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Artificial intelligence (AI) has recently emerged as a unique developmental
influence that is playing an important role in the development of medicine.
The AI medium is showing the potential in unprecedented advancements in truth
and efficiency. The intersection of AI has the potential to revolutionize drug
discovery. However, AI also has limitations and experts should be aware of these
data access and ethical issues. The use of AI techniques for drug discovery
applications has increased considerably over the past few years, including
combinatorial QSAR and QSPR, virtual screening, and denovo drug design.
The purpose of this survey is to give a general overview of drug discovery
based on artificial intelligence, and associated applications. We also
highlighted the gaps present in the traditional method for drug designing. In
addition, potential strategies and approaches to overcome current challenges are
discussed to address the constraints of AI within this field. We hope that this
survey plays a comprehensive role in understanding the potential of AI in
drug discovery.
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1 Introduction

It is estimated that 2.6 billion US dollars and over a decade of dedicated work are
typically required in the field of drug discovery, which is notorious for its high costs,
protracted timelines, and lack of success (Cohen et al., 2024). Several new drugs are
approved, but many of these drug candidates subsequently fail. A significant precursor
shift occurred in the context of drug discovery itself, enabling the rapid development of
rapidly evolving artificial intelligence (AI) (Tripathi et al., 2024; Sarkar et al., 2023).
Artificial intelligence has been successfully implemented into drug discovery,
encompassing target protein structure identification (Hasselgren and Oprea, 2024),
virtual screening (Turon et al., 2023), de novo drug design (Janet et al., 2023),
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retrosynthesis reaction prediction (Yan et al., 2023), bioactivity and
toxicity prediction (Tran et al., 2023), all of which are categorized as
predictive and generative processes (Figure 1A). Computer
programs designed to emulate human cognitive processes
constitute AI, a scientific discipline associated with intelligent
machine learning. In this process, data is acquired, systems are
constructed for using that data, conclusions are drawn, self-
corrections are implemented, and adjustments are made where
necessary (Buckner, 2023; Damiano and Stano, 2023; Prasad and
Kalavakolanu, 2023; Ratten, 2024). It is generally used for the
replication of cognitive tasks performed by humans through
machine learning analysis. To conduct accurate analyses and
provide meaningful interpretations, the technology relies on a
variety of statistical models and computational intelligence
(Klauschen et al., 2024). The application and integration of AI
technology across diverse industries have become increasingly
common in recent years (Ahmadi, 2024). Despite challenges
such as shortages of pharmacists (Kilonzi et al., 2024), rising
operating costs (Yaiprasert and Hidayanto, 2024), and
diminished reimbursements (Pham et al., 2024), pharmacies
have successfully met the rising demand for prescriptions during
the past quarter-century. Pharmacy has made great strides in
improving its workflow efficiency, reducing operating costs, and
championing safety, accuracy, and efficiency through technology
(Wilde et al., 2024). Besides giving pharmacists more time to direct

their attention to a larger patient volume, automated dispensing
systems improve health outcomes significantly. Intelligent
automation is playing a pivotal role in improving both patient
care and the pharmaceutical industry with this fusion of AI
technology and pharmacy practices (Anthwal et al., 2024). The
drug discovery market is expected to grow rapidly with advances in
artificial intelligence technologies as well as their integration into
the process as shown by Figure 1B.

2 Overview of artificial intelligence in
drug discovery

Recent advances in artificial intelligence and machine learning
have ushered in a new era of efficiency in drug discovery. By
combining artificial intelligence with machine learning in drug
discovery, new documents have been developed to address long-
standing challenges associated with traditional drug discovery, and to
accelerate the identification of promising drug candidates (Hasselgren
and Oprea, 2024; Ramos et al., 2024). In computer science, artificial
intelligence (AI) refers to the development of intelligentmachines that
can perform tasks usually requiring human intelligence. The role of
machine learning in drug discovery involves analyzing vast datasets
and deriving meaning from them using AI, a subset of machine
learning (Kotkondawar et al., 2024).
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2.1 Predicting drug efficacy and toxicity
through machine learning (ML)

In medicinal chemistry, an important application of artificial
intelligence is to predict the efficacy and toxicity of potential drug
compounds. As a result, Artificial Intelligence (AI), especially

Machine Learning (ML), has emerged as one of the most
effective techniques for solving these problems (Alhatem et al.,
2024). Analyzing large datasets allows ML algorithms to identify
patterns and trends not readily evident to humans. This capability
speeds up the identification of not only synthetic small molecules
but also new bioactive compounds while minimizing side effects,

FIGURE 1
(A) Schematic diagram representing drug development through AI, (B) Significant growth in the US AI market in drug discovery is expected between
2023 and 2032.
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outpacing the time constraints of traditional protocols (Thenuwara
et al., 2023). For example, deep learning (DL) algorithms trained on
a dataset of known drugs can predict the activity of new drugs with a
high degree of success (Askr et al., 2023). The use of databases of
known toxic and non-toxic compounds has enabled AI to make
significant contributions to the prevention of the toxicity of potential
drug compounds (Yang and Kar, 2023).

In addition to finding drug–drug interactions in patients with
different diseases, AI is also essential to identifying altered or adverse
reactions caused by multiple drugs being taken together for the same
or different diseases (Creecy et al., 2024). The detection of drug
interactions is based on AI methods that analyze patterns and trends
in large datasets of known interactions. An ML algorithm, for
instance, accurately predicts interactions of novel drug pairs
(Atas Guvenilir and Doğan, 2023). As part of personalized
medicine, AI can identify possible interactions between drugs. As
a result, it is easier to develop tailor-made treatment plans based on
the characteristics of individual patients, including genetic profiles
and drug responses, aligned with personalized medicine, which
tailor treatments based on individual characteristics (Blanco-
Gonzalez et al., 2023).

2.2 Virtual screening: a lead
identification approach

Virtual Screening (VS) serves as a potent methodology for lead
identification within the domain of AI-driven drug discovery (Pun
et al., 2023). By using this method, millions of compounds similar to
drugs or leads are computationally screened against well-
characterized proteins. Docking is used to filter ligands based on
their affinities for binding (Chisholm et al., 2023; Shiota et al., 2023).
These computational hits are then subjected to in vitro testing.
Within the realm of AI drug discovery, virtual screening falls into
two primary categories: ligand-based virtual screening (LBVS)
(Oliveira et al., 2023) and structure-based virtual screening
(SBVS) (Kumar and Acharya, 2023). LBVS entails the analysis of
biological data to differentiate inactive compounds from active ones
(Dragan et al., 2023). A consensus pharmacophore, similarity
measure, or various descriptors are then used to identify highly
active scaffolds. Conversely, SBVS requires knowledge of the 3D
structure of the target protein (Rehman et al., 2023). By using
computer algorithms, a target protein is docked with a large
library of drug-like compounds available commercially. The
docked complex is scored using a scoring function, followed by
experimental validation assays (DiFrancesco et al., 2023). An
important function of SBVS is scoring ligands. However, unlike
ligand-based approaches, the structure-based approach does not rely
on pre-existing experimental data (Stevenson et al., 2023).

3 Key technologies in AI–driven
drug discovery

In the past decay, drug discovery was a labor-intensive process
based on high-throughput screening and trial-and-error
experimentation. ML and NLP techniques hold promise for
improving the efficiency and effectiveness of analyzing large

datasets. Improve accuracy, allowing for more precise and
accurate entries through machine learning (ML) and natural
language processing (NLP). (Sim et al., 2023). The recent
achievements in applying deep learning to predict drug
compound efficacy demonstrate AI’s transformative potential in
this field. In addition, it has been proven that AI techniques are
capable of projecting the criminal capabilities of an individual,
showing the potential to interfere with the effectiveness of drug
discovery and processing (Yang and Kar, 2023). Clearly, it is possible
and research is needed on how AI can be used to create new
bioactives, despite these advances and with challenges and
limitations, including ethical ones. Medical advances in the future
are driven in large part by artificial intelligence.

It refers to any computer or machine exhibiting responsiveness
or intelligence, indicating human-like speed or intelligence, often
called robotics or automation. Robotic systems are designed to
perform complex repetitive tasks, while artificial intelligence is
concerned with giving computers or machines the ability to think
like humans (Wardat et al., 2024). As a branch of computer science,
artificial intelligence (AI) aims to develop machines that can learn
(Sanchez et al., 2024), organize (Nebreda et al., 2024), problem solve
(Sanchez et al., 2024), sense like humans. (Akour et al., 2024), and
language (Singh and Khatun, 2024) with similar success. In its
current form, narrow AI, also known as weak AI, is designed for
specialized tasks such as web search, face and voice recognition, and
self-examination (Thangavel et al., 2024). Ultimately, the AI
community wants to develop machines capable of performing all
cognitive tasks better than humans, which would lead to the
development of a strong or general AI.

3.1 A fusion of quantitative structure-activity
relationship (QSAR), quantitative structure-
property relationship (QSPR) and structure-
based modeling

In the ever-evolving landscape of drug design, Artificial
Intelligence (AI) combined with Quantitative Structure-Activity
Relationship (QSAR), Quantitative Structure-Property
Relationship (QSPR), and Structure-Based, has steadily gained
ground in the 50 years. QSPR has proven its worth in guiding
drug discovery, having proven its potential in predicting biological
action and pharmacokinetic parameters (Zeng et al., 2024). As
shown in Supplementary Figure S1. Traditionally reliant on
simpler models, the field has progressively embraced universally
applicable machine learning techniques such as support vector
machines (Yin et al., 2024) and gradient boosting methods
(Chellaswamy et al., 2024). Simultaneously, the resurgence of
deep learning has brought forth advancements, with graph neural
networks and recurrent neural networks offering automatic feature
extraction capabilities (Philippe et al., 2024). This has made it
possible to model complex molecular structures, including
peptides (Jin and Wei, 2024) and macrocycles (Nguyen et al.,
2024). Challenges, such as data scarcity and incomprehensibility,
have sparked research into nature-inspired machine learning and
active learning strategies. In structure-based modeling, the
integration of deep learning architectures, inspired by computer
vision, has revolutionized predictions for protein-ligand interactions
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(Xie et al., 2024). The marriage of AI with these well-established
methodologies underscores a promising trajectory in drug design,
with a focus on enhanced predictive accuracy and efficiency.

3.2 De novo drug design with artificial
intelligence

The creation of novel molecular entities with desired
pharmacological properties, known as De novo drug design, is a
formidable challenge in computer-assisted drug discovery
(Hasselgren and Oprea, 2024). The vast chemical space,
estimated from 1060–10100 potential drug-like molecules, adds
complexity. Traditional structure-based and ligand-based drug
design methods, though pivotal in discovering small-molecule
drug candidates, face limitations due to their reliance on specific
templates derived from active sites or pharmacophores. The
introduction of AI techniques has revolutionized de novo drug
design, with models like ReLeaSE (Amilpur and Dasari, 2024),
ChemVAE (Hasselgren and Oprea, 2024), Graph INVENT (Yao
et al., 2023), and MolRNN (Tropsha et al., 2023) utilizing diverse
molecular representations. These deep learning-based approaches
accelerate the drug discovery process by exploring chemical space
efficiently. Categorized as ligand-based or structure-based, these
methods use rule-based or rule-free approaches (Tropsha et al.,
2023). Rule-based methods involve construction rules, while rule-
free approaches, often based on generative deep learning models,
sample molecules from a learned latent molecular representation
(Tropsha et al., 2023). These generative models, including recurrent
neural networks and variation autoencoders, are praised for their
efficacy in exploring chemical space. Evaluation metrics include
validity, novelty, similarity to known compounds, and scaffold
diversity. A promising approach combines both rule-based and
rule-free methods for designing bioactive and synthesizable
molecular entities (Sinha et al., 2023). While current studies
predominantly focus on ligand-based approaches, there is
growing interest in exploring structure-based generative design,
especially for targeting orphan receptors and unexplored
macromolecules.

3.3 Drug toxicity prediction

Prediction of drug toxicity is an essential aspect of the drug
development process, with the aim of identifying and assessing the
importance of potential adverse effects or adverse reactions
associated with a drug in advance, when it grows further in the
development pipeline. Predicting drug toxicity is important because
it is critical to the safety and wellbeing of the patients who will
ultimately use the drug. Predicting Drug Toxicity Traditional
techniques have placed emphasis on experimental research and
animal testing, which are time-consuming, expensive, and do not
always accurately reflect human responses (Nasnodkar et al., 2023)
and with advances in machine learning (ML), drug toxicity
prediction is undergoing a paradigm shift. These techniques are
based on large datasets, including chemical gradients (Nasnodkar
et al., 2023), biological pathways (Guo et al., 2023), and includes
information on known toxicity profiles (Dou et al., 2023). Machine

learning algorithms, such as support vector machines (Khan et al.,
2024), random forests (Daghighi, 2023), and neural networks (Noor
et al., 2023), are trained on these data sets to learn patterns and
relationships that identify potential toxicity.

The use of artificial intelligence in predicting drug toxicity offers
several advantages. This enables the analysis of large data sets,
allowing for a more complete understanding of the complex
interactions between drugs and biological systems (Nasnodkar
et al., 2023). Machine learning models can identify hidden
patterns and consensual relationships that are not apparent
through traditional techniques. In addition, these models can
help to better and more quickly determine potential toxicities for
new drug candidates, which helps in the drug development phase
(Rasool et al., 2023). Yes, but challenges remain, such as the need for
optimal quality, different training data, and evaluation of complex
AI models. Ethical acceptance and regulatory standards also play an
important role in the integration of AI-based toxicity prediction into
the drug development process. Despite these challenges, there is
great promise in artificial intelligence-driven drug toxicity
prediction to aid the safety and success of novel pharmaceuticals
(Vora et al., 2023). “Continued research and collaboration between
researchers, data scientists, and regulatory agencies is essential to
ensure the accuracy of the prediction of eye-driven toxicity and
progress in this field.

3.4 Integration of AI in retrosynthesis and
reaction prediction

Retrosynthesis and reaction prediction have long been crucial in
organic chemistry, guiding the planning of synthetic routes. With
the intersection of material science and bioscience at the bio-
interface, the advent of Computer-Assisted Organic Synthesis
(CAOS) (Sankaranarayanan and Jensen, 2023) has emerged as a
powerful tool for synthetic planning. In recent years, the exponential
growth in reaction datasets and computational power has paved the
way for the development of advanced machine learning (ML) and
artificial intelligence (AI) models specifically tailored for CAOS
programs (Abbasi and Rahmani, 2023). These models exhibit the
capability to accurately predict individual synthetic and
retrosynthetic reactions, offering valuable insights for chemists in
designing synthetic pathways. One notable advancement involves
combining single-step predictions through the integration of proper
graph search algorithms (Kassa et al., 2023). This innovative
approach has allowed researchers to design CAOS programs that
excel in making comprehensive synthetic pathway predictions. By
leveraging the wealth of data and computational capabilities, these
programs contribute to the efficiency of synthetic planning,
especially in the intricate domains of material and bio-interface
studies. The integration of AI and ML in CAOS not only accelerates
the prediction of viable synthetic routes but also enables chemists to
explore complex reaction landscapes efficiently (López, 2023). The
success of these programs lies in their ability to navigate diverse
chemical spaces, providing valuable guidance for designing novel
compounds at the bio-interface. However, challenges persist in
ensuring the reliability of predictions, addressing issues of
interpretability, and refining the algorithms for diverse chemical
contexts (Mittal and Ahuja, 2023). Continued collaboration between
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computational chemists, organic chemists, and data scientists
remains essential for further advancing CAOS applications. The
synergy of retrosynthesis, reaction prediction, and CAOS stands as a
testament to the transformative potential of AI-driven tools in
shaping the future of synthetic chemistry at the interface of
materials and bioscience. Supplementary Table S1 provides a
concise overview of different applications of AI in the field of
drug discovery, making it easier to understand the breadth
of impact.

4 Limitations of artificial intelligence

While artificial intelligence holds promise in drug discovery,
there are significant challenges and limitations that demand careful
consideration. One primary challenge is the availability of suitable
data. AI-driven approaches typically rely on extensive datasets for
effective training (Blanco-Gonzalez et al., 2023). However, in many
instances, the accessible data may be limited, of suboptimal quality,
or inconsistent, thereby compromising the accuracy and reliability
of the results. Ethical considerations also present a challenge
(Prem, 2023), as EI-based techniques have brought problems
like fairness and biases, as discussed in the received section. For
example, if the data used to train the machine learning (ML)
algorithm is biased or does not properly represent the perspectives
of different viewers, the unique predictions may be incorrect or
invalid. Can be bent. Addressing and integrating the ethical
implications of E-I is instrumental in the development of new
therapeutic compounds. Different strategies can be used to meet
these challenges within the scope of chemotherapy in this field.
Data augmentation is a technique that involves the production of
synthetic data to complement existing data sets. The amount and
variety of data available for training these machine algorithms can
be greatly increased, yielding and tolerating results. Other
measures include the use of Explicit AI (XAI) methods, which
aim to provide interpretability and transparency to the predictions
of machine algorithms. Such methods contribute to addressing

concerns about bias and fairness in AI-driven approaches,
providing a clearer understanding of the underlying
mechanisms and assumptions guiding predictions (Chen
et al., 2023).

Contemporary AI-based methodologies should not be viewed
as a substitute for conventional experimental approaches, and
they cannot replace the valuable expertise and experience
contributed by human researchers (Dwivedi et al., 2023). AI is
limited to offering predictions based on available data, and the
subsequent validation and interpretation of results still rely on
human researchers. Nevertheless, the integration of AI alongside
traditional experimental methods has the potential to enhance
the drug discovery process. Through the synergistic combination
of AI’s predictive capabilities and the insights derived from the
expertise and experience of human researchers, there exists an
opportunity to optimize the drug discovery process and expedite
the development of new medications (Hasselgren and Oprea,
2024; Alharbi et al., 2024; Zhang et al., 2024; Shi et al., 2022; Kang
et al., 2020; Bibbò et al., 2017; Khan et al., 2020a; Iqbal et al., 2019;
Khan et al., 2018a; Khan et al., 2021a; Jamil et al., 2021; Khan
et al., 2020b; Tareen et al., 2021a; Khan et al., 2023; Khan et al.,
2020c; Khan et al., 2021b; Tareen et al., 2022a; Khan et al., 2019a;
Cao et al., 2012; Zhang et al., 2019; Hu et al., 2020; Tareen et al.,
2022b; Khan et al., 2019b; Khan et al., 2021c; Khan et al., 2021d;
Khan et al., 2021e; Aslam et al., 2021; Ahmad et al., 2021a;
Shaheen et al., 2023; Li et al., 2023; Tang et al., 2021; Khan et al.,
2019c; Khan et al., 2019d; Khatoon et al., 2020; Khan et al., 2018b;
Khan et al., 2020d; Khan et al., 2018c; Khan et al., 2018d; Ahmad
et al., 2021b; Duan et al., 2023; Dai et al., 2018) (Figure 2A).

5 Strategies and approaches to
overcome current challenges

Incorporating artificial intelligence (AI) into drug discovery is a
strategy of caution to overcome the current challenges. This
consideration will aid in the continued development of AI in

FIGURE 2
(A) Graphical representation of the comparison between strengths and limitations of AI, (B) Strategies and Approaches to Overcome Current
Challenges.
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drug research. A foundational emphasis is placed on optimizing data
inputs, prioritizing diverse and high-quality datasets as the bedrock
for robust AI models. This addresses challenges related to data
representativeness and accuracy (Figure 2B).

The establishment of ethical guidelines and governance
frameworks is a critical imperative, making responsible and
ethical AI use a guiding principle. This encompasses
considerations such as data privacy and consent. Interdisciplinary
collaboration emerges as an essential strategy, bridging the expertise
of AI specialists with professionals in pharmacology, chemistry, and
biology. This fosters a synergistic alliance, integrating computational
capabilities with domain-specific knowledge. Transparency in AI
decision-making gains significance, with the integration of
Explainable AI (XAI) techniques instrumental in providing a
clear understanding of AI-driven insights, particularly in the
nuanced landscape of drug discovery. Adaptability is a key
consideration, with the development of AI systems capable of
continuous learning, ensuring sustained relevance in the dynamic
field of drug discovery.

Holistic integration of computational predictions with
traditional experimental methods is proposed, enhancing the
reliability of drug discovery processes by capitalizing on the
strengths inherent in both methodologies. Addressing biases
within AI models becomes a central focus, with rigorous
evaluations and mitigation strategies imperative to promote
fairness and prevent disparities in drug discovery outcomes.

Engagements with regulatory bodies based on principles of
quality and validation are supported to enable acceptance and
regulation of AI-based tools in drug discovery. The driving force
behind AI research is to promote open collaboration and data
sharing that creates a culture of shared growth in the area of
drug discovery.

Finally, the recommendation for investment in education and
skill development programs serves to bridge the knowledge gap,
ensuring a proficient workforce capable of navigating the
intersection of AI and pharmaceutical sciences. In conclusion,
these strategies collectively shape a comprehensive framework for
overcoming existing challenges and optimizing the role of AI in
advancing drug discovery methodologies (Chen et al., 2021; Sagar
et al., 2021; Sagar et al., 2024).

6 Conclusion and summary of the
potential of AI for revolutionizing
drug discovery

A paradigm shift in pharmaceutical research and development is
being brought about by the integration of AI into drug discovery
processes. With the advent of AI, drug discovery pipelines have been
significantly accelerated, offering novel solutions to longstanding
challenges, such as identifying target protein structures, conducting
virtual screenings, designing new drugs, predicting retrosynthesis
reactions, bioactivity and toxicity. The scientific community and
society overall must recognize the implications of AI-driven drug
discovery moving forward. In the coming years, AI will have a
significant impact on the drug development process, as it can
streamline processes, reduce costs, and improve the efficiency

and success rate of the identification of viable drug candidates.
Furthermore, AI technologies could revolutionize patient care by
improving medication management and improving healthcare
delivery with the integration of AI technologies into pharmacy
practices. In future, it is imperative to address several key issues.
It is most important to develop new methods tailored to specific
drug discovery challenges and optimize existing AI algorithms. It is
also essential to integrate AI into existing drug discovery workflows
seamlessly and foster collaboration among researchers, industry
stakeholders, and regulatory bodies to ensure that AI is used in
drug development in a responsible and ethical manner. As a result,
the ongoing evolution of AI in drug discovery offers great promise
for transforming the pharmaceutical sector and improving global
health. It is possible to develop faster andmore efficiently safer, more
effective medications using AI-driven innovation and collaboration.
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