

FIGURE 4

Shifts in the host tryptophan/kynurenine pathway may be linked to microbial production of tryptophan in the gut. This data shows major shifts
in the host metabolome where red indicates a significant increase, and blue indicates a significant decrease (A). LC-MS data of host metabolite
samples throughout primary infection (TP1A-TP3, n=9) reveals Kynurinine peaks a TP2, while tryptophan decreases at TP2. Data shown is
separated and colored by subject for trend clarity. This shift in the kynurenine/tryptophan ratio indicates IDO activity (B, C). The tryptophan/
kynurenine ratio across the primary infection (TP1A-TP3, n=9) shows a significant shift (p=0.0073) from tryptophan to kynurenine in the host at
TP2 (D). Spearman correlation shows host kynurenine levels and host tryptophan levels to be linked to gut microbiome tryptophan production
across the primary infection (p=0.0358, p=0.0499) (E).
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highly correlated with gut tryptophan production, although not

significantly correlated with each other (Figure 4E).
4 Discussion

Studies attempting to understand the possible impact of

Plasmodium infection on the mammalian host microbiota over the

course of malaria are limited (Mukherjee et al., 2020). This study,

based on the P. cynomolgi-rhesus macaque infection model, focuses

on expanding this horizon. We present a systematic longitudinal

study toassesswhetherP. cynomolgi infectionaffects thecomposition

of the microbiota in rhesus macaques over a period of time. At the

phyla level, the relative percentage abundance of Proteobacteria was

thrice as high at peak parasitemia (TP2) compared to the baseline

(TP1A), as shown in Table S1. This phylum contains several

pathogenic and opportunistic pathogenic microorganisms. Within

the Proteobacteria, there was an increase in the number of

Helicobacteraceae family members at peak infection (Table S2),

accounting for nearly 90% of the gut microbiota at TP2. Using

shotgun sequencing applied to another set of rhesus macaques from

the same animal facility (not malaria-infected), we were able to

confirm the presence of bacteria of the Helicobacter genus in these

animals, and the species was confirmed to beHelicobacter macacae.

Members of Helicobacter spp. are predominantly microaerophiles,

requiring environments containing lower levels of oxygen than are

present in the atmosphere and have been associated with gastric

colonization (Dewhirst et al. (2000); Iten et al. (2001); Gueneau and

Loiseauxdegoer (2002)). Interestingly, Plasmodium is also a
Frontiers in Cellular and Infection Microbiology 10
microaerophile, growing most rapidly under low oxygen

conditions. While oxygen wasn’t directly measured in this study,

this finding does point to the possibility of an overall metabolic

change in the host’s environment that may be selective for increased

survival and replication of microaerophiles such as Plasmodium and

H. macacae.

At TP2, the number of members of the bacterial families

Ruminococcaceae (phylum Firmicutes) and Prevotellaceae (phylum

Bacteroidetes) declined. Both Ruminococcaceae and Prevotellaceae

have been previously associated with gut health (Rinninella et al.

(2019)). Linear Discriminate Analysis of our data revealed an

increase in Lactobacillus at TP3A, the first TP in the relapse phase

of infection.Lactobacillus is often correlatedwith gut health, and this

increasemay indicate a period of gut health between the primary and

relapse stages. The increased prevalence of Helicobacteraceae and

Tissierellaceae bacteria are suggestive that either the gut luminal

environment becamemore hospitable for mucosal microbes, or that

mucosalmicrobes were displaced from the endothelial mucosa. This

gut dysbiosis at peak parasitemia could possibly be altering the

metabolic processes regulated by a balanced intestinal microbiome.

Comparing our experimental TP dataset with previously

published data (Yasuda et al. (2016)), it was found that, at peak

malaria TP2, the gut microbiome samples clustered closely with

the reference mucosal microbiome of healthy rhesus macaques.

This clustering may be suggestive of the “sloughing off” effect,

where Plasmodium infection damages the gut endothelium,

displacing mucosal tissue and its associated microbiota. This

“sloughing off” effect could also indicate membrane weakness,

which would allow more exchange in metabolites between the
FIGURE 5

Selected bacterial families with significant variance during malarial infection in rhesus macaques study model. The data (mean ± SE) for relative
percentage sequence abundance of each family at each timepoint were compared using one-way analysis of variance repeated measures
(ANOVA) test (p ≤ 0.05). P-value denotes the result of the ANOVA comparing all TPs for one family.
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gut and the host bloodstream. Thus, it is critical to consider both

the functional pathways of the gut microbiome and the host

metabolome when assessing how host infection impacts the

gut microbiome.
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Functional analysis of the gut microbes revealed a significant

increase in the genetic capacity for tryptophan synthesis at peak

infection (TP2) whenH.macacae is elevated, which coincides with

the increase in kynurenine production from tryptophan in the host

during the primary stage of infection spanning TP1A through TP3

(Figures 4B–E). As the bacterial tryptophan synthesis pathway is

negatively regulated by tryptophan, an intriguing possibility is that

as the host uses up tryptophan to produce kynurenine, the gut

microbiota produces more tryptophan that feeds into the pathway.

This could explain why, in previous studies of the plasma

metabolome in acute malaria, kynurenine was significantly

enriched while tryptophan was not significantly depleted (Cordy

et al. (2019)). Evidence fromHelicobacter pylorimucosal infections

also supports this hypothesis. Multiple studies have found that

expression of IDO is enhanced in subjects with H. pylorimucosal

infections (Azadegan-Dehkordi et al. (2021)). Thisfinding suggests

that the IDOupregulation detected in our datamay be partly due to

the increase in Helicobacteraceae at peak parasitemia, perhaps

related to the ability of H. macacae to produce tryptophan, which

is converted to kynurenine by IDO. While it is unclear what

environmental pressures lead to the increase in Helicobacter in

the rectal swabs during TP2, and thus this correlation with

bloodstream kynurenine pathway activity may be coincidence, it

is certainly an intriguing hypothesis worthy of future follow-up

research. Overall, these results support that tryptophan is a key

metabolite produced duringmalarial infection, and, in particular, is

related to the Plasmodium-host-microbiota tripartite relationship.
FIGURE 6

PCoA plot comparing, at various TPs, the gut microbial communities from the longitudinal P. cynomolgi infections, with previously published
data on the lumen and mucosal bacterial diversity in rhesus macaques. Each marker represents one sample, and the colors are depictive of the
different TPs. PCoA indicates that microbiome samples from peak infection (TP2) are more similar in microbial composition to healthy mucosal
samples than healthy luminal samples.
TABLE 2 Mass-to-charge ratio and retention time input values of
significant host metabolites as found by xmsPANDA.

Input
m/z

Input
retention
time

Fold
change

Possible identities

260.1854 64.1 -2.563738333 Hexanoylcarnitine

247.1076 32.5 2.478281667 Acetyltryptophan

194.0812 31.5 -3.268476667 2-Methylhippurate
[3-Methylhippurate,
4-Methylhippurate,
O-Methylhippurate,
Methylhippurate]

137.0458 63.3 3.446455 Hypoxanthine

225.0869 58.2 -2.717815 Hydroxykynurenine

400.3415 61.3 -3.57693 Palmitoylcarnitine

288.2168 61.3 -2.595535 Octanoylcarnitine

Possible identities indicated if within 0.02 m/z and 30 seconds of retention time.
Isomers shown in brackets.
Fold change reflects the difference between TP1 and TP2.
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Furthermore, the shifts in microbiota detected at peak parasitemia

indicate that the gut microbiome is most affected during peak

primary parasitemia, and, to a lesser extent, during subsequent

relapse parasitemias. Thisfinding suggests that the gutmicrobiome

is more greatly impacted by the acute systemic metabolic and

immune responses of the host than by the mere presence

of parasites.
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