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In this study, a newMOF (metal-organic framework) based on vanadium and 2,2-
bipyridine-4,4-dicarboxylic acid (V/BP-MOF) was synthesized. Synthesized V/BP-
MOF was introduced as a strong adsorbent of Congo Red (CR) and an effective
agent in eliminating microbial species. In the investigation of CR absorption
activity, several factors such as concentration of V/BP-MOF, pH, time, and
temperature were investigated. Antimicrobial evaluations were carried out on
Common bacterial strains in wastewater and values of MIC (minimum inhibitory
concentration) and MBC (Minimum Bactericidal Concentration) were reported.
The V/BP-MOF was confirmed and characterized by EA, EDS, EDS mapping, FT-
IR, XRD, TGA, BET, SEM, and TEM. In checking the characteristics of V/BP-MOF,
size, specific surface area, and thermal stability were obtained, respectively,
68 nm, 325 m2/g, and 320°C. The highest adsorption of CR, at 94%, was
obtained at natural pH, ambient temperature, and after 150 min. In kinetic
studies, a correlation coefficient of 0.99 was observed with the pseudo-
second-order kinetic model, while in isotherm studies, a correlation
coefficient of 0.97 was observed with the Freundlich isotherm model. In the
biological evaluations, the best inhibition was against Escherichia coli, and MIC
and MBC were observed as 4 μg/mL and 2 μg/mL, respectively. As a general
result, V/BP-MOF can be introduced as a potent absorbent agent of CR dye and
antimicrobial properties. Therefore, the compound synthesized in this study can
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be introduced as a suitable option for the wastewater treatment industry, with
multiple capabilities including the removal of chemical pollutants and pathogenic
agents.

KEYWORDS

wastewater treatment, Congo red adsorbent, antimicrobial agent, vanadium, metal
organic framework

1 Introduction

Congo Red (CR) or sodium salt of 3,3′-[(1,1′-biphenyl)-4,4′-
diyl] bis (4-aminonaphthalene-1-sulfonic acid) is an organic
compound soluble in water, which is in the azo dye category
(Chatterjee et al., 2020). CR was used in the past to dye cellulosic
textiles (Ivanovska et al., 2022). CR is known as a biological agent
and acid-base indicator, and its most important use can be called
diagnostic use (Oladoye et al., 2022). For example, in histology and
microscopy, CR dye is used for staining in amyloidosis (Shehabeldin
et al., 2023). Another example is that flow cytometry tests can detect
Acanthamoeba, Naegleria, and other amoebic cysts (López-Barona
et al., 2022). CR is a toxic compound to humans and other living
organisms (Siddiqui et al., 2023).

CR is known as a compound that is present in wastewater and does
not degrade easily. It is a source of hazardous pollution that threatens
human life, other organisms, and the environment (Liu et al., 2022a).

In addition to chemical compounds, other pathogenic agents,
such as bacteria, are commonly found in wastewater. Pathogenic
bacteria such as Salmonella, Shigella, Yersinia enterocolitica, and
Escherichia coli are among these bacteria that cause disease in
humans and living organisms (Stobnicka-Kupiec et al., 2024). For
example, salmonella is the cause of one of the most common food
poisoning (Bakhshandeh et al., 2022). Shigella causes bloody diarrhea
(dysentery) (Hmar et al., 2024). Yersinia enterocolitica causes
enterocolitis (inflammation of the intestine) and ileitis
(inflammation of the small intestine) in humans (Fang et al.,
2023). Escherichia coli is the most common cause of urinary tract
infection, accounting for 90% of urinary tract infections in young
women (Czajkowski et al., 2021).

Several methods have been reported to remove chemical and
pathogenic agents from wastewater and in water treatment (Nasir
et al., 2022).

Nanotechnology and nanostructures can be mentioned as one of
the new technologies in this field. Various nano compounds such as
metal oxide nanoparticles (Naseem and Durrani, 2021), nanotubes
(Chahar et al., 2023) and nanofiber (Radoor et al., 2024) have been
reported for the removal of hazardous pollutants, dyes, and
inhibition of pathogenic bacterial strains from wastewater.

For example, in a recently reported study, CuO nanoparticles,
which were synthesized by the green method, were introduced as a
strong adsorbent of CR (Jethave et al., 2022).

In another study, silver nanoparticles were synthesized using
two fungal species, and their antimicrobial properties against
bacterial agents such as E. coli were investigated, with promising
results reported (Moustafa, 2017).

Activated carbon nanotubes are another nano compound that
has been reported to remove hazardous pollutants such as Cr(VI)
(Jia et al., 2022).

Metal-Organic Frameworks (MOFs) that are composed of
metal and ligands are another category of nano compounds that
have been reported for the removal of dyes and the inhibition of
pathogenic bacterial strains (Uddin et al., 2021; Hubab and Al-
Ghouti, 2024).

In this regard, we can refer to the synthesized Zn-
terephthalate MOF that has the property of removing CR
(Obayomi et al., 2023).

The Co-MOF with antimicrobial properties against pathogenic
bacterial strains has been reported in recent studies (Feng et al.,
2023). The MOFs are composed of metal and ligand.

In addition to the wastewater treatment industry and
microbial inhibitory properties, other applications of MOFs
such as catalysis (Trzebiatowska et al., 2024), sensing (Shafqat
et al., 2023), and proton conduction (Ma et al., 2024), have
been reported.

Structural physical and chemical characteristics such as
high specific surface area and compounds used in the structure
of MOFs can be mentioned as important factors in the applications
of MOF compounds (Ahmadi et al., 2021; Cai et al., 2021; He
et al., 2021).

In general, MOFs are porous compounds with a high specific
surface area, and their main structure consists of metal and organic
ligands (Chen et al., 2022).

Vanadium is a metal including biological properties such as
anticancer activity (Kumar et al., 2024), antioxidant activity (Zhang
et al., 2021b), and antibacterial activity (Suma et al., 2020) that have
been reported. Also, nanocomposites containing vanadium have
been reported as CR absorbers (Makhtar et al., 2024).

Using vanadium and different ligands, the MOF compounds
with various applications, such as catalytic properties (Phan et al.,
2011) and biological activity (Du et al., 2024), have been synthesized
and reported.

Therefore, if we synthesize a MOF using vanadium and a
bioactive ligand that has antibacterial properties and can absorb
CR, a valuable compound will be synthesized and reported.

In this study, we examined the adsorption properties of CR and
the antimicrobial properties of the synthesizedMOF against common
bacterial strains in wastewater, such as Salmonella enterica, Shigella
dysenteriae, Y. enterocolitica and E. coli, using vanadium and 2,2-
bipyridine-4,4-dicarboxylic acid as a bioactive ligand.

The high specific surface area and the presence of compounds
with high absorption properties and high antibacterial properties
in the structure of the newly synthesized MOF (Vanadium-2,2-
Bipyridine-4,4-dicarboxylic acid-MOF or V/BP-MOF) has given it
the ability to have two vital functions in the field of wastewater
treatment, such as the absorption of CR and the inhibition of
pathogenic bacterial strains such as Salmonella enterica, S.
dysenteriae, Y. enterocolitica, and E. coli.
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2 Experimental section

2.1 Raw materials and equipment

Vanadium (III) chloride, 2,2-bipyridine-4,4-dicarboxylic acid,
CR, antibiotics, and bacterial culture medium were prepared from
Sigma/Merck company. The American Type Culture Collection
(ATCC) bacterial strains were used in this study.

Elemental analysis, EDS/EDSmapping, FT-IR, XRD, TGA, BET,
SEM, and TEM analyses were used to characterization and confirm
the structure of the products, which were prepared by LECO
TruSpec (Elemental analysis), TESCAN VEGA 3 (EDS/EDS
mapping), Thermo AVATAR (FT-IR), Philips PW1730 (XRD),
TA Instruments SDT-Q600 (TGA), BEL BELSORP MINI II
(BET), TESCAN VEGA 3 (SEM), and Philips CM 120 (TEM),
respectively.

The Thermo Biomate 5 UV-Visible spectrophotometer was used
to prepare suspensions of bacterial strains and for
adsorption studies.

2.2 V/BP-MOF (vanadium-2,2-bipyridine-
4,4-dicarboxylic acid-MOF)
synthesis method

In 20 mL of deionized water, 1 mmol of vanadium (III) chloride
and 2 mmol of 2,2-bipyridine-4,4-dicarboxylic acid were stirred at
room temperature until the solution became homogeneous. The
obtained homogeneous solution was placed in an ultrasonic bath
with a power of 300 W for 30 min at room temperature. The
obtained novel V/BP-MOF composition was separated by
centrifugation and washed three times with a 1:1 mixture of
deionized H2O and EtOH before being subjected to
nanofiltration. It was then dried in an oven at 100°C under
vacuum for 4 h (Ahmad et al., 2022; Ramírez-Coronel et al., 2022).

2.3 V/BP-MOF dye adsorbent test

To measure the absorption percentage (AP), V/BP-MOF was
added to 0.1 L of CR solution in deionized water and stirred. Then,
the absorbance was measured at 497 nm using a spectrophotometer,
and Equation 1 was applied (Moghaddam-Manesh et al., 2024).

AP � C1 − C2( )/C1[ ]100 (1)

AP = Absorption percentage (%).
C1 = Initial CR concentration (mg/L).
C2 = Residual CR concentration (mg/L).

2.4 V/BP-MOF antimicrobial test

The common pathogenic bacterial strains of wastewater that
were examined in this study included Salmonella enterica (ATCC
14028), S. dysenteriae (ATCC 13313), Y. enterocolitica (ATCC 9610)
and E. coli (ATCC 25922). In the investigations according to
CLSI (Clinical and Laboratory Standards Institute), suspension
1 × 105 CFU/mL of the studied strains was prepared in Mueller-

Hinton broth at 630 nm, and tests MIC andMBCwere performed as
follows (Igei et al., 2016; Saadh et al., 2024).

The concentrations of V/BP-MOF prepared and studied in all
strains of this study were 1 μg/mL, 2 μg/mL, 4 μg/mL, 8 μg/mL,
16 μg/mL, 32 μg/mL, . . ., 512 μg/mL suspended in deionized water.

2.4.1 MIC
First, 90 μLMueller-Hinton broth, 10 μL studied bacterial strain,

and 100 μL of V/BP-MOF (each concentration prepared separately
in each well) were poured into each well of the microplate (plate 96).
It was placed in a shaker incubator at a temperature of 37°C for 36 h.
Then, the wells of the microplate were checked. For each studied
strain, the lowest concentration at which the contents were clear was
reported as the MIC (Afrough et al., 2021; Saadh et al., 2024).

2.4.2 MBC
For each studied strain, the contents of the clear wells of the

microplate in the previous step were cultured on Mueller Hinton
broth. Then, incubated at 37°C for 72 h. Finally, for each study strain,
the concentration at which the study strain did not grow was
reported as MBC (Moghaddam-manesh et al., 2021; Saadh
et al., 2024).

3 Result and discussion

3.1 Confirmation and characterization of
V/BP-MOF

For the new V/BP-MOF synthesized in this study, the structure
of Figure 1 was proposed. The V/BP-MOF was synthesized from the
reaction of vanadium (III) chloride and 2,2-bipyridine-4,4-
dicarboxylic acid during the ultrasonic process with a power of
300 W for 30 min at room temperature.

The predicted structure of Figure 1 and structural features were
proved by elemental analysis, EDS (Figure 2A), EDS mapping
(Figure 2B), FT-IR (Figure 2C), XRD (Figure 2D), TGA
(Figure 3A), BET (Figure 3B), SEM (Figures 3C), and
TEM (Figure 3D).

Vanadium-oxygen bonds of the final product were observed in
the areas of 650–1,000 cm−1 of its FT-IR (Figure 2C–II) spectrum
based on previous studies (Chen et al., 2004; Zhang et al., 2015).
Referring to previous studies, other links of functional groups such
as carbon/hydrogen single bonds, carbon/oxygen doublet bonds,
carbon/nitrogen doublet bonds, carbon/carbon doublet bonds, and
carbon/oxygen single bonds were observed in nears
3,000–2,950 cm−1, 1,625 cm−1, 1,520 cm−1, 1,385 cm−1, and
1,160 cm−1 of the FT-IR (Figure 2C–II) spectrum of the V/BP-MOF.

In FT-IR spectrum of 2,2-bipyridine-4,4-dicarboxylic acid
(Figure 2C–I) oxygen/hydrogen broad peak, carbon/hydrogen
single bonds, carbon/oxygen doublet bonds, carbon/nitrogen
doublet bonds, carbon/carbon doublet bonds, and carbon/oxygen
single bonds were observed in nears 3,300 cm−1, 3,000–2,950 cm−1,
1,630 cm−1, 1,525 cm−1, 1,385 cm−1, and 1,150 cm.−1

The 2,2-bipyridine-4,4-dicarboxylic acid contains two
carboxylic acid groups, which typically exhibit a broad peak (due
to the O-H bond) in the region of 3,000–3,500 cm−1. The absence of
this peak in the FT-IR spectrum of V/BP-MOF suggests that the
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carboxylic acid groups are bonded through their oxygen of hydroxyl
(O-H) groups to vanadium. Furthermore, various bonds such as
carbon-hydrogen single bonds, carbon-oxygen double bonds,
carbon-nitrogen double bonds, carbon-carbon double bonds, and

carbon-oxygen single bonds are present in the structure of 2,2-
bipyridine-4,4-dicarboxylic acid. The presence of these bonds in the
FT-IR spectrum of V/BP-MOF confirms that this ligand is retained
in the final product. Additionally, the presence of vanadium is

FIGURE 1
Structure of V/BP-MOF.
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indicated by a peak associated with vanadium-oxygen bonds in the
region below 1,000 cm−1.

Based on previous studies, the cubic structure of vanadium
(JCPDS card no. 01–076–0,456) was proved in the XRD pattern of
the V/BP-MOF (Figure 2D) using peaks 26.7° [011], 26.7° [111],
28.4° [220], 32.6° [311], 37.5° [211], 42.9° [222], and 47.2° [020] in
2theta (Bahlawane and Lenoble, 2014; Li et al., 2020; Kosta et al.,
2021; He et al., 2023).

The synthesized V/BP-MOF was stable up to 320°C. The thermal
stability of the V/BP-MOF was proved using its TGA curve as shown
in Figure 3A. The noticeable weight loss observed in near 320°C, and
near 550°C can be attributed to decomposition of 2,2 -bipyridine-4,4
-dicarboxylic acid and destruction of complex network with metal
(Saadh et al., 2024), respectively.

According N2 adsorption/desorption behavior of sample
(Figure 3B–I), the specific surface was obtained as 325 m2/g. The
N2 adsorption-desorption isotherm of sample is similar to type IV
according to the IPUAC classification having H1 type of hysteresis
loop, indicating that the nanostructure has a typical uniform
mesopores nature (Thommes et al., 2015).

Based on BJH plot (Figure 3B–II), the porosity behavior of
sample was observed in mesopouros area which confirmed results
obtained from N2 adsorption/desorption of product. (Irwansyah
et al., 2024).

In the last technique to determine the structure and
characteristics of the V/BP-MOF, its TEM and SEM images were
used, as shown in Figures 3C, D, for its morphology and size. The
exact morphology and nanosize can be deduced from these images.

FIGURE 2
(Continued).
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Regarding the size of V/BP-MOF, the XRD spectrum and the
Debye-Scherer equation were also used, and the size of the final
product was calculated to be 68 nm (Al-dolaimy et al., 2024).

As it was proved from the examination of the structural
characteristics of the V/BP-MOF by TGA, BET, SEM, and TEM,
in this study, a nanostructure with suitable porosity, specific surface
area, and suitable thermal stability was synthesized. Previous studies
prove these characteristics are induced in the final product based on
the synthesis method (Mardkhe et al., 2016; Leng et al., 2021).
Therefore, the method used in this study includes ultrasonic
treatment at a power of 300 W for 30 min at room temperature,
which contributes to these characteristics in the final product and
provides evidence of the appropriateness of this method (Ahmad
et al., 2022; Ramírez-Coronel et al., 2022).

The porosity and specific surface area, thermal stability and size
are important physical and chemical factors in the properties and
applications of MOFs (Zhang et al., 2020). Therefore, the
applications that have been investigated in the rest of this study
on the V/BP-MOF, such as the removal of CR dye and the inhibition
of pathogenic bacterial strains in wastewater, can be attributed to the
being a nanostructure, having suitable porosity and specific surface
area of the synthesized product.

3.2 Dye adsorbent activity

The first investigation of the application of the synthesized
V/BP-MOF was its application in the absorption of CR.

FIGURE 2
(Continued). EDS (A), EDS mapping (B), FT-IR (C), and XRD pattern (D) of V/BP-MOF.
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FIGURE 3
(Continued).
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Based on the proposed structure shown in Figure 1 for the V/BP-
MOF, the synthetic nanoparticle can lead to the absorption of CR, as
shown in Figure 4.

Based on the proposed structure for the absorption of
concord, hydrogens attached to the amine groups of CR can
form hydrogen bonds with the carbonyl and nitrogen groups of
the nanoparticle and lead to its absorption.

To investigate the absorption properties of CR, various
tests were performed, and AP (Absorption Percentage) was
measured. Experiments and investigations, such as
measurements of different CR concentrations, using
varying amounts of V/BP-MOF, different pH conditions,
different temperatures, and absorption at different times, were
carried out.

FIGURE 3
(Continued). TGA (A), BET (B), TEM (C), and SEM (D) of V/BP-MOF.
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FIGURE 4
CR’s absorption using V/BP-MOF.

FIGURE 5
The effect of CR concentration in CR absorption using V/BP-
MOF [mean (n = 3) ± SD].

FIGURE 6
The effect of V/BP-MOF concentration in CR absorption using V/
BP-MOF [mean (n = 3) ± SD].
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3.2.1 Investigation of different concentrations
of CR

At first, different concentrations of CR in the range of 100 mg/L
to 1,000 mg/L were prepared. Under the same conditions, such as
the amount of V/BP-MOF, pH, temperature, and time, the

absorption of CR was evaluated. For this purpose, the solutions
of 100 mg/L, 125 mg/L, 150 mg/L, 300 mg/L, 600 mg/L, and 900 mg/
L Conger red were prepared and at ambient temperature (25°C),
neutral pH (7), the 0.03 g/L of V/BP-MOF were added and stirred
(200 rpm) for 150 min.

Figure 5 shows the AP values in different concentrations of CR.
Based on the obtained results in concentrations of 100 mg/L,

125 mg/L, 150 mg/L, 300 mg/L, 600 mg/L and 900 mg/L, AP was
obtained as 95.1%, 81.4%, 69.2%, 56.5%, 35.9%, and 21.3%
respectively.

Therefore, with increasing CR concentration, its absorption
decreases. As we know and based on previous studies,
nanoparticles have the ability to absorb CR from active sites,
which is discussed in detail in Section 3.1. Therefore, with the
increase in CR concentration, due to the saturation of the active
sites of the V/BP-MOF, its absorption value decreases (Oladoye
et al., 2022).

3.2.2 Investigating different amounts of V/BP-MOF
in the absorption of CR

In the investigations of the amount of V/BP-MOF, the
concentration of CR solution was kept constant at 300 mg/L.
Other factors such as temperature (ambient temperature),
pH (7), and time (150 min) were also kept constant in all
experiments. The amounts of V/BP-MOF was variable and the
values of 0.01 g/L, 0.03 g/L, 0.06 g/L, 0.09 g/L and 0.12 g/L were
investigated.

Figure 6 shows the AP values in different amount of V/BP-MOF.
Based on the obtained results at concentrations of 0.01 g/L,

0.03 g/L, 0.06 g/L, 0.09 g/L, and 0.12 g/L of nanoparticles, the
absorption percentages (AP) were found to be 27.3%, 56.5%, 93.7%,
93.9%, and 94%, respectively.

These results demonstrate that increasing the amount of V/BP-
MOF to 0.06 g/L significantly enhances the absorption capacity. At
values above 0.06 g/L, the absorption rate did not show a significant
increase and was almost the same.

Therefore, the value of 0.06 g/L (93.7%) can be considered
optimal. The lack of high absorption at values higher than
0.06 g/L is due to factors such as the overlap of V/BP-MOF
absorption sites and the agglomeration of nanoparticles
(Moghaddam-Manesh et al., 2024).

3.2.3 Investigating pH in the absorption of CR
In the tests to investigate the role of pH, the variable was pH.

Therefore, the concentration of CR as 300 mg/L, the amount of
V/BP-MOF as 0.06 g/L mg/L, the ambient temperature, and the time
of 150 min were kept constant in the investigations. The absorption
rate of CR was investigated at different pH (4, 5, 6, 7, 9, 8, and 10).

Figure 7 shows the AP values in different pH.
Based on the obtained results in pH of 4, 5, 6, 7, 8, 9, and 10, AP

was obtained as 35.6%, 45%, 61.5%, 93.7%, 94.4%, 65.6%, and 33.2%
respectively.

As the results indicated, the best absorption occurred at pH 8. In
general, the amount of absorption decreases in strong acidic and
alkaline pH. Based on the proposed Figure 1, in acidic environment
4, there is a possibility of hydrolysis and breaking of the bond
between metal and ligand and destruction of V/BP-MOF (Pessoa
and Correia, 2021). However, in other acidic environments, such as

FIGURE 7
The effect of pH in CR absorption using V/BP-MOF [mean (n =
3) ± SD].

FIGURE 8
The effect of temperature in CR absorption using V/BP-MOF
[mean (n = 3) ± SD].

FIGURE 9
The effect of process time in CR absorption using V/BP-MOF
[mean (n = 3) ± SD].
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5 and 6, less absorption takes place. The carbonyl groups and
nitrogens of the nanoparticles are prone to protonation, which
results in reduced absorption of CR (Zhang et al., 2021a). The

highest absorption was observed at pH 8. Since the nature of CR is
anionic, the negative charge created at this pH can intensify the
negative charge of carbonyl oxygen due to the electrophilicity of the

FIGURE 10
Adsorption kinetic studies: pseudo-first-order (I), pseudo-second-order (II), and Elovich (III).
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carbonyl carbon group and lead to better absorption of CR (Siddique
et al., 2024). At alkaline pH 9 and 10, especially at pH 10, since there
is a possibility of hydrolysis and breaking of the bond between metal

and ligand and destruction of nanoparticle, therefore absorption
becomes less (Yesil et al., 2021). So, the lowest absorption was
observed at pH 10. In general, since the absorption changes in
pH 7 and 8 are not very noticeable, therefore, neutral pH is
considered as the optimal condition.

3.2.4 Investigating of temperature in the
absorption of CR

Next, the temperature of the absorption process was tested. For
this purpose, CR concentration (300 mg/L), amount of V/BP-MOF
(0.06 g/L), pH (7), and time (150 min) were kept constant. The
absorption process was investigated at ambient temperatures, 30°C,
40°C, 50°C and 60°C.

Figure 8 shows the AP values in different temperatures.
Based on the results of absorption at 25°C 30°C, 40°C, 50°C and

60°C, AP were 93.7%, 93.9%, 94%, 94.2%, and 94.3%, respectively.
Therefore, between the ambient temperature and 60°C, the
amount of absorption has not increased significantly. Therefore,
due to less energy consumption, the ambient temperature was used
as optimal.

3.2.5 Investigating process time in the absorption
of CR

Finally, the absorption process was evaluated at different times.
In these tests, which were performed at 30 min, 45 min, 60 min,
100 min, 150 min, 240 min, and 360 min, CR concentration, V/BP-
MOF amount, pH, and temperature were kept constant at 300 mg/L,
0.06 g/L, 7, and 25°C, respectively.

Figure 9 shows the AP values in different time.
Based on the results of absorption at 30 min, 45 min, 60 min,

100 min, 150 min, 240 min, and 360 min, AP were 39.5%, 46.7%,
63.9%, 81.6%, 93.7%, 94.1%, and 94.3%, respectively. By increasing
the time to 150 min, the absorption of CR showed a significant
improvement. Although it increased slightly up to 360 min, which
can be attributed to the remaining sites of the nanoparticle in CR
adsorption, 150 min can be reported as the appropriate time for CR
adsorption by the nanoparticle.

3.2.6 Adsorption kinetics
In order to investigate the adsorption kinetics, pseudo-first-

order (Equation 2), pseudo-second-order (Equation 3), and Elovich
models (Equation 4) were used. Their equations are as follows
(Musah et al., 2022):

log qe − qt( ) � log qe − 1
2.033

K1 t (2)

TABLE 1 Kinetic studies parameter.

Pseudo-first-order log(qe − qt) � 2.5119 − 0.04t R2 qe (mg.mg−1) K1 (g.mg−1.min−1)

0.92 325.01 0.092

Pseudo-second-order t/qt
� 0.0028 + 0.0017t R2 qe (mg.mg−1) K2 (g.mg−1.min−1)

0.99 588.23 0.001

Elovich qt � 99.982 ln(t) + 252.74 R2 A b

0.96 9.e9 0.16

FIGURE 11
Adsorption isotherm studies: Langmuir (I), Freundlich (II), and
Temkin (III).
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qe and qt (mg. g−1): The amount of adsorbed at equilibrium
and time t.

K1 (g.mg−1.min−1): The pseudo-first-order rate constant

t

qt
� 1
K2 qe2

+ t/qe (3)

K2 (g.mg−1.min−1): The pseudo-second-order rate constant

qt � a + b ln t (4)

a: y-intercept
b: slope of the line.
The results of the pseudo-first-order kinetic model study are

presented in Figure 10–I [log(qe-qt) and t]. The results of the
pseudo-second-order kinetic model study are presented in
Figure 10–II (t/qt and t). The results of the Elovich kinetic model
study are presented in Figure 10–III (qt and ln t).

The parameters of the kinetic studies are given in Table 1.
Based on the obtained data, the pseudo-second-order kinetic

model fits the data better, as indicated by a correlation
coefficient of 0.99.

Therefore, adsorption occurs nonlinearly and at a high rate,
significantly influenced by the concentration of the adsorbate. This
model is commonly used to describe adsorption processes on solid
surfaces and is applicable in the field of water purification
(Thottathil et al., 2024).

3.2.7 Adsorption isotherms
In order to investigate the adsorption isotherms, Langmuir

(Equation 5), Freundlich (Equation 6), and Temkin (Equation 7)
were used. Their equations are as follows (Al-Ghouti andDa’ana, 2020):

Ce

qe
� 1
KLqmax

+ 1
qmax

Ce (5)

qe (mg. g−1): The amount of adsorbed at equilibrium.
Ce (mg. g−1): The equilibrium concentration.
KL: Langmuir adsorption equilibrium constant

log qe � logKF + 1
n
logCe (6)

KF: Freundlich adsorption equilibrium constant
n = exponent of the adsorption intensity

qe � B1 lnKT + B1 lnCe (7)

KT: Temkin adsorption equilibrium constant.
B1 = It is calculated from RT. b1−1 and b1 is the adsorption

temperature.
The results of the Langmuir isotherm study are presented in

Figure 11–I Ce/qt and Ce). The results of the Freundlich isotherm
study are presented in Figure 11–II (log qe and log Ce). The results of
the Temkin isotherm study are presented in Figure 11–III (qe
and ln Ce).

The parameters of the isotherm studies are given in Table 2.
Based on the obtained data, the Freundlich isotherm model fits

the data better, as indicated by a correlation coefficient of 0.97.
The Freundlich isotherm model is suitable for describing

adsorption processes on heterogeneous surfaces, where different
types of adsorption sites are present. This model is effective for low
to moderate concentrations of adsorbed substances. This model is
applicable in the field of water purification (Al-Ghouti and
Da’ana, 2020).

3.2.8 Comparison of CR absorption of V/BP-MOF
with some compounds

The highest AP of 0.06 g/L nanoparticles synthesized in this
study under optimum conditions was 281.1 mg/L of 300 mg/L of CR
solution, which can be said to be nearly 94% (93.7%) absorption.
Therefore, the ratio of initial dye concentration to adsorbent dosage
is equal to 1,405.5 mg/mg which is a significant amount. Table 3
shows the comparison of the ratio of initial CR concentration to
V/BP-MOF with the ratio of initial CR concentration to adsorbent
dosage due to some compounds that have been reported recently.

Therefore, it can be concluded that the synthesized V/BP-MOF
has higher absorption property and better performance than some of
the recently reported methods.

This high properties of V/BP-MOF in the absorption of CR can
be attributed to some physical and chemical characteristics of the
synthesized substance, such as its high specific surface area and its
constituent compounds (Li et al., 2022).

TABLE 2 Isotherm studies parameter.

Langmuir Ce
qe � 0.0005Ce + 0.0188 R2 Qm (mg.g−1) KL (L.mg−1)

0.96 2,000 0.026

Freundlich log qe � 2.11 + 0.5124 logCe R2 1/n KF (L.mg−1)

0.97 0.5124 128.82

Temkin qe � 2.41 lnCe − 3.8951 R2 B1 KT

0.90 2.41 4.97

TABLE 3 Antibacterial activity of V/BP-MOF against some wastewater
strains.

Reported adsorbent
composition

Reported absorption
capacity (mg/g)

FHGEL 715

Kaolinite supported CoFe2O4

nanoparticles
390

Nano MnO2 in carbon microspheres 308

V/BP-MOF 1,405.5
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The high specific surface area allows the V/BP-MOF to be in
contact with more CR molecules and leads to more of their
absorption (Duojie et al., 2024).

Another factor in this property can be the functional groups in
the structure of the V/BP-MOF that cause hydrogen bonding with
CR (Liu et al., 2022b).

4 Antimicrobial activity

The inhibition of Salmonella enterica, S. dysenteriae, Y.
enterocolitica, and E. coli, which are considered significant
pathogenic bacterial strains in wastewater, was investigated by
the synthesized V/BP-MOF. The MIC and the MBC were

examined. The results are shown in Figure 12. Investigations
were carried out on concentrations of 1 μg/mL to 512 μg/mL of
V/BP-MOF.

The MIC and MBC values of V/BP-MOF against Salmonella
enterica, S. dysenteriae, Y. enterocolitica, and E. coli were observed as
16 μg/mL and 8 μg/mL, 8 μg/mL and 4 μg/mL, 32 μg/mL and 8 μg/
mL, 4 μg/mL, and 2 μg/mL, respectively.

Ampicillin, as a common antibiotic, was used to compare its
effectiveness with that of synthesized V/BP-MOF. The result proved
that ampicillin is ineffective against Y. enterocolitica, but the V/BP-
MOF showed good effectiveness.

Part of this acceptable antibiotic activity of V/BP-MOF, as
discussed in Section 3, can be attributed to its structural features,
such as porosity and specific surface area. As mentioned in previous

FIGURE 12
Antibacterial activity of V/BP-MOF against pathogenic bacterial strains in wastewater [mean (n = 3) ± SD].
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studies, by increasing the porosity and specific surface area, the
contact surface of the nanoparticle with bacterial strains increases
and leads to an increase in its inhibitory properties (Staroń and
Długosz, 2021; Zheng et al., 2021).

Another significant part of the high antimicrobial property of
the synthesized nanoparticle can be attributed to the presence of
vanadium and 2,2-bipyridine-4,4-dicarboxylic acid in the final
product. According to studies and reports, vanadium and 2,2-
bipyridine-4,4-dicarboxylic acid and its compounds have strong
antimicrobial properties (Domyati et al., 2021; Mahadevi et al., 2022;
Efunnuga et al., 2024; Saadh et al., 2024).

5 Conclusion

In the present study, a newMOF containing vanadium and 2,2-
bipyridine-4,4-dicarboxylic acid was synthesized (V/BP-MOF).
The investigation of its structure via elemental analysis (EA),
EDS, EDS mapping, FT-IR, XRD, TGA, BET, TEM, and SEM
was confirmed; high thermal stability, high porosity, a large
specific surface area, and a well-defined nanostructure were
observed. The high absorption capability of Congo Red (CR)
was the first application observed from the synthesized V/BP-
MOF (94%). Factors such as pH, temperature, and time were
analyzed in the absorption studies. Finally, it was proved that the
best absorption occurs at ambient temperature, natural pH, for
150 min. The presence of hydrogen bonding sites in the final
product, as well as the high porosity and specific surface area, was
cited as the reason for the high adsorption properties of CR by the
V/BP-MOF. Based on adsorption kinetics and adsorption
isotherms studies, pseudo-second-order kinetic and Freundlich
isotherm model were proposed for the adsorption process.
Microbiology evaluations were carried out on pathogenic
bacterial strains of wastewater such as Salmonella enterica, S.
dysenteriae, Y. enterocolitica, and E. coli in MIC and MBC
criteria. The obtained results showed that the MIC for
Salmonella enterica, S. dysenteriae, Y. enterocolitica, and E. coli
were 16 μg/mL, 8 μg/mL, 32 μg/mL, and 4 μg/mL, respectively,
indicating the high antimicrobial properties of the synthesized
compound. Factors such as bioactive compounds in the structure
of the final product, porosity, high specific surface area, and
nanoscale size which increases contact with bacteria can be
cited as reasons for the high biological activity of the V/BP-
MOF. The novelty of this work can be attributed to the report
of a new combination with multiple unique capabilities in
wastewater treatment and the clean environment goals. In the
continuation of the research, it can be suggested to investigate the
absorption of other dangerous chemical compounds and bacterial
pathogens using synthetic nanoparticles in this study.
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