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For many years, chitosan has been widely regarded as a promising eco-friendly
polymer thanks to its renewability, biocompatibility, biodegradability, non-toxicity,
and ease of modification, giving it enormous potential for future development. As
a cationic polysaccharide, chitosan exhibits specific physicochemical, biological,
and mechanical properties that depend on factors such as its molecular weight
and degree of deacetylation. Recently, there has been renewed interest
surrounding chitosan derivatives and chitosan-based nanocomposites. This
heightened attention is driven by the pursuit of enhancing efficiency and
expanding the spectrum of chitosan applications. Chitosan’s adaptability and
unique properties make it a game-changer, promising significant contributions
to industries ranging from healthcare to environmental remediation. This review
presents an up-to-date overview of chitosan production sources and extraction
methods, focusing on chitosan’s physicochemical properties, includingmolecular
weight, degree of deacetylation and solubility, as well as its antibacterial, antifungal
and antioxidant activities. In addition, we highlight the advantages of chitosan
derivatives and biopolymer modification methods, with recent advances in the
preparation of chitosan-based nanocomposites. Finally, the versatile applications
of chitosan, whether in its native state, derived or incorporated into
nanocomposites in various fields, such as the food industry, agriculture, the
cosmetics industry, the pharmaceutical industry, medicine, and wastewater
treatment, were discussed.
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1 Introduction

Today, the range of applications for biopolymers has broadened with the demand for
innovative and environmentally friendly materials offering enhanced properties. Chitin, the
parent compound of chitosan and the second most abundant biopolymer in nature after
cellulose, is a linear polysaccharide composed of poly-β-[1,4]-N-acetyl-D-glucosamine units
(Kou et al., 2022). This green polymer can be obtained from a variety of sources especially
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crustacean exoskeletons and its extraction requires several steps
including demineralization, deproteinization, and decolorization
(Jiménez-Gómez and Cecilia, 2020). The structure of completely
acetylated chitin limits its applications due to its high
thermochemical stability and its high insolubility in aqueous
solutions and most organic solvents (Khajavian et al., 2022).
However, chitosan is defined as the N-deacetylated form of chitin
obtained by a chemical or enzymatic deacetylation process, and is
also found naturally in the cell walls of certain fungi. It is a linear
copolymer composed of repeated hydrophilic units (D-glucosamine
units) and residual hydrophobic units (N-acetyl-D-glucosamine
units) (Yarnpakdee et al., 2022). Molecular weight (Mw) and
degree of deacetylation (DD) are the most characteristic features
that influence the structure-function relationships of chitosan and
its derivatives (Joseph et al., 2021). The solubility of chitosan is
mainly linked to the amino groups along the polymer chain, which
are fully protonated under acidic conditions, making chitosan highly
soluble. This solubility generally increases with increasing degree of
deacetylation and decreasing molecular weight (Mukhtar et al.,
2021). Due to its cationic nature, chitosan has good biological
activities such as bacteriostatic, antioxidant, antitumor, anti-
inflammatory and antifungal activity (Aranaz et al., 2021; Ke
et al., 2021). This natural bioactive polymer exhibits high
biocompatibility, excellent biodegradability, exceptional
functionality, cost-effectiveness, and non-toxicity, making it
useful and powerful in various engineering applications. Figure 1
shows a schematic illustration from the origin of chitosan to its
potential uses.

The presence of functional groups, amino (-NH2) and hydroxyl
(-OH), in chitosan is a key attribute for its versatile chemical

modification to improve its physicochemical, mechanical, and
biological properties while maintaining its unique characteristics
(Negm et al., 2020). Moreover, researchers have actively pursued the
development of various chitosan derivatives to introduce innovative
functions or properties to the material. The rapid strides in
nanotechnology have notably intensified the focus on chitosan,
positioning it as a highly sought-after matrix for nanocomposites.
This heightened attention has not only bolstered the material’s
efficiency but has also broadened its application spectrum across
diverse fields. The synergy of chitosan and nanotechnology holds
immense promise, unlocking new possibilities for advancements in
materials science and technology (Yu et al., 2021). Chitosan, whether
in its native state, derived or incorporated into nanocomposites, is
an indispensable element in food packaging and preservation. This
indispensability is attributed to its remarkable film-forming ability
and outstanding antimicrobial properties. Chitosan’s inherent
versatility enables it not only to improve the structural integrity
of packaging materials, but also to act as an effective barrier to
microbial activity, making a significant contribution to extending
the shelf life of various food products (Hameed et al., 2022;
Oladzadabbasabadi et al., 2022). Consequently, the application of
chitosan in various forms underlines its crucial role in ensuring the
safety and longevity of packaged foods. Chitosan and its derivatives,
as well as chitosan-based nanocomposites, have attracted
considerable scientific attention in the agricultural sector, mainly
due to their notable impact on stimulating plant growth. This
increased interest testifies to the versatility of chitosan’s
applications in promoting agricultural sustainability and
productivity (M. Zhang et al., 2022). The unique characteristics
of chitosan, whether in its original form or in the form of modified

FIGURE 1
Schematic illustration from chitosan origin to potential applications in different emerging fields. (A) Various chitosan sources. (B) Conversion from
chitin to chitosan by chemical or enzymatic deacetylation process. (C) Chitosan characterization by FTIR, XRD, and SEM. (D) N; O; or N, O-modified
chitosan derivatives form. (E) Chitosan-based nanocomposites preparation. (F) Various chitosan engineering applications.
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derivatives and nanocomposites, have promoted its popularity for a
variety of applications in different biomedical fields. These include
its essential role as a diagnostic and therapeutic tool, as well as its
incorporation into cosmeceuticals and cosmetics (Gao and Wu,
2022; Gupta et al., 2022). In the world of biopolymers, chitosan, in
derived or nanocombined form, stands out for its relevance in a
variety of absorption-related applications. These include its
effectiveness in removing heavy metal ions and anionic dyes
(Haripriyan et al., 2022). In summary, the versatility of chitosan
allows it to be tailored to specific goals across a wide range of
applications, making it a valuable material in many industries. This
article aims to present an updated overview of chitosan production
sources and extraction methods. The physicochemical and
functional properties of the biopolymer were also emphasized. In
addition, the review highlights methods for chitosan modification
and the preparation of chitosan-based nanocomposites. This paper
also gathers updated knowledge on the versatile applications of
chitosan and its derivatives in diverse fields, such as the food
industry, agriculture, the cosmetic industry, the pharmaceutical
industry, medicine, and wastewater treatment.

2 Sources of chitosan production

Chitin is a polysaccharide naturally found in the exoskeletons of
crustaceans, insects and mollusks, and in the cell walls of certain
algae and fungi (Santos et al., 2020; Pellis et al., 2022). In addition,
chitin is associated with other constituents such as minerals,
proteins, lipids and pigments, whatever the initial extraction
source. In general, the chitin content varies on average from 20%
to 30% in crustacean exoskeletons (Kou et al., 2021), from 5% to 25%
in insect cuticles (Zainol Abidin et al., 2020), and from 2% to 44% in
fungi cell walls (Abo Elsoud and El Kady, 2019). The α-chitin, β-
chitin and γ-chitin are the three allomorphic crystalline forms of
chitin that differ in the unit size, number of chains, and degree of
hydration. The α-microfibril is the most stable crystalline form of
chitin and is found mainly in the exoskeleton of arthropods (Pellis
et al., 2022). Shell waste from the seafood industry is a valuable
source of raw materials and can be utilized to generate high value-
added co-products and reduce environmental impacts, thus
ensuring the sustainable development of the seafood industry.
These economic and environmental advantages favor the
utilization of crustacean sources, in particular crab and shrimp
shells, for chitin and chitosan extraction, due to their availability
as waste products and ease of extraction. Shrimp shells contain on
average 30%–40% chitin, while crab shells contain 15%–30%
(Pakizeh et al., 2021; Terkula Iber et al., 2022). Previous studies
have shown that the source of the polymer and the extraction
process have a direct impact on the physicochemical and
biological properties of chitosan.

3 Chitosan extraction methods

3.1 Chemical extraction

Chitin is found mainly in association with minerals, proteins,
glucans, pigments, and lipids. The abundance of these components

varies according to the source and species of chitin. This variation
requires a special extraction process that involves demineralization,
deproteinization, and discoloration steps (Figure 2). The extraction
of chitosan from crustacean sources is widely discussed in the
literature. Demineralization of shellfish is a critical step due to
the presence of minerals. This process occurs via the
decomposition of calcium carbonate into calcium chloride,
resulting in the release of carbon dioxide through acid treatment
(Santos et al., 2020). According to the literature, sulfuric,
hydrochloric, formic, acetic, oxalic, and nitric acids are generally
used for their effectiveness in removing inorganic salts (Srinivasan
et al., 2018). Efforts have been made to replace these mineral acids
with more environmentally friendly organic acids. El-araby et al.
(2022a) developed an ecological and economical demineralization
step for chitosan extraction from shrimp shell waste using citric,
acetic, and lactic acids. The results showed that during the
demineralization phase, mineral acids can be replaced by organic
acids for environmentally friendly extraction. The elimination of
associated proteins is an important step in the chitin purification
process. The deproteinization step consists in destroying the
chemical bonds linking proteins and chitin by means of an
alkaline treatment (Yadav et al., 2019). This step is usually done
by strong bases, mostly with NaOH, at high temperatures and
during a long incubation time (Pellis et al., 2022). Discoloration
or bleaching is an optional step in the extraction process to remove
pigments naturally present in chitin sources. This step requires the
use of organic or inorganic solvents such as sodium hypochlorite,
hydrogen peroxide, and acetone (El Knidri et al., 2018).
Deacetylation is a final step in the extraction of chitosan and
consists of the elimination of acetyl functional groups (-COCH3)
from the chitin linear chain, with the release of amino groups
(-NH2). The deacetylation process is generally carried out by heat
treatment with a concentrated alkali, such as sodium hydroxide or
potassium hydroxide (Kou et al., 2021). The proportion of acetylated
versus deacetylated glucosamine units is important in determining
the balance between hydrophilic and hydrophobic residues. Based
on this, chitin with at least 75% deacetylation degree is called
chitosan (Confederat et al., 2021).

3.2 Biological extraction

Microbial fermentation and enzymatic processing have been
developed to overcome these problems and produce chitosan from
crustacean by-products in a more environmentally friendly and
cost-effective manner. The enzymatic extraction can be substituted
during the deproteinization and the deacetylation steps to replace
alkalis and high reaction temperatures with enzymes (Marzieh et al.,
2019). Nevertheless, this method shares the similar demineralization
process as chemical methods (Figure 2). Various proteases have been
used for the enzymatic deproteinization of chitin, and these enzymes
are generally extracted from fish viscera or microbes (Kou et al.,
2021). In addition, various deacetylases derived from various
biological sources such as bacteria, fungi, and certain insects have
been employed for the enzymatic deacetylation step of chitin to
obtain chitosan (Pellis et al., 2022). Extraction by microbial
fermentation can be used in deproteinization, demineralization,
and deacetylation steps, using proteases and lactic acid-producing
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bacteria (Doan et al., 2019). These fermentation processes for chitin
extraction exploit the ability of bacteria to produce proteases such as
Pseudomonas aeruginosa, Pseudomonas maltophilia, Bacillus
subtilis, and Serratia marcescens (Navarrete-Bolaños et al., 2020).

3.3 Advantages and disadvantages of the
two extraction methods

The chemical method produces chitosan with a high degree of
deacetylation, medium to low molecular weight, and stronger
biological properties. This method also involves a short treatment
time and can therefore be easily applied on an industrial scale.
This multi-step process, including the deacetylation step, implies
the usage of strong bases and acids, which causes negative effects
on the environment, diminishes the economic sustainability of
the extraction process and often leads to a decrease in the quality
of the resulting product. Furthermore, biological methods have
significant limitations. The most important is the high cost of the
enzymes involved in the enzymatic processing, which usually
requires one or more different enzymes for deproteinization and
deacetylation. Microbial fermentation indeed has the advantage

of reducing the high cost of enzymes, but it generally requires
specific microbial strains. Thus, unlike chemical extraction,
biological extraction requires a long processing time (several
days), which limits its use on an industrial scale. Despite the
progress made to develop efficient and eco-friendly chitosan
extraction methods, chemical extraction is the preferred
method to date, due to the availability of chemicals and the
possibility of industrial scale-up.

4 Physicochemical properties

4.1 Deacetylation degree

Chitosan is composed of three reactive functional groups, an
amino group, primary hydroxyl group, and secondary hydroxyl
group in each glycosidic unit. However, the -NH2 group is
responsible for the cationic nature and physicochemical
properties of chitosan thanks to its intramolecular and
intermolecular hydrogen bonds (Bakshi et al., 2020). The
physicochemical properties of chitosan depend on many
factors, mainly the deacetylation degree (DD), the molecular

FIGURE 2
Chitin and chitosan obtained by chemical and biological methods.
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weight (Mw), the solubility, and the degree of crystallinity. The
distinctive feature of chitosan consists on its high DD and its low
proportion of crystalline zones (Azmana et al., 2021; M. Zhang
et al., 2022). The deacetylation degree of chitosan, the ratio of
D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine
(acetylated unit) structural units, increases proportionally with
increasing alkali treatment time. As it is known, chitosan is a
deacetylated form of chitin, with at least 75% deacetylation
degree (Confederat et al., 2021). A high degree of
deacetylation reflects a higher concentration of free -NH2

groups in the polymer chain and allows the molecule to
exhibit enhanced biological activities and higher water
solubility due to protonation of the amino functional group
(Abd El-Hack et al., 2020). The degree of deacetylation of
chitosan is one of the critical parameters influencing its
physicochemical, mechanical, and biological properties and,
therefore, its application spectrum. Table 1 summarizes
sources, extraction methods, and physicochemical properties
(yield, DD, solubility, and Mw) of chitosan obtained in
various studies.

4.2 Molecular weight

Besides the degree of deacetylation, the molecular weight (Mw)
is another key factor that significantly affects the physicochemical
properties of chitosan and, therefore, its biofunctionality and
biological activities (Kou et al., 2021). Polymer viscosity is a
parameter of considerable practical interest, as highly viscous
solutions are difficult to handle, and it decreases, as the Mw of
chitosan is reduced (Aranaz et al., 2021). Several studies have
revealed that chitosan with a lower Mw and a higher DD
generally exhibits higher bioactivities. In addition, previous
studies have described different molecular weight threshold
values for differentiating between high and low molecular weight
chitosans. High Mw chitosans ranged from 190 kDa to 375 kDa,
while low Mw chitosans ranged from 20 kDa to 190 kDa (Azmana
et al., 2021). In general, the difference in molecular weight is related
to the extraction process and the initial source of chitosan (Bakshi
et al., 2020). Chitosan oligosaccharides (COS), degraded polymer

products of polymer obtained by physical, enzymatic, or chemical
hydrolysis, have gained attention in recent years owing to their lower
Mw, higher DD, lower polymerization degree, low viscosity and
greater water solubility. These physicochemical properties have
significant beneficial effects and strong potential for biomedical,
pharmacological, and industrial applications (Benchamas et al.,
2021). Molecular weight has a major influence on the rheological
properties of chitosan, which has a direct impact on the formulation
of chitosan-based nanocomposites.

4.3 Solubility

The higher the DD of chitosan, the greater the degree of
protonation of the -NH2 groups in the linear molecular chain,
which facilitates its dissolution in acidic aqueous media, since
its pKa value is around 6.5. This solubility is also influenced by
the degree of deacetylation of chitosan. However, the higher the
Mw of chitosan, the greater the number of intramolecular and
intermolecular hydrogen bonds formed in its molecular chain,
making it intertwined and therefore difficult to dissolve (Wang
et al., 2020a; Aranaz et al., 2021). In addition, the polymer
solubility depends on the position of acetyl groups along the
linear chain, deacetylation procedure, and ionic strength.
Various studies have shown that chitosan has great solubility
when the degree of deacetylation exceeds 85% (M. Zhang et al.,
2022). The low solubility of chitin in water and most organic
solvents has limited its uses and applications. In contrast, the
presence of -OH and -NH2 functional active groups in chitosan
allows the formulation of a variety of derivatives that enhance
its solubility, and therefore, increase the spectrum of
applications in various fields. Carboxymethylation is an
alternative method to improve the solubility of the
biopolymer in aqueous solution (Jiménez-Gómez and Cecilia,
2020). Similarly, the quaternization of chitosan increased its
solubility compared to unmodified chitosan (Wei et al., 2019).
Chemical modification can both improve the physicochemical
characteristics and biological properties of chitosan while
retaining its unique properties and extend the range of
chitosan derivatives applications.

TABLE 1 Sources, extraction methods, and physicochemical properties of chitosan obtained in various studies.

Sources Extraction methods Yield
(%)

Degree of
deacetylation

Solubility Molecular
weight

References

Shrimp shells (Litopenaeus
vannamei)

Biological extraction (Lactic bacteria and
deacetylases)

74 78% 25% 71.31 kDa Sixto-Berrocal et al.
(2023)

Eupolyphaga sinensis
walker

Chemical extraction (HCl and NaOH
treatments)

5.48 96.57% — 127.79 kDa Jiang et al. (2023)

White shrimp (Penaeus
vannamei)

Proteases and microwave heating on
chitin deacetylation

17.54 90.75% 90.88% 67.88 kDa Dong et al. (2023)

Beetles (Pimelia payraudi
latreille)

Acid-base extraction and discoloration 39 90% — — Amor et al. (2023)

Crab shells
(Gecarcinucidea sp.)

Chemical isolation (HCl and NaOH
treatments)

15.11 81.17% 65.94% — Wahab et al. (2023)

Shrimp shells (Litopenaeus
vannamei)

Biological extraction (chitin deacetylase
producing bacterial strain)

19.04 74.9% 71% 246.4 kDa Rakshit et al. (2023)
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5 Functional properties

5.1 Antibacterial activity

Chitosan is known as one of the most effective antibacterial
substances because of its potential antibacterial properties. This
biopolymer has been shown in previous studies to have
antimicrobial activity against a wide range of Gram-positive
bacteria (Savin et al., 2020; Valdez et al., 2022) and Gram-
negative bacteria (Sudatta et al., 2020; Xing et al., 2021). The
antibacterial properties of chitosan are influenced by numerous
factors such as the molecular weight (Mw) of chitosan, the
degree of deacetylation (DD), the polymer concentration, the
initial source of chitosan, the pH value, and the storage
temperature of the chitosan solution. Table 2 summarizes studies
on chitosan’s antibacterial activity with respect to its DD and Mw.

Likewise, it was found that the type of microorganism and the cell
growth phase have a direct effect on the antibacterial potential of
chitosan (Li and Zhuang, 2020; Aranaz et al., 2021). According to the
literature, the higher the degree of deacetylation of chitosan, the
stronger its antibacterial activity. Additionally, studies have shown
that the antibacterial properties of chitosan solutions are inversely
proportional to their molecular weight. This activity could increase
with increasing molecular weight in an acidic medium and decrease
in a neutral medium. This shows that the antimicrobial activity
could be affected by the pH of its dissolution solution (Benhabiles
et al., 2012; Chang et al., 2015). The main mechanism of action of
chitosan’s antimicrobial activity is its interaction with the cell wall,
cell membrane, and cytoplasmic constituents of bacteria (Abd El-
Hack et al., 2020). The type of microorganism is known to have a
significant influence on the antibacterial capacity of chitosan and its
derivatives. The interaction of positively charged chitosan with the

TABLE 2 Studies on chitosan’s antibacterial, antifungal, and antioxidant activity with respect to its DD and Mw.

Functional
properties

Physicochemical
properties

Effects References

Antibacterial activity DD 85.61% Complete inhibition of Escherichia coli and Staphylococcus aureus growth Xing et al. (2021)

Nanoparticles

DD 85% Higher inhibitory potential towards Staphylococcus aureus compared to
Pseudomonas aeruginosa

Savin et al. (2020)

Mw 65.68 kDa

DD >85% Bactericidal activity on Bacillus cereus growth and toxin formation Valdez et al. (2022)

DD 75%–85% Antimicrobial potential against Neisseria gonorrhoeae growth Alqahtani et al. (2020)

Mw 50–190 kDa

DD 59.76% High antibacterial activity against Salmonella typhi Sudatta et al. (2020)

Antifungal activity DD 80.86% Total inhibition of Aspergillus niger mycelial growth El-araby et al. (2022b)

DD 95% Complete inhibition of Phytophthora infestans mycelial growth and significant
inhibition of spore germination rate

Huang et al. (2021)

Mw 100 kDa

DD 75%–85% Significant inhibition of Fusarium sambucinum, Fusarium oxysporum, and
Fusarium graminearum mycelial growth

Mejdoub-Trabelsi et al.
(2020)

Mw 150 kDa

DD 93% Inhibitory effects on spore germination and mycelial growth of Aspergillus
ochraceus

Meng et al. (2020)

Mw 100 kDa

DA 5.9%–6.8% Fungistatic effect against Penicillium citrinum and Penicillium mallochii Coutinho et al. (2020)

Mw 132–245 kDa

Antioxidant activity DD 89% Scavenging capacity of ABTS radical and DPPH radical Savin et al. (2020)

Mw 47.65 kDa

DD 92.4% Higher DPPH radical scavenging activity and greater total reducing power
capacity

Binh et al. (2021)

Mw 65 kDa

DD 95% Highest hydrogen peroxide, DPPH radical, and chelating ferrous ion (Fe2+)
scavenging abilities

Chang et al. (2018)

Mw 2.2 kDa

DD 78.60% Best DPPH radical scavenging potential Kusnadi et al. (2022)

Mw 116.85 kDa

DD 80.43% Significant DPPH free radical scavenging activity Liyanage et al. (2022)
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negatively charged microbial membrane of Gram-negative bacteria
via electrostatic interactions could increase wall permeability by
replacing divalent cations (Ca2+, Mg2+) from their binding sites and
reducing the interaction between lipopolysaccharide molecules,
thereby causing membrane rupture and cell lysis, leading to
bacterial death. For Gram-positive bacteria, the absence of the
outer membrane leads to a direct diffusion of chitosan into the
bacterial cell wall (Duan et al., 2019; Wang et al., 2020a). This may
explain the hypothesis that chitosan is more powerful against Gram-
positive bacteria than Gram-negative bacteria.

5.2 Antifungal activity

Various studies have reported that chitosan exhibits exceptional
antifungal properties (Shih et al., 2019; Ashrafi et al., 2020) against a
broad spectrum of molds and yeasts (Bernabé et al., 2020; Mejdoub-
Trabelsi et al., 2020). The degree of deacetylation and the molecular
weight are two parameters that play a critical role in controlling the
antifungal properties of chitosan. Table 2 summarizes studies on
chitosan’s antifungal activity with respect to its DD and Mw. In
addition to its antifungal activity, low-molecular-weight chitosan is
capable of penetrating the cell wall and surface, inhibiting DNA/
RNA and protein synthesis (Kravanja et al., 2019). Similarly, the
minimum inhibitory concentrations of chitosan against fungi were
strongly correlated with the pH of the solvent and the type of fungus
targeted (Garcia et al., 2018; Lopez-Moya et al., 2019). The
antifungal activity of chitosan also depends on the concentration
of the biopolymer. Studies have reported that concentrations of
chitosan between 1% and 5% have been revealed to provide optimal
antifungal activity Confederat et al., 2021). Chitosan is reported in
the literature to have strong antifungal activity against chitosan-
sensitive fungi, and the hypothesis predicts that positively charged
chitosan can interact with negatively charged phospholipids in the
fungal cell membrane, provoking membrane damage and entry into
the cytoplasm (Verlee et al., 2017; Azmana et al., 2021). Chitosan-
resistant fungi cell membrane constitutes a barrier to the polymer,
which remains on the outer surface. In general, chitosan antifungal
potential is considered to be fungistatic rather than fungicidal, and
highly effective in inhibiting spore germination, radial growth, and
germ tube elongation (Qin et al., 2020). Themodification of chitosan
is easily achievable thanks to the presence of -OH and -NH2 groups,
which enhances the polymer’s antimicrobial properties and
therefore its antimicrobial range.

5.3 Antioxidant activity

Chitosan and its derivatives have been shown to be powerful and
potential antioxidants (Binh et al., 2021; Kusnadi et al., 2022). This
antioxidant action appears to be highly correlated with the
characteristics of the chitosan studied, and is closely related to
the degree of deacetylation and molecular weight. Table 2
summarizes studies on chitosan’s antioxidant activity with respect
to its DD and Mw. Chitosans with a lower molecular weight or a
higher degree of deacetylation would have better antioxidant activity
(Wang et al., 2020b). The NH2 and OH functional groups of this
polymer are responsible for free radical scavenging and metal

chelation (Chang et al., 2018; Aranaz et al., 2021). Chitosan
antioxidant activity has been established by its strong hydrogen-
donating capacity. Chitosan’s antioxidant action consists in
protecting the target organism from oxidative stress-induced
damage by interrupting the oxidation chain reaction (Muthu
et al., 2021). Chitosan’s stability and reactivity are enhanced by
chelation with another, more powerful antioxidant (Kadam et al.,
2018; H. Zhang et al., 2018). For example, phenolic acids are perfect
antioxidants, but they degrade rapidly in the body. Binding a slow-
digesting compound such as chitosan inhibits its premature
degradation by reducing its hydrophilicity (Carocho et al., 2018).
It helps to stabilize phenolic compounds while maintaining
biological chitosan properties. Chitosan chemical modification is
possible due to its unique structure on which other active groups can
be introduced to improve its solubility and bioactivity and generate
new active functions (Qing et al., 2019; Sun et al., 2019).

6 Chitosan modification: Chitosan
derivatives

Chitosan is a versatile polymer that opens the possibility of
various chemical modifications to produce a wide range of chitosan
derivatives thanks to its hydroxyl and amino functional active
groups. These modifications represent an effective way of
improving the physicochemical characteristics of chitosan, while
retaining its unique biological properties, leading to its increasingly
widespread application in many fields (Jiménez-Gómez and Cecilia,
2020). The chemical structure of chitosan is characterized by NH2,
primary OH, and secondary OH groups in positions C2, C6, and C3,
respectively (Aranaz et al., 2021). The C3-OH group has a high
resistance to the space site and is, therefore, relatively difficult to
modify. In general, the order of reactivity of chitosan functional
groups is as follows: C2-NH2> C6-OH> C3-OH (M. Zhang et al.,
2022). Chemical modification of chitosan can occur at one of the
active sites or equally at both sites to form N-, O-, or N, O-modified
chitosan derivatives, and this can be achieved by a variety of
chemical reactions (Figure 3). Chen et al. (2022) discuss the
latest advances in chitosan chemical modification methods and
review the uses of chitosan and its derivatives in several fields.
The choice of modification depends on the desired properties and
the intended use of the modified chitosan.

These modifications can be tailored to suit the properties
required for specific applications in fields such as biomedicine,
agriculture, food technology, wastewater treatment, and more.
Here are some common chemical modifications of chitosan, for
example, the alkylation reaction occurs by introducing an alkyl
group onto C2-NH2 (N-alkylation) or onto C6-OH (O-alkylation) of
the chitosan. The addition of an alkyl group weakens intermolecular
hydrogen bonds, improving the solubility of the resulting molecule
(Azmana et al., 2021). Phosphorylated chitosan is another derivative
that can be obtained by reacting the polymer with phosphorus
pentoxide in the presence of methane sulfonic acid at low
temperature. The phosphorylated form of chitosan is recognized
for its high water solubility, ability to chelate metals, and bactericidal
properties (Negm et al., 2020). Quaternization of chitosan is a
chemical modification achieved by incorporating quaternary
ammonium groups or small-molecule quaternary ammonium
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salts into the C6-OH or C2-NH2 group. Quaternized chitosan
exhibits greater solubility and antimicrobial properties than
normal chitosan, favoring its use in biomedical fields (Wei et al.,
2019). Thiolated chitosan is a derivative produced by the formation
of a covalent bond between the thiol group (-SH) and the C2-NH2

group of chitosan, giving it high solubility in water compared with
unmodified chitosan (Liu et al., 2021). In addition to the chemical
processes described above to boost chitosan functional properties,
cross-linking is a chemical process that can take place between
molecules or inside the molecule and provides the polymer
derivative greater stability through covalent bonding with the
cross-linker (Saheed et al., 2021).

As research continues, the physical modification of chitosan is
gaining importance to develop a new biomaterial with unique and
distinctive physical characteristics to meet the needs of various
applications. Physical modifications typically involve changes in
the structure, morphology, or processing conditions of chitosan
without introducing chemical alterations. This type of modification
can be carried out by a variety of processes such as mechanical
grinding, ultrasonic treatment, ionizing radiation, particle size
reduction, blending, hydrogel formation, freeze-drying
(Lyophilization), physical cross-linking, and heat treatment
(Wang et al., 2020b). The biopolymer enzymatic modification is
also possible for an ecological and less energy-consuming
modification. The process involves the use of enzymes to
introduce specific changes to the chitosan structure, often in a
controlled and mild manner. Enzymes can selectively modify
functional groups on chitosan, providing a route to tailor its
biological properties for various applications (Bakshi et al., 2020).
These enzymatic approaches offer a sustainable and biocompatible
way of adapting chitosan to specific applications in fields such as
biomedicine, food technology, and materials science, but they are
still under development.

7 Chitosan-based nanocomposites

The presence of functional groups allows chitosan to be easily
accessible to other biomaterials or active compounds, including
biopolymers and metal ions, to form chitosan-based
bionanocomposites. The availability and functionality make
chitosan a promising candidate in the advanced field of
nanotechnology. Chitosan-based nanocomposites are materials
that combine chitosan with nanoscale additives such as
nanoparticles, nanofillers and nanofibers (Figure 4) under
controlled conditions to create a new material with enhanced
properties (Azmana et al., 2021). These nanocomposites often
exhibit improved mechanical strength, thermal stability, barrier
properties and, other functionalities, making them suitable for a
wide range of applications (Yu et al., 2021). Chitosan-based
nanocomposites are synthesized by a variety of production
processes, including solution casting, in situ synthesis,
electrospinning, freeze-drying, layer-by-layer assembly, emulsion
techniques, and the sol-gel method (Azmana et al., 2021). Each
method offers unique advantages and allows for the tailoring of
chitosan-based nanocomposites for various purposes. In fact,
ongoing research is aimed at continuously improving production
methods for chitosan-based nanocomposites, in order to increase
their efficiency, properties, and applicability.

Chitosan-based nanocomposites offer a versatile platform for
tailoring materials with enhanced properties for specific
applications, ranging from medicine to packaging and beyond.
The choice of nanoscale additive depends on the desired
properties and the intended use of the nanocomposite. For
example, chitosan-based nanocomposites obtained with cerium
IV - zirconium IV oxide nanoparticles have shown remarkable
improvements in morphological, structural, thermal, and
mechanical properties. These nanocomposites, thanks to their

FIGURE 3
Structure and functional groups for the chemical modification of chitosan.
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developed properties, can be adapted to numerous applications such
as the food packaging industry (Ahmed et al., 2021). Rodrigues et al.
(2020) have developed chitosan-octadecylammonium and zinc
oxide nanoparticles with improved mechanical, thermal, and
antimicrobial properties, making them suitable for promising
applications in active food packaging. In addition, chitosan-based
nanocomposites are widely used as biological materials for wound
and burn treatment, tissue engineering, and drug delivery systems
(S. Ahmad et al., 2021). These nanocomposites, because of their
small size and surface-to-volume ratio, are able to cross various
biological barriers and deliver drugs to a specific site, making them
promising to increase therapeutic efficacy in oral drug delivery
(Khan and Alamry, 2021). Furthermore, chitosan derivatives via
the cross-linking of polyethylene glycol diglycidyl ether using a
microwave-assisted green method and its nanoparticles could
potentially be used for biomedical applications (Ali et al., 2023).
Nanocomposite materials can be also used in agricultural
applications for controlled release of fertilizers and pesticides.
Chitosan-based nanocomposites may also enhance plant growth
and protect against pathogens (Yu et al., 2021). In addition, previous
studies have revealed that chitosan-based nanocomposites are used

for water purification and wastewater treatment. They can efficiently
adsorb heavy metals, dyes, and other pollutants due to the high
surface area and adsorption capacity of nanomaterials (Ahmad N.
et al., 2020). The versatility of chitosan-based nanocomposites
makes them suitable for a wide range of applications, and
ongoing research continues to explore new possibilities and
optimize their performance in different industries.

8 Application of chitosan, chitosan
derivatives, and chitosan-based
nanocomposites

Chitosan and its derivatives stand out as transformative
materials with remarkable attributes, making them game-
changing materials in a myriad of industries, including the food
sector, agriculture, cosmetics, pharmaceuticals, medicine, and
wastewater treatment (Figure 5). The availability, cost-
effectiveness, non-toxicity, and versatile characteristics of chitosan
and its derivatives make them indispensable materials in advancing
sustainable practices and innovations across various fields. The

FIGURE 4
Chitosan-based nanocomposites preparation.

FIGURE 5
Applications fields of chitosan, chitosan derivatives, and chitosan-based nanocomposites.
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broad spectrum of applications highlights the versatility and utility
of chitosan, its derivatives, and nanocomposites in addressing
challenges in a variety of sectors.

8.1 Food industry

8.1.1 Food additives
Chitosan and its derivatives have a wide range of uses as food

additives, thanks to their bioactive and cationic nature. In addition,
chitosan is specifically biocompatible and biodegradable substance,
which allows it to be broadly applied in the food industry (Morin-
Crini et al., 2019b). Several studies have examined the safety and
efficacy of chitosan and its suitability as a natural food additive. It
has recently been certified as Generally Recognized As Safe (GRAS)
by the United States Food and Drug Administration (USFDA) (Hu
et al., 2019). Chitosan is widely used for its hypocholesterolemic
property. Miyazawa et al. (2018) investigated the effects of chitosan
from mushrooms on dietary obesity by providing mice with a
chitosan-administered high-fat diet. The chitosan groups showed
marked suppression of body weight gain. In addition, a clear
reduction in low-density lipoprotein cholesterol and an increase
in high-density lipoprotein cholesterol were observed, suggesting
that the administered mushroom chitosan improved blood lipid
metabolism. The mushroom chitosan showed an anti-obesity
effect by inhibiting the digestion and absorption of lipid
molecules. The use of chitosan in winemaking is widespread
(Castro Marín et al., 2021). The potential use of biocompatible
chitosan as a healthy additive or as an alternative to sulfur dioxide
(a chemical additive) to prevent the oxidative degradation of white
wine has been proven. It was found that the use of chitosan
prevents the formation of the 1-hydroxyethyl radical. In the
same report, a direct (dose-dependent) OH radical scavenging
effect was revealed up to 98% at 2 g/L of chitosan (Castro Marín
et al., 2019). Likewise, chitosan can be utilized in mimetic food as a
fat substitute. A study by Rios et al. (2018) explored the capacity of
a chitosan derivative as a fat alternative in cake formulations. The
addition of 2 g of succinyl chitosan to 100 g of wheat flour
increased the emulsifying capacity of the flour. The succinyl
chitosan revealed a great potential for use as a partial fat
substitute (up to 50%) in cake recipes. This chitosan derivative
also reduced the rate of cake hardening during storage. The
polymer has been tested for its ability to prolong the
conservation period of catfish fillets and protect them from
storage conditions (4°C). Vacuum tumbling with a chitosan
solution stabilized the quality and color of refrigerated fillets by
preventing the growth of aerobic bacteria (Bonilla et al., 2018).
Carboxymethyl chitosan, an ampholic derivative of chitosan, is
widely used as an effective food additive. Zhu et al. (2022) found
that carboxymethyl chitosan improved storage stability and
textural properties of the dough by limiting water migration
and delaying protein deterioration during freezer storage.
Today’s consumer is more attracted to natural food additives
than synthetic ones. Chitosan is a natural non-toxic polymer. If
mixed with food products, it will be safe for human’s body and will
preserve the freshness and prolong the shelf life of perishable food
products by preventing microbial spoilage and chemical
deterioration (Hameed et al., 2022).

8.1.2 Food packaging
Chitosan is an eco-friendly material for active food packaging

owing to its natural availability, non-toxicity, renewable nature,
inherent biodegradablity, and ease of modification. This biopolymer
has excellent film-forming and antimicrobial properties that allow it
to be considered as a suitable alternative source of food packaging
materials to replace non-biodegradable and non-renewable
polymers (Morin-Crini et al., 2019a; Y.-L. Zhang et al., 2021).
Chitosan, as an active food packaging, can be applied, alone or in
combination, in the form of a comestible thin film or an edible
coating. Coating is a thin layer developed to cover a food product,
delivered in liquid form by dipping the product in a chitosan
solution or by spraying the solution onto the product (Cazón
and Vázquez, 2019). The application of a chitosan film or
coating shows promise for extending the storage period of highly
perishable fruit and vegetables during post-harvest processing
(Hameed et al., 2022; Oladzadabbasabadi et al., 2022). Chitosan’s
capacity to scavenge free radicals as a natural antioxidant can be seen
as an advantage for its potential use as a food packaging material
(Wang et al., 2020b). According to the literature, chitosan is widely
applied as a promising food packaging material to control the
microbial growth of food, prevent oxidative deterioration of
products, maintain the quality and nutritional characteristics
during conservation, and also extend the shelf life of food
products. Table 3 represents different applications of chitosan
derivatives and chitosan-based nanocomposites as active food
packaging materials. Chitosan, as an active and promising
packaging for food preservation, can be applied in its native,
modified or combined form. The main advantage of chitosan is
that it can undergo a wide range of chemical and physical
modifications to improve its functionality (Inanli et al., 2020).
Chitosan nanocomposites have been shown to improve the
physical properties of the biopolymer, making it useful in various
applications such as the food packaging industry.

A study by El-araby et al. (2022b) evaluated post-harvest
treatment of strawberries (Fragaria x ananasa) with chitosan
solution as a preservative coating. The results showed that the
coating reduced post-harvest losses and prolonged the storage
period by 7–8 days by minimizing microbial spoilage load,
maintaining anthocyanin pigments, and retaining fruit firmness
during storage. Batista Silva et al. (2018) found that chitosan
coating improved the shelf life and stabilized the overall quality
of guava (Psidium guajava L.) fruits after harvest by enhancing
antioxidant processes and retarding ripening while stored at room
temperature. Chitosan coating has been shown to reduce fresh
weight loss, preserve fruit skin firmness and color, and delay
chlorophyll degradation without significant effect on titratable
acidity. Chitosan films prepared by adding peanut skin and pink
pepper residue extracts were studied as active packaging for chicken
products. Treatment with active films guarantees the oxidative
stability and quality of chicken products, thanks to antioxidant
and antimicrobial performances (Serrano-León et al., 2018). A
study by Gedarawatte et al. (2021) developed spray coatings of
chitosan and gelatin to prolong the shelf life of vacuum-packaged
beef. The edible chitosan coating significantly reduced lipid
oxidation and prevented lactic acid bacteria growth when
compared to uncoated and gelatin-coated beef samples. This
study shows that chitosan coating in spray form is easily
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adaptable to industrial environments as an antimicrobial and
antioxidant application prior to the meat vacuum packaging
process. Y.-L. Zhang et al. (2021) evaluated the effect of an edible
coating of carboxymethyl chitosan and gelatin on a variety of sweet
cherry cultivars during post-harvest processing. The coating
maintained the nutritional quality and properties of the sweet
cherry varieties. The developed preservation method reduced
weight loss and maintained initial peel color, stem freshness,
firmness of the fruit, ascorbic acid content, titratable acidity, total
phenolic content, and total anthocyanin concentration.

8.2 Agriculture

The world’s growing population, shrinking arable land, and the
development of plant diseases are major challenges facing the
agricultural sector, resulting in considerable economic losses.
However, the continued use of fertilizers, pesticides, fungicides,
and large amounts of chemical nutrients has an impact on the
sustainable development of the agricultural economy and public
health security. Hence the importance of developing modern
agriculture that takes these challenges into account and that must
be adapted to climate change. Chitosan and its derivatives have been
largely proposed as environmentally friendly alternative sources to
the application of agrochemicals. The bioactivities of chitosan such
as antifungal activity, crop yield improvement, induction of plant
defense system, and promotion of plant growth play a crucial role in
its application in agriculture (Morin-Crini et al., 2019b). Chitosan,

as a biostimulant, has the ability to act inside and outside the plants
and apply physical or physicochemical effects on them. It is broadly
recognized for its physiological effects on nutritional efficiency, and
on the response to abiotic stress (Bhupenchandra et al., 2020).
Several studies have indicated that chitosans induce the activities
of genes responsible for various events in plant life processes, such as
systemic acquired resistance, photosynthesis, plant defense system,
hormone metabolism, and alteration of protein metabolism,
resulting in increased storage protein content (Landi et al., 2017;
Xoca-Orozco et al., 2017). The advantageous functions of chitosan
are mainly related to the tolerance of plants to abiotic stress factors
such as salinity, high temperatures and drought, as well as to the
enhancement of their photosynthetic performance (Shahrajabian
et al., 2021). Chitosan’s hydrophilic nature reduces transpiration
rate and promotes water absorption. Rahman et al. (2018) revealed
that foliar application of chitosan to strawberries improved plant
growth and fruit yield. A significant increase in fruit weight and
higher levels of anthocyanins, carotenoids, flavonoids, and phenolic
compounds were observed when plants were sprayed with a chitosan
solution compared to the untreated control. Another study reported
that the biomass and number of flowers of mycorrhizal tomato
plants were improved by foliar spraying with chitosan (El Amerany
et al., 2020).

Saharan et al. (2016) report that Cu-chitosan nanoparticles,
through α-amylase and protease activity, improve the growth of
corn seedlings by exploiting reserved feed, mainly starch and
protein. A study by Jogaiah et al. (2020) revealed that the
application of chitosan to cucumber seeds had a positive impact

TABLE 3 Applications of chitosan and its derivatives as active food packaging materials.

Packaging (Film/Coating) Food Main findings References

Chitosan and chitosan nanoparticles
coating

Banana fruit Reduction of chilling injury and weight loss by increasing firmness, total antioxidant
activity and total phenolic content

Elbagoury et al. (2022)

Chitosan film Beef meat Improvement of the microbiological quality and extension of shelf life during storage Duran and Kahve (2020)

Chitosan film incorporated with
citric acid

Matured cheese Lower weight loss and antimicrobial activity against aerobic mesophilic bacteria Ressutte et al. (2022)

Chitosan-olive oil coating Fresh Figs Delay of fungal rot and post-harvest ripening indicators Vieira et al. (2021)

Chitosan nanoparticles composite
films

Fish fillets Extending the storage period of aquatic products by avoiding lipid oxidation and
proteolysis

Zhao et al. (2022)

Chitosan-Ruta graveolens essential
oil coatings

Tomatoes Preservation of physico-chemical properties and delay or inhibition of the
development of microbial spoilage

Peralta-Ruiz et al. (2020)

Chitosan coating and lauric arginate Chicken
drumsticks

Improvement of sensory scores, oxidative stability and antimicrobial quality of the
frozen stored product

Abdel-Naeem et al.
(2021)

Chitosan derivatives and polyvinyl
alcohol films

Mangoes and
papayas

Delayed senescence of the fruits, and extension of their shelf life Pan et al. (2022)

Carboxymethyl chitosan-based
coatings

Mushrooms Improvement of the overall quality of mushrooms by reducing the total viable count,
decreasing respiratory rate and weight loss, and inhibiting mushroom browning

Li F et al. (2022)

Chitosan coating Strawberry fruit Reduction of the microbial spoilage load, stabilization of the initial pigmentation and
preservation of the cellular structures

El-araby et al. (2022b)

Chitosan coating Vacuum-packaged
beef

Reduction of lipid oxidation and inhibition of lactic bacteria growth Gedarawatte et al. (2021)

Chitosan coating with green tea
aqueous extract

Pork chops Improvement of the physicochemical characteristics (pH, color, and oxidation of
lipids) and microbiological properties of samples during conservation

Montaño-Sánchez et al.
(2020)

Chitosan-propolis extract coating Crayfish Control of chemical indices and bacteria growth and also an extension of fish shelf life Çoban (2021)
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on disease protection and improved plant development. The results
show that chitosan increased phytohormone regulation and
synthesized defense enzymes, inducing resistance to mildew
disease, and enhancing cucumber plant development. In addition,
chitosan-based biodegradable and biocompatible nanomaterials are
employed in soil conditioners, seed coatings, and foliar treatments to
promote plant growth and protect plants against fungi, bacteria and
viruses, offering a novel and promising material for durable crop
protection (Shahrajabian et al., 2021). Vanti et al. (2020) synthesized
copper nanoparticles coupled with chitosan and evaluated their
benefits on chili, cowpea, and tomato crops. The prepared
nanoparticles had beneficial effects as fungicide and growth
promoter and explored their possible application as a safe
alternative to conventional pesticides to avoid hazardous effects
on the environment. Apart from the direct effects of chitosan,
chitosan nanoparticles have synergistic effects with plant-friendly
metals such as Zn, Cu, Ag and Ni and can enhance their fungicidal
and disinfectant properties. Table 4 represents other uses of chitosan
derivatives and chitosan-based nanocomposites in agriculture. A
study by Choudhary et al. (2019) showed that Zn-chitosan
nanoparticles presented strong antifungal and growth-promoting
activities in corn seedlings. Zn-chitosan nanoparticles have been
shown to combat disease by boosting plant immunity through
increased antioxidant and defense enzymes, regulation of reactive
oxygen species and increased lignin uptake.

8.3 Cosmetic industry

These days, bio ingredients are attracting a lot of interest in the
cosmetics sector to overcome the undesirable effects of synthetic

active ingredients, such as skin irritation, itching, photoallergy, and
phototoxicity. Researchers are therefore increasingly interested in
chitosan and its derivatives for the preparation of cosmetic products,
due to its natural abundance, ease of extraction and excellent
cosmetic qualities. Chitosan is the only natural cationic polymer
whose bacteriostatic, fungistatic, moisturizing, and film-forming
properties favor its use in cosmetic formulations (Jiménez-Gómez
and Cecilia, 2020; Aranaz et al., 2021) and make it attractive in skin,
nail, hair, and oral care applications (Morin-Crini et al., 2019a;
Azmana et al., 2021). Chitosan is used in hair treatment products
including shampoos, hairsprays and dyes to promote and boost the
hair’s softness and mechanical strength, to eliminate oils and sebum
due to its hydrophobic nature, and to maintain humidity and styling
by reducing static electricity in the hair (Abd El-Hack et al., 2020).
Thanks to its film-forming qualities, chitosan has the capacity to
interact with hair keratin, creating a transparent elastic film on hair
fibers, increasing smoothness and force and preventing damage
(Wang et al., 2020b). One of the essential benefits of chitosan in the
cosmetic field is its use in moisturizing agents to keep the skin well
hydrated and nourished. It softens the epidermis and prevents
damage caused by external environmental conditions and
cleansers. High-molecular-weight chitosan has film-forming
characteristics that can help reduce skin water loss, increase
elasticity and improve skin smoothness (Casadidio et al., 2019;
Gupta et al., 2022).

Petrick et al. (2020) synthetized a chitosan/TiO2 nanocomposite
as a multifunctional sunscreen for moderate UV protection with an
ability to inhibit the activity of bacteria living on the skin surface up
to 99.7% in 2 h. The addition of chitosan to lip care products makes
lips softer and protects them from drying out. It is also used as an
active ingredient to promote long-term adhesion of lipstick colors

TABLE 4 Applications of chitosan derivatives and chitosan-based nanocomposites in agricultural sector.

Systems Plants Main findings References

Potassium-chitosan nanoparticles Maize Improved soil physical properties by increasing porosity, water conductivity, and
friability, which promoted root growth. Significant increase in fresh and dry biomass
accumulation

Kubavat et al.
(2020)

Chitosan-based nanocomposites loaded with
antioxidants

Tomato Linear inhibition of fungal pathogen growth in seedlings. Promising pesticides for
seedling growth

Elsherbiny et al.
(2022)

Chitosan-salicylic acid nanocomposites Grapes Enhanced physiological, biochemical, and elemental nutrient balance characteristics.
Excellent biostimulant for the improvement of plant yield under salinity stress

Aazami et al. (2023)

Chitosan nanofertilizer comprising of copper
and salicylic acid

Maize Improved nutrient remobilization in growing cobs and increased source activity in
developing plants. Foliar application increased antioxidant enzyme activities and
increased chlorophyll content in leaves

Sharma et al.
(2020a)

N, P, and K-chitosan nanoparticles Potato Increased photosynthetic pigments and macronutrients in leaves and tubers. Significant
acceleration of plant development and productivity

Elshamy et al.
(2019)

Zn-chitosan nanoparticles Wheat Improved stress resistance and antioxidant status of plants. Regulation of the starch
biosynthesis process to increase source activity and sink strength

Kumar et al. (2021)

Chitosan and Moringa oleifera iron oxide
nanoparticles

Corn Positive effect on plants germination and growth without any toxic impact. Increased
root and stem length

Tovar et al. (2020)

Chitosan based NPK-nanofertilizers Cucumber A significant increase in leaf area and yield characteristics. Improved efficiency of
maximum apparent recovery of N, P, and K

Modi et al. (2021)

Chitosan nanoparticles Rice Improvement of the yield and biological properties of the plant. Excellent growth
stimulator without any toxic effect

Divya et al. (2021)

Chitosan based NPK-nanofertilizers Coffee Improved nutrient uptake in the leaves, photosynthesis process, and plants growth.
Increased leaf number, plant height, and leaf area

Ha et al. (2019)
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(Bakshi et al., 2020). Due to their cationic nature, chitosan and its
derivatives are suitable for inclusion in cleansing products such as
cleansing milks, face toners, peels, soaps and shower products, by
exploiting the ionic attraction between their cationic charge and the
anionic nature of the skin surface (Abd El-Hack et al., 2020).
Chitosan and its derivatives are widely applied in the treatment
of oral problems, through the creation of dental gels, toothpastes,
and mouthwashes (Gupta et al., 2022). A toothpaste developed with
biosurfactants and chitosan had a positive effect on the inhibition of
biofilm formed by Streptococcus mutans compared to the
commercial toothpaste tested. The addition of chitosan and its
derivatives has also been shown to improve the inhibition of
dental biofilm (Resende et al., 2019). The deodorizing effect and
antimicrobial characteristics of chitosan enable it to be used as an
active ingredient in deodorizers, as it inhibits the activity of enzyme-
producing bacteria (Bakshi et al., 2020). Table 5 represents other
applications of chitosan derivatives and chitosan-based
nanocomposites in the cosmetic industry. The cosmetics sector
has developed very rapidly in recent times, and products based
on chitosan alone or combined with other components are already
available on the market.

8.4 Pharmaceutical and medical
applications

8.4.1 Wound dressing and healing
Chitosan has the ability to improve the wound-healing

process and prevent bacterial infections due to its hemostatic,
antimicrobial, anti-inflammatory, film-forming, and analgesic

properties, making it useful as an active material for dressings
(Abd El-Hack et al., 2020; M. Zhang et al., 2022). It contributes
effectively to cell growth due to its positive surface charge, which
has led to thrombosis and blood coagulation (Wang et al., 2020a).
Chitosan-based bionanocomposites are utilized as wound healing
constituents by enhancing the epithelialization process and
collagen deposition on the dermal layer of the skin (Azmana
et al., 2021). Chitosan-loaded cyclodextrin hydrogels decreased
blood leakage and the duration of hemostasis compared with
commercial hydrogels. The results show that artificial hydrogels
hold promise as a physiologically safe means of mitigating blood
loss in tissue injury situations (Leonhardt et al., 2019). The
chitosan microneedle patch has proved to be very useful for
wound healing, promoting inhibition of inflammation, collagen
synthesis, and tissue renewal during wound healing (Chi et al.,
2020). The chitosan nanosilver-based dressing had a greater and
quicker healing effect than intradermal injection of mesenchymal
stem cells. In the same report, the group receiving the developed
dressing showed a significant increase in epidermal thickness,
collagen density and nuclear antigen immunoreactivity of
proliferating cells (Ghannam et al., 2018). Sulfated chitosan-
type I collagen hydrogel accelerated the healing of chronic
diabetic wounds by enhancing the functions of macrophages
into fibroblasts, resulting in enhanced collagen and
extracellular matrix formation in the wound tissue (Shen
et al., 2020). Polyvinyl chitosan nanofibers were associated
with carboxymethyl chitosan nanoparticles encapsulated with
an antibacterial peptide. These nano-system revealed
antibacterial properties and stimulated the healing of mouse
tissue (Zou et al., 2020). Micro-channeled alkylated chitosan

TABLE 5 Applications of chitosan derivatives and chitosan-based nanocomposites in cosmetics.

Systems Main findings References

Carboxymethyl chitosan A remarkable moisturizing effect due to the polymer’s ability to form a
hydrated layer on the skin’s surface, preventing water loss

Chaiwong et al. (2020)

Chitosan-lemongrass essential oil films Application as antioxidant and antimicrobial care masks with high flexibility
and permeability, without cytotoxic risks

Gaspar et al. (2022)

Methylcellulose-chitosan smart gels Heat protection with chitosan that acts like a film on the hair, protecting it
from heat damage. Applied like an ultra-hold hairspray on hair, it fixes the
style for hours

Hartson et al. (2022)

Carboxymethyl chitosan Safety and efficacy of injectable soft tissue devices for the intradermal
treatment of age-related skin defects. Significant improvement in skin
hydration, firmness, and elasticity

Philippart et al. (2021)

Thymoquinone-loaded chitosan nanoparticles Superior antimicrobial activity over time and a natural, effective, and lasting
preservative effect in cosmetic products

Mondéjar-López et al. (2022)

Pomegranate juice-loaded chitosan derivative nanoparticles Improved antioxidant and antimicrobial properties of skin emulsions with
good storage stability. Higher sun protection factor

Bikiaris et al. (2020)

Carboxymethyl chitosan-mangosteen extract Good moisturizing power for the skin and good deodorizing property
against trans-2-nonenal odor, with antioxidant and antibacterial properties

Chaiwong et al. (2022)

Chitosan nanoparticles A significant anti-sebum characteristic on the T-zone of the face after
4 weeks, without significant disruption of the skin barrier

Theerawattanawit et al.
(2022)

N-[(2-hydroxy-3-trimethyl-ammonium)-propyl] chitosan
chloride

Excellent antibacterial and mechanical properties, with desirable cell
attachment and proliferation

Khalaji et al. (2021)

Chitosan/vitamin C complex Enhanced antioxidant, moisturizing, antibacterial, and film-forming
properties. High moisture retention, hygroscopicity, ability to scavenge
hydroxyl radicals, and high stability

Liping et al. (2020)
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sponges have shown promising clinical translation potential to
treat non-compressible lethal hemorrhages and facilitate wound
healing. These hemostatic chitosan sponges demonstrated water
and blood absorption capacity, and provided higher coagulant
and hemostatic potencies in liver perforation wound models of
lethally normal and heparinized rats and pigs, compared with
treatments used in the clinic (Du et al., 2021). Chitosan
functionalized via coupling of chitosan -NH2 groups with
2,4,6-trimethoxybenzaldehyde could be a promising candidate
for wound dressing products and cutaneous cancer treatment
(Tamer et al., 2023).

8.4.2 Tissue engineering
Chitosan-based bioactive materials have emerged as

promising candidates for tissue engineering applications, as
they degrade progressively as new tissue is formed, avoiding
inflammatory reactions and toxic degradation (Bakshi et al.,
2020; Islam et al., 2020). Chitosan-grafted polymethyl
methacrylate and modified hydroxyapatite have been
successfully developed and applied for bone tissue
engineering. The biocomposite exhibited good mechanical
strength and long-term stability after soaking, and could be
utilized as a scaffold for bone cell growth and drug delivery
during bone repair (Tithito et al., 2019). Composite scaffolds of

gelatin, chitosan, polyvinyl alcohol, and nano-hydroxyapatite
showed positive effects on osteogenic differentiation and were
capable of mimicking the structure and function of natural bone.
The composite scaffolds effectively promoted cell proliferation
and adhesion, making them a promising biomimetic scaffold for
bone tissue engineering (Ma et al., 2021). The synthetized
cellulose nanofiber-filled chitosan hydrogels have been
effective in repairing and regenerating the annulus fibrosus
tissue of the intervertebral disc. Nanocomposite material is
suitable for use as an implant in annulus fibrosus tissue
defects to repair intervertebral disc biomechanics and provide
retaining plates against disc nucleus protrusion, while supporting
intervertebral disc regeneration and approximating the
functionality of a healthy disc (Doench et al., 2019). Pore
scaffolds formulated with chitosan, gelatin, and silk proteins
exhibited good chondrocyte cell viability and promoted rapid
cartilage tissue regeneration in defective rabbit knee articular
cartilage (Haghighi and Shamloo, 2021). Chitosan-vitamin
C-lactic acid membranes have been used in skin tissue
engineering. The prepared porous chitosan composite
membranes provided an optimal environment for the
attachment, growth, and spreading of skin cells (NIH-
3T3 fibroblasts) compared to non-porous membranes (Madni
et al., 2019). Composite scaffolds containing silk fibroin,

TABLE 6 Chitosan-based nanocomposites in different drug delivery systems.

Chitosan-based
nanocomposites

Loaded drugs Routes of
administration

Main findings References

N-trimethyl chitosan coated
nanocomplexes

Gemcitabine Oral delivery Enhanced drug bioavailability, improved its therapeutic
effect, and inhibited tumor growth

Chen et al. (2021)

Chitosan nanoparticles Hesperidin Nasal delivery Improved cellular absorption and reduced cytokine storm
syndrome in the lungs

Jin et al. (2021)

N-Trimethyl chitosan nanoparticles Flurbiprofen Ocular delivery Delayed drug liberation and enhanced its therapeutic
efficacy

Shinde et al. (2019)

Chitosan nanoparticles Metformin Oral delivery Increased systemic delivery and therapeutic efficacy in
polycystic kidneys

(J. Wang et al., 2021)

Carboxymethyl chitosan
nanoparticles

Basic fibroblast
growth factor

Transdermal delivery Improved dosing efficiency and prevented the drug from
remaining on the skin surface

Xie et al. (2022)

Chitosan nanoparticles loaded
nanofiber

Benzydamine Vaginal delivery Increased mucoadhesion and provided higher permeation
through the vaginal tissue

Tuğcu-Demiröz et al.
(2021)

Chitosan hydrogel Ibuprofen Nasal delivery Improved drug solubility and accelerated transport
through nasal epithelial cells

Gholizadeh et al.
(2019)

N-trimethyl chitosan coated
nanoparticles

Vitexin Oral delivery Promoted drug absorption and improved its antioxidant
activity

Li S et al. (2022)

Glycol-chitosan oxidize hyaluronic
acid hydrogel film

Levofloxacin Ocular delivery Showed progressive drug release and significantly reduced
various inflammatory cytokines

Bao et al. (2021)

Chitosan nanoparticles Acyclovir Vaginal delivery Enhanced cellular absorption in the vaginal mucosa and
prolonged drug liberation

Deshkar et al. (2021)

Thiolated chitosan microneedle
patch

Tacrolimus Transdermal delivery Enhanced availability and sustained liberation over a
longer period. Better penetration into the dermis, without
rupture

Ahmad et al. (2020b)

N-Trimethyl chitosan nanoparticles Metronidazole Periodontal delivery Enhanced antibacterial activity against periodontal
infections

Garg and Tirgar
(2022)

Chitosan-ethyl cellulose
microspheres

Domperidone Nasal delivery Improved the bioavailability by avoiding its first-pass
metabolism and regulated drug concentration in the blood

Zafar et al. (2021)
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carboxymethyl chitosan, strontium-substituted hydroxyapatite
and cellulose nanocrystals proved effective in enhancing
osteoblast adhesion and proliferation. The experimental results
suggested the applicability of the synthesized scaffolds for bone
repair (X. Zhang et al., 2019).

8.4.3 Drug delivery
Biocompatibility, biodegradability, long-term stability,

mucoadhesive capacity, non-toxicity, cationic nature, and the
presence of amino and hydroxyl groups are the most critical
characteristics that make chitosan an active and promising
polysaccharide for various drug delivery (Barman et al., 2020;
Hameed et al., 2022). Advances in drug delivery systems are
attracting growing interest from researchers, and point to the
need to develop innovative and improved materials using
chitosan-based nanocomposites to enhance drug delivery
efficiency. In general, microspheres, tablets, gels,
microcapsules, and films with sustained release can be
prepared by combining the polymer with drugs by dissolution,
coating or adsorption (Wang et al., 2020b). Furthermore, the
introduction of new entities into the polymer linear chain
enhances other characteristics of chitosan, boosting its
suitability for pharmaceutical purposes. For example,
O-carboxymethyl and N-trimethyl chitosan are the most
promising chitosan derivatives and have excellent potential for
drug delivery system (Abd El-Hack et al., 2020). A drug delivery
system is a technical device that combines medicine, engineering,
and pharmacy to deliver the precise dose of drug to the right place
at the correct time, increasing the drug’s bioavailability and
therapeutic efficacy, and minimizing adverse effects (Ewart
et al., 2019; Wang et al., 2020a). Table 6 represents chitosan-
based nanocomposites in different drug delivery systems.
Chitosan-based devices are used for the delivery of proteins

and peptides, growth promoters, anti-inflammatory agents,
antibiotics, and vaccines, also in gene therapy and bioimaging
applications (Bakshi et al., 2020).

8.5 Wastewater treatment

The daily discharge of industrial wastewater into landfills results
in significant water and environmental contamination. Physico-
chemical treatments can be used to eliminate heavy metals and toxic
compounds from wastewater. However, these methods are harmful
to the environment due to the use of synthetic chemicals. The
presence of active functional groups (-NH2 and -OH) has allowed
chitosan and its derivatives to gain more popularity than other
polysaccharides as an effective adsorbent for water purification.
Chitosan-based bionanocomposites have been reported to be very
useful as safe and environmentally friendly alternatives for the
chelation of heavy metals and dyes in industrial wastewater.
Cationization of -NH2 groups leads to absorption of anionic dyes
through electrostatic attraction in acidic conditions (Thomas et al.,
2019; Azmana et al., 2021). Microfluidically generated chitosan
microspheres significantly eliminated Cu and other toxic heavy
metal ions from the polluted water. The excellent adsorption
capacity, biodegradable properties, and low extraction cost make
chitosan microspheres a promising material in industrial wastewater
treatment applications (B. Wang et al., 2019). Sessarego et al. (2019)
synthesized a phosphonium cross-linked chitosan to eliminate Cr
(VI) from wastewater by adsorption. The research indicated that
phosphonium functionality is provided to the chitosan by tetrakis
(hydroxymethyl) phosphate through an easy-on-easy process of
synthesis, leading to improved absorption at pH 6. The N-N-N-
triethylammonium chitosan and carboxymethyl chitosan were used
to remove Cu (II), Ni (II), and Cr (VI) by size-enhanced

TABLE 7 Applications of chitosan derivatives and chitosan-based nanocomposites in wastewater treatment.

Systems Main findings References

Chitosan-based composite hydrogels Better adsorption capacity of methylene blue dye because of the richness of their oxygen-
containing groups and their large specific surface area

Wang R et al. (2020)

Carboxymethyl chitosan-activated carbon
derivatives

Effective adsorbents for the elimination of copper and lead ions from wastewater Abdel Hafez et al. (2022)

Chitosan-based nanocomposite containing
mesoporous nanosilica

Very suitable material for efficient and fast absorption of Pb(II) from an aqueous solution Maghsoudi et al. (2021)

Thymine-containing chitosan derivative Potential flocculant for the removal of various types of commercial pesticides from aqueous
dispersions

Ghimici and Dinu (2019)

Chitosan-Cl-poly(AA)/ZrPO4 nanocomposite Good remediation potential of rhodamine B dye as well as promising antibacterial behavior Sharma et al. (2020b)

Chitosan cross-linked with 1,3-dichloroacetone Effective product for the removal of heavy metals Pb(II), Cr(VI), Cu(II), Fe(II), and Zn(II)
from poultry wastewater effluents

Atangana and Oberholster
(2020)

Carboxymethyl chitosan/phytic acid composite
hydrogels

Fast and stable adsorption of methyl orange and Congo red dyes from an aqueous solution Han et al. (2021)

Metal oxides-chitosan based nanocomposites Efficient, environmentally friendly, recyclable, and stable nanocomposites for the removal of
carcinogenic polycyclic aromatic hydrocarbons from wastewater by sunlight

Rani et al. (2020)

Chitosan-lignin membranes Environmentally friendly, inexpensive, and compostable materials demonstrating viability as
a substitute for the disposal of methylene blue as a wastewater pollutant

Vedula and Yadav (2022)

Sulfonated chitosan-based flocculant Removal of heavy metals by chelation, adsorption, and co-decantation. Materials with high
flocculation performance, thermal stability, and solubility

Tang et al. (2020)
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ultrafiltration. The optimization study was conducted to maximize
the removal of heavy metal ions from aqueous solutions and the
binding ability of chitosan derivatives. Chitosan and its
nanocomposites are powerful biosorbents owing to the intrinsic
characteristics of their amino (-NH2) and hydroxyl (OH) functional
groups, which make them suitable for dye removal. Synthesized
ZnO-chitosan nanocomposites were effective in removing
methylene blue from simulated wastewater. The excellent
adsorption characteristics of chitosan nanocomposites have been
highlighted by the successful adsorption of methylene blue up to six
cycles (Zango et al., 2022). The in-situ precipitation process
successfully generated ZnO/chitosan nanocomposites. The
application of these nanocomposites in wastewater treatment has
shown their effectiveness as a powerful adsorbent for the removal of
Congo red from aqueous solutions (Nguyen et al., 2020). Table 7
represents other applications of chitosan derivatives and chitosan-
based nanocomposites in wastewater treatment. In addition to the
good reputation of chitosan nanocomposites in the removal of heavy
metals and dyes, studies regarding antimicrobial properties and
degradation efficiencies of organic and emerging contaminants are
also conducted in the industry of wastewater treatment and
management (Alburquenque et al., 2010; Aizat and Aziz, 2019).

9 Conclusion

Chitosan represents an interesting and valuable way to valorize
marine by-products. This polymer is an environmentally friendly
material with several promising biological activities and specific
physicochemical properties that make it the most polyfunctional and
versatile of all other biopolymers. The presence of active functional
groups is particularly advantageous to ensure the modification of
chitosan and consequently broaden its application spectrum.
Chemical and physical modification of chitosan is widely discussed
to produce a variety of chitosan derivatives with high solubility and
enhanced properties. However, the enzymatic route is still under
development, which suggests a very bright future for the sustainable
modification of chitosan. With advances in nanotechnology, chitosan-
based nanocomposites are the subject of intensive research with a bright
future, thanks to their unique and exceptional properties that make
them more effective in many sectors. However, further research into
chitosan chemistrywill open up broad prospects for chitosan derivatives
and chitosan in nanoparticle form and therefore offer valuable options
for promising chitosan applications. The evolution of chitosan and its
derivatives should be strategically oriented towards precision,
responsiveness and sustainability, encompassing a broad spectrum of
applications. This intentional approach positions chitosan as a key
player in meeting contemporary challenges across all industries,

promising a future where its diverse applications will be
characterized by both efficiency and environmental responsibility.
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