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Hydrogels are hydrophilic, three-dimensional, cross-linked polymers that absorb
significant amounts of biological fluids or water. Hydrogels possess several
favorable properties, including flexibility, stimulus-responsiveness, versatility,
and structural composition. They can be categorized according to their
sources, synthesis route, response to stimulus, and application. Controlling the
cross-link density matrix and the hydrogels’ attraction to water while they’re
swelling makes it easy to change their porous structure, which makes them ideal
for drug delivery. Hydrogel in drug delivery can be achieved by various routes
involving injectable, oral, buccal, vaginal, ocular, and transdermal administration
routes. The hydrogel market is expected to grow from its 2019 valuation of USD
22.1 billion to USD 31.4 billion by 2027. Commercial hydrogels are helpful for
various drug delivery applications, such as transdermal patches with controlled
release characteristics, stimuli-responsive hydrogels for oral administration, and
localized delivery via parenteral means. Here, we are mainly focused on the
commercial hydrogel products used for drug delivery based on the described
route of administration.
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1 Introduction

From scientific laboratories to clinical applications, the rise of commercial hydrogels has
received significant attention in the field of biological advancements. The term “hydrogel”
was first used by Van n Bemmelen in 1894. Later, in 1960, Lim andWichterle demonstrated
that hydrogels composed of poly (2-hydroxyethyl methacrylate) had potential applications
as a filler after enucleation of the eye, fabrication of contact lenses, drug carriers, and
arteries. As researchers delve deeper into the remarkable properties of these hydrophilic
networks, their potential to revolutionize diverse biological applications becomes
increasingly evident (van Bemmelen, 1894; Wichterle and LÍM, 1960; Peppas et al., 2006).

Hydrogels are complex networks of hydrophilic polymers that form three-dimensional
(3-D) structures, enabling them to absorb and maintain significant volumes of biological
fluids or water while preserving the integrity of their structure (Morteza et al., 2016). This
balance relies on various factors, such as the selection of polymer types, the response to
pH changes, cross-link density, and the behavior displayed in biological environments
(Ullah et al., 2015). Functional polymer gels can swell because they have hydrophilic
functional groups attached to polymer chains and cross-links between the chains (Douglas,
2018; Tanpichai et al., 2022). Hydrophilic functional groups, such as sulfates, carboxylic
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acids, hydroxyl groups, and amides, enable hydrogels to retain water
and exhibit swelling behavior (Kesharwani et al., 2021).

Hydrogels offer remarkable versatility and are utilized in
different subjects owing to their unique structures and
compatibility with varying conditions of use (Morteza et al.,
2016). Hydrogels show outstanding biomimetic properties
because of multifunctional qualities, such as flexibility, softness,
nontoxicity, biocompatibility, and biodegradability. These
properties enable numerous biomedical, pharmaceutical, and
other biomedical applications (Caló and Khutoryanskiy, 2015;
Ahmad et al., 2019; Volpi et al., 2022). The particular physical
characteristics of hydrogels have generated considerable
investigation into their prospective uses in drug delivery
applications. These biocompatible hydrogels have very
advantageous physical characteristics, such as elasticity, that
provide controlled release and long-term protection for the
encapsulated entities (Gull et al., 2020). The porous structure of
hydrogels can be easily modified by controlling the density of cross-
links within the gel matrix and the hydrogels’ affinity for the external
aqueous environment during swelling (Hoare and Kohane, 2008).
The rapid diffusion of drug molecules into and out of swollen
hydrogels, which involves drug entrapment and release, enables
the utilization of cross-linked polymer networks in a hydrated or
dehydrated state as effective carriers for drug delivery via various
routes such as vaginal, ocular, oral, buccal, and parenteral
administration (Erol et al., 2019).

The use of hydrogels in drug delivery systems has seen an
increase in recent years. The current valuation of the hydrogel
market stands at USD 22.1 billion as of 2019, with projected
growth to reach USD 31.4 Billion by the year 2027. This growth
is anticipated at a compound annual growth rate (CAGR) of 6.7%
from 2020 to 2027. A rise in the utilization of hydrogel products
stands as a significant stimulant for expanding the hydrogel market
over the next few years (Cascone and Lamberti, 2020). Commercial
hydrogels can be obtained for diverse drug delivery applications,
including localized delivery through the parenteral route, stimuli-
responsive hydrogels for oral delivery, and controlled release
properties for transdermal patches (Shi and Li, 2005; Sharpe
et al., 2014a; Zielińska et al., 2022).

Research on hydrogel has been ongoing for many years, leading
to the development of products that have found numerous
applications in the drug delivery system. Therapeutic drugs are
now loaded into polymer-based carriers, and the delivery and release
of drug molecules is a topic of great interest in many medical fields
(Roointan et al., 2018; Farjadian et al., 2019a; Farjadian et al., 2020;
Farzanfar et al., 2021; Ghasemi et al., 2022a; Bahmani et al., 2022).
The carriers facilitate the transportation of drugs to the specific
target location (Entezar-Almahdi et al., 2021; Ghasemi et al., 2022b).
Numerous studies have been published on commercial hydrogels for
biomedical applications, specifically wound dressings, contact
lenses, and cosmetics (Cascone and Lamberti, 2020). Following
our previous reports on pharmaceutical applications of precious
advanced materials (Farjadian et al., 2019b; Farjadian et al., 2019c;
Ahmadi et al., 2020; Entezar-Almahdi et al., 2020; Hoseini-
Ghahfarokhi et al., 2020; Zarkesh et al., 2021; Hejabi et al., 2022),
in this paper we will discuss various commercial hydrogel products
used for drug delivery, focusing on different routes of administration
such as injectable, oral, buccal, ophthalmic, vaginal, and transdermal

routes (Figure 1). Each section contains a table with an overview of
the products on the market, their manufacturer, and their main
ingredients.

2 Classification of hydrogel products

Hydrogels are cross-linked networks of hydrophilic polymeric
chains. Hydrogels absorb about 70%–99% of their weight in water
and can be used to formulate semi-solid delivery systems for labile
and hydrophilic drugs (Narayanaswamy and Torchilin, 2020).
Hydrogels can be classified in multiple ways (Figure 2). Based on
their source, hydrogels are categorized as follows: natural hydrogels
are biodegradable and biocompatible; synthetic hydrogels are non-
toxic and compatible; and hybrid hydrogels, which combine
synthetic and natural polymers for use in biomedical
applications, are available (Malpure et al., 2018). Based on the
synthesis route, hydrogels can be categorized into homopolymers,
copolymers, and multipolymers. Hydrogels can exhibit different
charge characteristics on the bound groups, leading to their
classification as cationic, anionic, ampholytic, or electrically
neutral, depending on the ionic charges present (Mahinroosta
et al., 2018). Hydrogels, as complex polymeric structures, can
display swelling behavior in response to various external stimuli.
These stimuli can include alterations in pH, temperature,
electromagnetic radiation, ionic strength, and other similar
factors (Farjadian et al., 2023). The swelling of a polymeric chain
occurs due to the hydration of hydrophilic and polar groups. The
polar moieties expand, exposing hydrophobic groups that interact
with water molecules. The polymeric network absorbs more water
through an osmotic force, leading to infinite dilution (Holback et al.,
2011). Hydrogels, according to the type of cross-linking, can be
classified into two distinct categories: chemically cross-linked
networks, characterized by the presence of permanent junctions,
and physical networks, characterized by the formation of temporary
junctions through polymer chain entanglements or physical
interactions (Malpure et al., 2018). From the initial studies on
the pharmaceutical applications of hydrogels, an extensive range
of drug delivery systems were designed to prolong therapeutic
efficacy and accomplish targeted delivery to particular tissues or
organs. Hydrogels are divided into four groups concerning the
mechanism controlling the drug release: 1) swelling-controlled, 2)
diffusion-controlled, 3) chemically-controlled, and 4) environment-
responsive systems (Mohite and Adhav, 2017).

3 Drug delivery commercial product

Hydrogels are frequently utilized as drug delivery vehicles. The
commercial hydrogel-based drug delivery products are discussed in
the following section according to the administration route.

3.1 Injectable drug delivery product

There has been a growing focus on injectable hydrogels
compared to conventional gels in recent years. This is mainly
due to their minimally invasive nature during surgery and ability
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to change shape in real time (Tan and Marra, 2010). Injectable
hydrogels can be implanted through a minimally invasive
procedure, significantly reducing patient discomfort and pain and

decreasing healing time. Furthermore, this approach is cost-effective
and applicable to hard-to-reach tissue sites (Rizzo and Kehr, 2021).
Injectable hydrogels with multiple functions can be utilized to treat

FIGURE 1
Application of hydrogel for drug delivery based on route of administration.

FIGURE 2
Classification of hydrogel products based on different parameters.
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cancer, diabetes, and gene therapy by enabling the effective delivery
of numerous pharmaceuticals and other substances, including
proteins (Huang and Brazel, 2001). The main types of injectable
hydrogels are synthesized by chemical or physical cross-linking.

Physically cross-linked hydrogels, developed by non-covalent
secondary forces, are preferable for a sustained delivery system. In
contrast, injectable hydrogels created by chemical cross-linking offer
superior long-term stability and mechanical qualities but may cause
adverse effects due to toxic crosslinkers (Yu and Ding, 2008; Mathew

et al., 2018). Novel types of hydrogels, like dual cross-linking
hydrogels, nanocomposite hydrogels, and slide-ring hydrogels, are
developed to enhance mechanical properties (Figure 3) (Katsuno
et al., 2013; Zhao et al., 2016).

Temperature-responsive hydrogels are as attractive as physical
gels because they can be customized for specific purposes. These
materials possess a biologically compatible in situ setting process,
allowing for the incorporation of cells, bioactive compounds, and
even intricate 3-D structures (Han et al., 2018). Hydrogel has been

FIGURE 3
(A) Dual cross-linking hydrogel. (B) Nanocomposite hydrogel. (C) Slide-ring hydrogel.

TABLE 1 Some of the injectable commercial hydrogels.

Product Company Main constituent Drug Application Ref

SpaceOAR™ Boston Scientific Polyethylene Glycol - Prostate Cancer Mishra and Singh (2021)

OncoGel® Protherics, inc Poly (lactic-co-glycolic acid) and polyethylene
glycol

Paclitaxel Localized delivery of solid
tumors

Gok et al. (2009), Hobzova
et al. (2019), Guo et al.
(2020)

Ozurdex®
implant

Allergan inc Poly (lactic-co-glycolic acid) Dexamethasone Inflammation and
suppressing immune
responses

Kropp et al. (2014),
Bahmanpour et al. (2023)

Retisert® Bausch and Lomb Polyvinyl alcohol Fluocinolone
acetonide

Inflammation,
suppressing immune
responses

Bahmanpour et al. (2023),
Mishra et al. (2023)

Iluvien® Alimera Sciences Polyvinyl alcohol and silicone adhesives Fluocinolone
acetonide

Diabetic macular edema Cascone and Lamberti
(2020)

Eligard® Tolmar
Pharmaceuticals, inc

Use Atrigel® system consists of a lactide-
glycolide liquid polymer in one syringe and a
lyophilized drug in a second syringe

Leuprolide
acetate

Prostate cancer Perez-Marrero and Tyler
(2004)

Lupron
Depot®

Takeda pharmaceuticals,
Abbvie Endocrine inc

Poly (lactic-co-glycolic acid) Leuprolide
acetate

Prostate Cancer Jain et al. (2016)
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extensively investigated for localized therapy, but few have been
commercialized because of its complicated delivery system,
difficulties in large-scale production, failure to pass clinical trials,
and related side effects (Mishra and Singh, 2021). Table 1 contains a
list of several commercial products.

3.2 Oral drug delivery product

The oral route is a popular drug delivery method owing to its
numerous benefits, including sustained and controlled drug
delivery, ease of administration, feasibility of solid formulation,
and high level of patient compliance (Homayun et al., 2019). The
gastrointestinal tract (GIT) has a complex structure and functions
that notably impact the release, dissolution, and absorption of orally
administered dosage forms. This impact is primarily attributed to
factors such as enzyme content, bile salts, acidity, and the mucosal
absorptive surface of the GIT (Shah et al., 2017). Hydrogels are
employed in smart oral delivery systems for hydrophobic biological
molecules, facilitating site-specific dispersion of medicinal
compounds within the intricate GIT. Traditional methods
encounter obstacles such as limited permeability of the epithelial
membrane and denaturation of drugs (Carr et al., 2010). Stimuli-
responsive hydrogels are vital in oral delivery as they can respond to
environmental changes. These hydrogels can be triggered by various
physical and chemical stimuli, like pH, light, ionic strength, solvent
composition, temperature, and electric field (Peppas et al., 2000;
Farjadian et al., 2022). Drug delivery systems can be designed to
administer therapeutic substances to specific organs in a regulated
and predictable manner (Gull et al., 2019a). In the complicated
environment of the GI tract, hydrogels protect therapeutic agents
and allow targeted delivery by taking advantage of basic
physiological changes (Figure 4) (Sharpe et al., 2014b). There
have been studies of controlled release systems used in various
pH ranges within the body, including the oral, intestines, gastric, and
periodontal areas (Gull et al., 2019b). Hydrogels were extensively
studied for their potential application in oral drug delivery of insulin,

trying to solve the challenges associated with parenteral insulin
administration. However, despite numerous advances in this field,
progress has been limited, and there is now no commercially
successful oral insulin product available for human use
(Chaturvedi et al., 2013). Biopolymers such as alginate,
hydroxypropyl cellulose, soybean protein, pectin, and cellulose
acetate have been the subject of significant investigation in the
field of GIT drug delivery (Vashist et al., 2014). Researchers are now
working on the development of cost-effective and efficient drug
delivery methods utilizing hydrogel materials. Numerous hydrogel
systems have been designed to achieve controlled drug release
through the utilization of various mechanisms that arise during
the administration of medications through the oral route. Despite
the challenges encountered by oral drug delivery, these systems have
been designed to successfully solve these obstacles (Farrukh et al.,
2023). Some examples of these commercial products are included
in Table 2.

3.3 Buccal drug delivery product

The buccal mucosa is highly accessible and characterized by a wide
area of smooth muscle and generally static mucosa, making it an ideal
site for administering retentive dosage forms. The internal jugular vein
bypasses the hepatic first-pass metabolic process to allow direct entry of
medicines into the systemic circulation, resulting in increased
bioavailability. Additional benefits include minimal enzymatic
activity, compatibility with medications or excipients that cause only
minor and reversible mucosal damage or irritation, administration
without pain, and convenient drug withdrawal (Sudhakar et al.,
2006). Drug administration through the buccal route provides a
viable alternative for drug delivery to the systemic circulation. In the
study of Hu et al., a mucoadhesive film inspired by mussels and
containing polydopamine (DOPA) nanoparticles has been shown to
have more significant advantages for transporting drugs over the
mucosal barrier, as well as increased drug bioavailability and
therapeutic efficacy in models of oral mucositis (Hu et al., 2021).
The synthesis of PVA-DOPA polymers involved the modification of
poly (vinyl alcohol) (PVA) using the mussel adhesive protein DOPA.
Then, different PLGA (poly (D,L-lactide-co-glycolide) nanoparticles
were integrated into the PVA-DOPA film to create a combined buccal
drug delivery system with dexamethasone (Dex) known as the PVA-
DOPA@NPs-Dex film (Figure 5). The nanoparticles are slowly released
from the film, thenmove through themucus layer and pass through the
epithelium. This results in sustained drug release and increased
therapeutic efficacy in the treatment of oral mucositis.

Various commercial buccal medication administration dosage
forms are available on the market, including buccal tablets, sprays,
mucoadhesive formulations, sublingual lozenges, chewing gums, films,
and solutions (Nagai and Machida, 1993). There are numerous
disadvantages associated with buccal drug delivery. Firstly, the
buccal mucosa acts like a barrier that may limit the permeability of
certain drugs. Secondly, the presence of saliva can potentially dilute the
drug, thereby affecting its absorption. Lastly, the oral cavity experiences
a variable environment due to factors such as food consumption and
other daily activities. To address this challenge, many strategies can be
employed for buccal drug delivery, including physical penetration
enhancers like iontophoresis, chemical penetration enhancers like

FIGURE 4
(1) preserving the drug in a low-pH environment. (2) Hydrogen
bonds between polymer chains cause the carrier to become complex.
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surfactants, and formulation technologies like polymeric and
mucoadhesive dosage forms (Wanasathop et al., 2021). Their
bioadhesive qualities significantly influence the choice of hydrogel
delivery methods. When a hydrogel has high adhesion to the
epithelium, it can extend the system’s retention at a target site,
delivering enough drug doses for the intended therapeutic effect.
This is especially crucial for buccal delivery (Peppas and Sahlin,
1996). Specific polymers, like poly (acrylic acid) and chitosan, have
been observed to possess mucoadhesive properties. Poly (acrylic acid)
can establish hydrogen bondswith themucosa, whereas chitosan, which
carries a positive charge, can engage in electrostatic interactions with
negatively charged surfaces of tissues and cells (Li and Mooney, 2016).
Hydrogel carriers for drug delivery contain the potential to control the
release rate of drugs based on the hydration state. This hydration level
determines the hydrogel’s swelling ability (Narayanaswamy and
Torchilin, 2020). In the field of drug delivery, a variety of material-
based hydrogels have been commercially applied. Some commonly used
hydrogels include hydroxyethyl cellulose, hydroxypropyl cellulose,
polyvinyl alcohol, polyacrylic resins, carboxymethyl cellulose, and
hydroxypropyl methylcellulose (Cascone and Lamberti, 2020). Some
of these commercial products are listed in Table 3.

3.4 Ocular drug delivery product

The human eye is a complex, spherical organ. The structure can
be anatomically separated into two compartments, namely, the
anterior and posterior segments. Ophthalmic drugs administered

to the anterior section of the eye encounter challenges from dynamic
and static barriers. The main barriers are the blood-queous barrier,
corneal epithelium, corneal stroma, lymph flow, conjunctival blood
flow, and tear drainage. These factors play a critical role in the
formulation and development of ophthalmic therapies (Torres-Luna
et al., 2020). Drug contact with ocular surface tissues is brief, often
lasting between 1 and 2 min. This is due to the continuous
generation of tears, which range from 0.5 to 2.2 μL per minute,
as well as the turnover of tears (Sánchez-López et al., 2017).
Hydrogels possess the capability to effectively resist the rapid
blinking and flushing actions of tears, thereby extending the
duration of drug presence on the eye surface. This prolonged
drug resident time facilitates enhanced drug efficacy regarding
localized therapeutic action on mucosal surfaces or more
profound penetration into eye tissues. Hydrogels can extend the
duration of drug presence on the ocular surface and maintain a
controlled release of drugs within the intraocular tissues, including
the vitreous cavity and aqueous humor (Cooper and Yang, 2019).
The versatility and modifiability of hydrogels make them ideal for
efficiently transporting medications to the eye, as they may be
designed to take advantage of the specific function and
environment for which they are developed (Torres-Luna et al.,
2020; MohammadSadeghi et al., 2021). Figure 6 illustrates the
diverse range of potential applications of hydrogels in therapeutic
ophthalmic.

Hydrogels can augment medication retention on the ocular
surface by elevating solution viscosity, facilitating their swelling
in water or aqueous solvents. Chitosan, hydroxypropyl cellulose,

TABLE 2 Some of the commercial oral hydrogels.

Product Company Main constituent Drug Application Ref

Voltaren® GSK plc Hydroxypropyl methylcellulose and
polyethylene glycol

Diclofenac sodium Anti-inflammatory Cascone and Lamberti
(2020)

Vicoprofen® Abbvie ltd Hydroxypropyl methylcellulose Ibuprofen and hydrocodone
bitartrate

Severe pain Cascone and Lamberti
(2020)

Levora® Mayne pharma inc Croscarmellose sodium Levonorgestrel and ethinyl
estradiol

Contraceptives Cascone and Lamberti
(2020)

Suprax® Sanofi Aventis Hydroxypropyl methylcellulose Cefixime Antibiotic Cascone and Lamberti
(2020)

Lopid® Pfizer Inc Hydroxypropyl methylcellulose Gemfibrozil Antibiotic Cascone and Lamberti
(2020)

Cytotec® Pfizer Hydroxypropyl methylcellulose Misoprostol Termination of pregnancy Organization (2016)

Xartemis XR® Mallinckrodt Polyvinyl alcohol and
hydroxypropyl cellulose

Oxycodone hydrochloride
and acetaminophen

Acute pain Jindal et al. (2022)

Inderal LA® AstraZeneca Ethylcellulose Propranolol hydrochloride Hypertension Mu et al. (2003)

Zuplenz® Aquestive Therapeutics Polyethylene glycol 1000, polyvinyl
alcohol, and rice starch

Ondansetron Antiemetic Jacob et al. (2021)

Theo-24® Endo
Pharmaceuticals, Inc

Hydroxypropyl methylcellulose Theophylline anhydrous Asthma and COPD Wasilewska and
Winnicka (2019)

Gaviscon® Reckitt Benckiser
Healthcare Ltd

carbomer 974p, Sodium alginate Magnesium carbonate
aluminum hydroxide

Antacid Sudhakar et al. (2006)

Concerta® Alza Corporation Hydroxypropyl methylcellulose,
poloxamer

Methylphenidate Attention deficit hyperactivity
disorder (ADHD)

Coskun et al. (2009)

Noxafil® Merck Hydroxypropyl methylcellulose Posaconazole Antifungal Nyamweya (2021)
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dextran, hydroxypropyl methylcellulose, and poly (acrylic acid)
derivatives, including polycarbophil and carbomer 934, have been
identified in studies that are most appropriate for bioadhesive
polymers for ocular medication administration (Fathi et al.,
2015). Table 4 is a compilation of several commercial products.

3.5 Vaginal drug delivery product

The vagina is an essential reproductive organ made of a 7.50-
cm-long muscular canal located between the urethra, rectum, and
bladder. The vaginal membrane is composed of three different
layers, including the muscular coat, epithelial layer, and tunica
adventitia. The thickness of the vaginal epithelium is dependent
upon various factors, including age, hormonal activity, and life
phases. The vaginal branch of the uterine artery is responsible for
providing blood circulation to the vagina (Valenta, 2005). The
vaginal route of drug administration is thought to be highly
advantageous owing to its extensive blood flow, capacity to elude
the first-pass effect, and significant permeability to many
pharmacological compounds, including peptides and proteins
(Aka-Any-Grah et al., 2010). A variety of pharmacological

groups, including antimicrobials, labor inducers, sexual
hormones, and spermicides, have been delivered via the vaginal
mucosa. The majority of these drugs are employed for localized
conditions, while a few of them can achieve serum concentrations
that are adequate for producing systemic effects (Alexander et al.,
2004). Vaginal drug delivery methods use natural or synthetic
polymers to facilitate drug interaction with the target site and
achieve controlled, reproducible, and predictable drug release.
Various systems are presently being utilized or under
examination (Osmałek et al., 2021). The term “mucoadhesion”
pertains to when a substance with biological origin is bound to
the mucosa surface for a prolonged period due to interfacial forces
(Das Neves and Bahia, 2006). The mucoadhesive system possesses
the capacity to regulate the rate of drug release from the vaginal
canal and prolong its residence time. Bioadhesion has the potential
to enhance the level of contact and extend the residence time of
dosage forms across different administration routes. These
formulations have the potential to include pharmaceutical
substances or function in combination with moisturizing agents
to serve as a means of managing vaginal dryness (de Araujo Pereira
and Bruschi, 2012). A variety of bioadhesive polymers were
evaluated to establish a vaginal delivery system. These polymers

FIGURE 5
The synthesis and biomedical application of PVA-DOPA@NPs-Dex mucoadhesive film enhances mucoadhesion for buccal drug delivery. PVA: poly
(vinyl alcohol), DOPA: 3,4-dihydroxy-D-phenylalanine, NPs: nanoparticles, Dex: dexamethasone. Adopted from (Hu et al., 2021).
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included sodium alginate, polycarbophil, guar gum and xanthan,
Carbopol®, sodium carboxymethylcellulose, hydroxypropyl
methylcellulose, and hydroxypropyl cellulose (Veiga et al., 2018).
Mucoadhesive vaginal drug delivery systems include gels, tablets,

films, emulsion-type systems, and suppositories, but gels are the
primary mucoadhesive vaginal drug delivery methods in current
usage. Vaginal formulations are characterized by their ease of
manufacturing, comfort, and efficacy in establishing intimate

TABLE 3 Some of the transdermal commercial hydrogels.

Formulation Product Company Main constituent Drug Application Ref

Buccal tablet Imdur® Key
pharmaceuticals

Hydroxypropyl cellulose and
Hydroxypropyl methylcellulose

Isosorbide
mononitrate

Prevention angina
attacks

Cascone and
Lamberti (2020)

Nicorette® Johnson&Johnson Hydroxypropyl methylcellulose Nicotine Quit smoking Cascone and
Lamberti (2020)

Suscard Buccal® Pharmax Limited Hydroxypropyl methylcellulose Glyceryl trinitrate Prevention angina
attacks

Sudhakar et al.
(2006)

Striant® Mipharm S.p.A Carbomer and hydroxypropyl
cellulose

Testosterone Hormone
replacement therapy

Cascone and
Lamberti (2020)

Aphtach® Teijin Ltd Hydroxypropyl cellulose and
carbomer

Triamcinolone
acetonide

Anti-inflammatory Cascone and
Lamberti (2020)

Buccastem®M Alliance Pharma Xanthan gum Prochlorperazine
maleate

Antiemetic Cascone and
Lamberti (2020)

Buccal film Zilactin® Zila
pharmaceuticals

Hydroxypropyl cellulose Benzocaine Pain Sudhakar et al.
(2006)

BELBUCA® Biodelivery
Sciences

Hydroxyethyl cellulose Buprenorphine Moderate to severe
pain

Nyamweya
(2021)

Semisolid Adcortyl in
orabase®

Bristol-Myers
Squibb

Pectin, gelatin,
carboxymethylcellulose

Triamcinolone
acetonide

Anti-inflammatory Cascone and
Lamberti (2020)

Bioral gel® Merck Carboxymethyl cellulose Carbenoxolone Anti-Inflammatory Cascone and
Lamberti (2020)

Solution Lubrajel™ BA Ashland Glyceryl polyacrylate and glyceryl
acrylate

- Oral moisturizing Cascone and
Lamberti (2020)

FIGURE 6
The application of hydrogels in various ocular regions.
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contact with the vaginal mucosa. These compounds contain a
significant amount of water and exhibit rheological qualities,
hence offering hydrating and lubricating effects, particularly in
cases of dry vaginal mucosa. The utilization of mucoadhesive
polymers has been shown to enhance the duration of contact,
reduce formulation loss, and prolong the therapeutic impact (Das
Neves and Bahia, 2006; de Araujo Pereira and Bruschi, 2012).
Table 5 presents a comprehensive overview of several proprietary
vaginal compositions now accessible in the marketplace.

3.6 Transdermal drug delivery product

The skin, which is the largest and most external organ within the
human body, covers an approximate surface area of 1.8 square
meters and constitutes approximately 20% of the whole body weight
of an average individual (Brown andWilliams, 2019). The utilization
of the skin as a way of drug delivery presents advantages such as
sustained release, greater compliance, and reduced rates of adverse
effects in comparison to oral and parenteral administration

methods. The transdermal delivery method is considered ideal
due to its large surface area, minimal potential for enzyme-
dependent degradation, and extended duration of application
(Akbarian et al., 2022; Dahri et al., 2023). The stratum corneum
offers an important challenge in the transdermal administration of
active substances due to its role as the initial barrier of the skin. This
barrier restricts drug absorption and limits the range of medications
that can be effectively given (Al-Japairai et al., 2020). Polymers are of
significant importance in the formulation of skin preparations since
they act as a matrix for delivering the active ingredient to the desired
application site or target organ. This intricate system distinguishes
between active and inactive components, achieving the desired
result. Polymers possess diverse applications, serving as gelating
agents in gel systems, consistency excipients in emulsions and
creams, matrix materials in patches, and skin adhesives in
transdermal systems. Their diverse range of applications makes
them useful in numerous formulations for skin preparations
(Valenta and Auner, 2004). Hydrogels, which are derived from
hydrophilic polymers, exhibit favorable characteristics for drug
delivery purposes owing to their capacity to hold large amounts

TABLE 4 Some of the ocular commercial hydrogels.

Product Company Main constituent Drug Application Ref

Akten™® Akten Hydroxypropyl methylcellulose Lidocaine Ocular surface anesthesia Chowhan and
Giri (2020)

Liquivisc® Laboratoires THEA Carbomer 974P - Dry eye Fang et al. (2021)

Hylo® Gel Candorpharm Inc Sodium hyaluronate - Dry eye Tomczak et al.
(2021)

Viscotears® Novartis Carbomer 980 - Dry eye Fang et al. (2021)

Liposic® Bausch + lomb Carbomer 980 - Dry eye Kalhori et al.
(2016)

Clinitas Gel® Altacor Carbomer 980 - Dry eye Fang et al. (2021)

ReSure®Sealant Ocular Therapeutix Polyethylene glycol - Seal clear corneal incisions
following cataract surgery

Spierer and
O’Brien (2015)

Timolol GFS® Alcon Gellan gum and xanthan gum Timolol maleate Glaucoma Chowhan and
Giri (2020)

Timoptic XE® Merck Gellan gum Timolol maleate Glaucoma Wu et al. (2019)

Timoptol-LA® Merck Sharp and
Dohme

Gellan gum Timolol maleate Glaucoma Wu et al. (2019)

Pilopine HS® Alcon Carbomer Pilocarpine Glaucoma Al-Kinani et al.
(2018)

Pilogel® Alcon Carbomer 940 Pilocarpine Glaucoma Al-Kinani et al.
(2018)

Carteol LP® Alcon Alginic acid Carteolol hydrochloride Glaucoma Chowhan and
Giri (2020)

Aza Site® In Site Vision Hydroxypropyl methylcellulose (HPMC
E15 LV and HPMC K4M)

Azithromycin To treat bacterial infection Chowhan and
Giri (2020)

DuraSite®/
Azasite®

Inspire
Pharmaceuticals

Polycarbophil (carbomer cross-linked
with divinyl glycol)

Azithromycin To treat bacterial infection Al-Kinani et al.
(2018)

AzaSite plus® Inspire
Pharmaceuticals

Polycarbophil (carbomer cross-linked
with divinyl glycol)

Azithromycin and
dexamethasone

Anti-bacterial and anti-
inflammation

Al-Kinani et al.
(2018)

Virgan® Thea
Pharmaceuticals

Carbomer Ganciclovir antiviral Al-Kinani et al.
(2018)
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of water, thus enhancing skin elasticity and moisturization (Viyoch
et al., 2005). Hydrogel-based patches offer the capacity to deliver
drugs in a controlled manner over a specified duration, rendering
them more favorable compared to conventional methods.

Additionally, these systems possess the advantage of being
quickly packaged and transported while also enabling specific
drug delivery to the intended site (Boriwanwattanarak et al.,
2008). The Scopolamine patch, which represents the first
marketed transdermal delivery patch, presents a revolutionary
approach to preventing the effects of motion sickness (Prausnitz
et al., 2012). Transdermal patches are available in various types,
such as single-layer, multi-layer, reservoir, matrix, and vapor
patches. In a single-layer patch, the adhesive layer contains and
releases the drug. The multi-layer patch consists of two distinct
layers designed for immediate and controlled drug release, which
are effectively separated by a membrane. The reservoir
transdermal system includes different layers, including a drug
layer and a liquid compartment containing a drug suspension or
solution, separated by an adhesive layer. The release rate follows
zero-order kinetics (Pastore et al., 2015). The matrix system
consists of a partially overlaid adhesive layer and a semi-solid
matrix, which includes a drug solution or suspension. The novel-
type vapor patch is designed to deliver essential oils continuously
for over 6 h. Its primary purposes include decongestion and

enhancing sleep quality (Lee et al., 2001). Hydrogels are
utilized for transdermal delivery in patches or creams, as they
effectively enhance drug permeation by promoting
skin hydration.

Moreover, hydrogels are well-suited for topical applications.
Furthermore, investigations have been conducted on their
potential to improve the stability and efficacy of transdermal
delivery systems such as liposomes, micelles, and nanoparticles
(Kong et al., 2016). Table 6 presents examples of commercially
available transdermal hydrogels for drug delivery.

4 Advantages and disadvantages

Hydrogels provide numerous advantages that make them ideal
for biomedical applications, particularly drug delivery. These
benefits include sustained action, decreasing administration
doses, ease of modification, reduced side effects, drug targeting
capabilities to specific locations, and the ability to respond to
stimuli. Nevertheless, hydrogels exhibit several disadvantages,
including hypoxia, dehydration, as well as limited mechanical
strength, challenging manipulability, and high cost.

Oxygen is a vital factor in the existence of cellular organisms.
Some hydrogels can induce hypoxia as a state of lack of oxygen. This

TABLE 5 Some of the vaginal commercial hydrogels.

Product Company Main constituent Drug Application Ref

Vagisil® Combe, inc Hyaluronic acid - Vaginal moisturizer Cascone and
Lamberti (2020)

K-Y® Johnson and Johnson Hydroxyethyl cellulose - Vaginal lubrication Das Neves and
Bahia (2006)

Replens® Lds consumer Carbopol® 974p and
polycarbophil

- Vaginal moisturizer Acarturk (2009)

Aci-Jel® Hope pharmaceuticals Acacia gum, tragacanth Oxyquionoline sulfate, acetic
acid, ricinoleic acid

Maintenance of the vaginal
acidity, antiseptic

Das Neves and
Bahia (2006)

Crinone® Merck Serono Carbopol®974p and
polycarbophil

Progesterone Infertility, secondary
amenorrhea

Acarturk (2009)

Vagifem® Novo Nordisk Hypromellose Estradiol Atrophic vaginitis Schulz et al. (2013)

Carraguard® David M. Phillips
Laboratory

Carrageenan PDR98-15 Progestin levonorgestrel Contraceptive Brache et al. (2009)

Cervidil® Ferring
Pharmaceuticals Inc

Polyethylene oxide Dinoprostone Start ripening of the cervix in
pregnant women

Aswathy et al.
(2020)

Conceptrol® Advanced Care Products Sodium
carboxymethylcellulose

Nonoxynol-9 Contraceptive Das Neves and
Bahia (2006)

Advantage-S®b Columbia laboratories Polycarbophil, carbopol®
974p

Nonoxynol-9 Contraceptive Das Neves and
Bahia (2006)

Gynol II® Mcneil-PPC, Inc Sodium
carboxymethylcellulose

Nonoxynol-9 Contraceptive Acarturk (2009)

Encare® Thompson Medical
Co. Inc

Polyethylene glycol Nonoxynol-9 Contraceptive Raymond et al.
(2004)

Prostin E2® Pfizer Colloidal silicon dioxide Dinoprostone Labour inducer Acarturk (2009)

Metrogel
Vaginal®

Galderma
(United Kingdom) Ltd

Carbopol 974p Metronidazole Bacterial vaginosis Acarturk (2009)
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phenomenon can be considered as a limitation or advantage of
hydrogel application in therapy. Hypoxia-induced hydrogels in
surrounding tissues can stimulate the invasion of blood vessels
and activate hypoxia-regulated pathways to regenerate tissue in
neovascularization (Park and Gerecht, 2014). One drawback of
hydrogel utilization is dehydration, which can cause stiffening
and locking their dynamic behavior. This can be observed in
thermos-responsive hydrogel after reaching LCST and can be
considered as a limiting factor in their application in therapy.
(Zhang et al., 2023). Hydrogels have low mechanical strength due
to two characteristics: high solution and low friction between chains
(Lin et al., 2022). This problem has arisen by designing composite
structures by integrating heterogeneous elements such as silica in the
hydrogel structure (Xu et al., 2022). Overall, the advantages of
hydrogels exceed their disadvantages in the field of drug delivery.
Considering positive factors, hydrogel commercial administration in
drug delivery will be vast.

5 Conclusion and future perspectives

Drug carriers represent revolutionary delivery systems
within the science of medicine. Numerous studies have shown
various polymers employed in carrier synthesis. Among these,
hydrogel-based systems received significant attention due to
their cost-effectiveness, ease of production, and remarkable
capacity to carry diverse drug types. Utilizing cross-linked
polymeric networks for enhancing therapeutic efficacy
presents a novel way for drug delivery applications. Still,
despite the numerous capabilities and advantages of hydrogels
in the field of drug delivery, there remains an essential
requirement for further research and development to
efficiently and swiftly introduce more hydrogel-based

formulations to the market. Novel features of hydrogels will
continue to play a crucial function in drug delivery and enable
the development of a vast array of drugs, peptides, proteins, and
delivery systems.

Commercial hydrogel products for drug delivery based on
different routes of administration represent a rapidly growing
market with significant potential. Continued research and
development in hydrogels hold promising prospects for the
future. Advancements in drug delivery and polymer-based carrier
systems will facilitate targeted and efficient transportation of
therapeutic drugs to specific locations within the body.
Continued research, technological innovations, and collaborative
efforts can fully realize the potential of hydrogel drug delivery in
improving therapeutic outcomes.
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TABLE 6 Some of the transdermal commercial hydrogels [data from the Food and Drug Administration (FDA)].

Product Company Main constituent Drug Application Ref

Lidoderm® Endo
Pharmaceuticals Inc

Glycerin, polyacrylic acid, and polyvinyl
alcohol

lidocaine patch 5% post-herpetic neuralgia Hydrogel Market
(2020)

Nitro-Dur® Merck and Co. Inc Acrylic acid Nitroglycerin Angina pectoris NITRO-DUR (2012)

Duragesic® Janssen Pharmaceuticals ethylene-vinyl acetate and hydroxyethyl
cellulose

Fentanyl Chronic pain DURAGESIC (2021)

Daytrana® Noven Pharmaceuticals Acrylic and silicone adhesive Methylphenidate Attention deficit hyperactivity
disorder

DAYTRANA (2010)

EMSAM® Somerset
Pharmaceuticals

Acrylic acid and ethylene vinyl acetate selegiline Major depressive disorder EMSAM (2007)

Exelon® Novartis
Pharmaceuticals

Acrylic Rivastigmine tartrat Dementia Exelon Patch (2007)

Estraderm® Novartis
Pharmaceuticals

hydroxypropyl cellulose Estradiol Hormone replacement therapy Estraderm (2012)

Butrans® Purdue Pharma polyacrylate cross-linked with aluminium Buprenorphine Chronic pain BUTRANS (2014)

Flector® IBSA Farmaceutici Italia Gelatine and propylene glycol diclofenac
epolamine

inflammation and pain FLECTOR PATCH
(2011)

Qutenza® Averitas Pharma ethyl cellulose and silicone adhesive Capsaicin Neuropathic pain QUTENZA (2020)
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