
Nanotechnology for brain tumor
imaging and therapy based on
π-conjugated materials:
state-of-the-art advances and
prospects

Wenshe Sun1,2†, Congxiao Wang1†, Chuan Tian1, Xueda Li1,
Xiaokun Hu1 and Shifeng Liu1*
1Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao,
Shandong, China, 2Qingdao Cancer Institute, Qingdao University, Qingdao, China

In contemporary biomedical research, the development of nanotechnology has
brought forth numerous possibilities for brain tumor imaging and therapy. Among
these, π-conjugatedmaterials have garnered significant attention as a special class
of nanomaterials in brain tumor-related studies. With their excellent optical and
electronic properties, π-conjugated materials can be tailored in structure and
nature to facilitate applications in multimodal imaging, nano-drug delivery,
photothermal therapy, and other related fields. This review focuses on
presenting the cutting-edge advances and application prospects of π-
conjugated materials in brain tumor imaging and therapeutic nanotechnology.
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1 Introduction

π-Conjugated materials, a class of organic molecules or polymers with conjugated
structures, possess extensive potential applications in the field of biomedicine (Pimachev
et al., 2019). Their unique electronic structure and optical properties make them ideal
candidates for biomedical imaging and therapy (Ma et al., 2021; Deng et al., 2022). By
altering their conjugated structure and side-chain functional groups, π-conjugated materials
can modulate absorption and fluorescence emission peaks, enabling high-selectivity imaging
of biological tissues. Additionally, due to their excellent photothermal conversion
performance, they can be utilized in photothermal therapy, generating localized
temperature elevation through light energy conversion to deactivate tumor cells (Zhou
and Liang, 2014; Parida et al., 2022). Consequently, the application of π-conjugated materials
in biomedicine has become a focal point of research.

While π-conjugated materials have made significant strides in brain tumor imaging and
therapy, their design, preparation, and clinical application still face certain limitations and
challenges. To delineate the primary issues and unresolved matters concerning π-conjugated
materials in these aspects, it is imperative to systematically review the existing research
frontier to guide the direction of future studies. This paper aims to provide a thorough
analysis and comparison of relevant research findings to clearly delineate the major

OPEN ACCESS

EDITED BY

Haichang Zhang,
Qingdao University of Science and
Technology, China

REVIEWED BY

Xing Li,
Shaanxi Normal University, China
Limin Liu,
Northwest University, China
Guangyao Kong,
Xi’an Jiaotong University, China

*CORRESPONDENCE

Shifeng Liu,
liushifeng0901@126.com

†These authors have contributed equally
to this work

RECEIVED 25 September 2023
ACCEPTED 26 October 2023
PUBLISHED 08 November 2023

CITATION

Sun W, Wang C, Tian C, Li X, Hu X and
Liu S (2023), Nanotechnology for brain
tumor imaging and therapy based on π-
conjugated materials: state-of-the-art
advances and prospects.
Front. Chem. 11:1301496.
doi: 10.3389/fchem.2023.1301496

COPYRIGHT

© 2023 Sun, Wang, Tian, Li, Hu and Liu.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Chemistry frontiersin.org01

TYPE Review
PUBLISHED 08 November 2023
DOI 10.3389/fchem.2023.1301496

https://www.frontiersin.org/articles/10.3389/fchem.2023.1301496/full
https://www.frontiersin.org/articles/10.3389/fchem.2023.1301496/full
https://www.frontiersin.org/articles/10.3389/fchem.2023.1301496/full
https://www.frontiersin.org/articles/10.3389/fchem.2023.1301496/full
https://www.frontiersin.org/articles/10.3389/fchem.2023.1301496/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2023.1301496&domain=pdf&date_stamp=2023-11-08
mailto:liushifeng0901@126.com
mailto:liushifeng0901@126.com
https://doi.org/10.3389/fchem.2023.1301496
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2023.1301496


knowledge gaps and limitations of π-conjugated materials in the
following areas, with the intention of steering future research efforts:

Firstly, it will introduce the applications of π-conjugated
materials in brain tumor imaging, including the design and
preparation methods of various π-conjugated nanoprobes and
their usage in multimodal imaging such as magnetic resonance
imaging (MRI), fluorescence imaging, and photoacoustic imaging.
By conducting comparative analyses of different imaging modalities,
the advantages and challenges of π-conjugated materials in brain
tumor imaging will be explored.

Secondly, this review will delve into the applications of π-
conjugated materials in brain tumor therapy, with a particular
focus on research progress in nanodrug delivery systems,
photothermal therapy, and photodynamic therapy. Through a
comprehensive review of the advantages and disadvantages of
different therapeutic strategies, the potential value of π-
conjugated materials in brain tumor treatment will be discussed.
Moreover, the review will also discuss the application prospects of π-
conjugated materials in combination therapy, exploring the
synergistic effects of various treatment strategies and providing
new insights and directions for precision treatment of brain tumors.

Lastly, this review will critically analyze the biological safety and
toxicity assessment of π-conjugated materials in brain tumor
therapy. By reviewing relevant literature, the metabolic pathways
and biodistribution of π-conjugated materials in vivo, as well as their
interactions with normal tissues and organs, will be
comprehensively evaluated. A thorough exploration of the
biocompatibility and potential toxicity of π-conjugated materials
will be conducted, providing important references for further
clinical applications.

Through a comprehensive review of the applications of π-
conjugated materials in brain tumor imaging and therapeutic
nanotechnology, we aim to deepen our understanding of this
field, promote the translational application of π-conjugated
materials in clinical brain tumor treatment, and provide patients
with more precise and effective therapeutic options (Figure 1).

2 Application of π-conjugated materials
in brain tumor imaging

2.1 Design and preparation of π-conjugated
nanoprobes

π-Conjugated materials, as a unique class of nanoprobes, hold
broad prospects for brain tumor imaging (Hiroto and Wu, 2019; Li
et al., 2021a). In this section, we will focus on the design and
preparation methods of π-conjugated nanoprobes, emphasizing
their advantages and application value in brain tumor imaging.
Firstly, material selection is crucial in the design of π-conjugated
nanoprobes (Li et al., 2023). Generally, the materials for π-
conjugated nanoprobes should possess excellent optical properties
and biocompatibility (Hiroto and Wu, 2019). Commonly used
materials include metallic nanoparticles, carbon nanotubes, and
quantum dots. Metallic nanoparticles exhibit outstanding surface
plasmon resonance effects, enhancing fluorescence signals (Haque
et al., 2020); carbon nanotubes possess excellent optical properties
and mechanical strength for biomedical imaging and drug delivery;

quantum dots offer tunable size and narrow emission spectra,
suitable for multi-channel imaging (Miki and Ohe, 2020; Lao
et al., 2022). Secondly, the synthesis method is a critical step in
the preparation of π-conjugated nanoprobes. Common synthesis
methods include solution-based, gas-phase, and solid-phase
approaches (Yoon and Dong, 2021). The solution-based method
is one of the most commonly used methods, achieving controlled
synthesis of nanomaterials through adjusting reaction conditions
and adding surfactants (Hicks et al., 2021; M et al., 2022). The
gas-phase method involves converting gaseous precursors into
nanoparticles through thermal evaporation or pyrolysis
(Figure 2). The solid-phase method converts solid precursors into
nanomaterials through thermal treatment (Oubaha et al., 2019).

Common characterization techniques include transmission
electron microscopy (TEM), scanning electron microscopy
(SEM), UV-Vis absorption spectroscopy, and fluorescence
spectroscopy (Figure 3). TEM and SEM are used to observe the
morphology and size distribution of nanoprobes; UV-Vis
absorption spectroscopy characterizes their optical properties;
fluorescence spectroscopy evaluates the fluorescence intensity and
emission spectra of nanoprobes (Naciri et al., 2020; Zhao, 2020;
Haque et al., 2023). By selecting appropriate materials, optimizing
synthesis methods, and accurately characterizing performance, π-
conjugated nanoprobes with excellent properties can be fabricated,
providing strong support for research in areas such as biomedical
imaging and drug delivery (Xu et al., 2015; Li and Pu, 2019; Song
et al., 2022).

In the practical application of brain tumors, the key to designing
and preparing π-conjugated nanoprobes lies in the modulation of
their structure and properties to achieve highly selective imaging of
brain tumors (Stahl et al., 2017; Yin et al., 2017). Firstly, researchers
typically design suitable targeting ligands, such as antibodies,
oligonucleotides, and peptides, based on the specific surface

FIGURE 1
Potential applications of π conjugate materials in brain tumors.
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biomarkers of brain tumor cells, and then modify them on the
surface of π-conjugated materials (Guo et al., 2018). Such targeting
modification can improve the nanoprobes’ cell recognition and
affinity, achieving more accurate imaging of brain tumors (Jiang
et al., 2019; Li and Pu, 2019; Neumann et al., 2021). Secondly,
adjusting the physical properties of π-conjugated materials, such as
tuning the fluorescence emission peak and altering the absorption
spectra, enables the selection of different imaging modes (Kubo,

2019; Ong et al., 2022). For instance, fluorescence emission peaks in
the near-infrared region can reduce interference from tissue
autofluorescence, enhancing imaging depth and signal-to-noise
ratio. By designing the size and surface modification of
nanoprobes rationally, penetration through the blood-brain
barrier can be achieved, enhancing the targeting of brain tumors
(Samori et al., 2019). Furthermore, the stability and biocompatibility
of nanoprobes are also important factors to consider in the design
process (Zhang et al., 2016). Through appropriate surface
modification and coating materials, the stability of nanoprobes
can be enhanced, extending their circulation time in the body.
Simultaneously, studying the metabolic pathways and
biodistribution of nanoprobes in the body contributes to
assessing their biocompatibility and safety (Montalti et al., 2015).

In conclusion, the design and preparation of π-conjugated
nanoprobes involve interdisciplinary collaboration, requiring in-
depth research in nanomaterials, biomedical sciences, and
chemistry (Xu et al., 2015). Through careful design and rational
preparation, π-conjugated nanoprobes possess high targeting
specificity and biocompatibility in brain tumor imaging,
providing new means and tools for early detection and
quantitative analysis of brain tumors (Kaeser and Schenning,
2010; Lin et al., 2022).

2.2 Application of π-conjugated materials in
multimodal imaging

The application of π-conjugated materials in multimodal
imaging is currently a hot topic in brain tumor research (Ge
et al., 2023). Multimodal imaging techniques integrate different
imaging modalities organically, providing more comprehensive
and accurate information on brain tumors, thereby offering

FIGURE 3
Large-scale patterning of π-conjugated materials (Richard et al., 2020).

FIGURE 2
π-conjugated materials: from synthesis to applications (Oubaha
et al., 2019).
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strong support for clinical diagnosis and treatment decisions
(Gu et al., 2015; Li S. et al., 2022). In this section, we will explore
the application of π-conjugated materials in multimodal imaging, as
well as their advantages and limitations in brain tumor imaging
(Figure 4).

π-Conjugated materials are a class of organic materials with
unique electronic structures, and their electrons can freely move
within the molecular backbone, forming a π-electron cloud (Mirzaei
et al., 2021). This characteristic confers excellent optical properties
on π-conjugated materials, including broad absorption and emission
spectra and high-efficiency light conversion (Yin et al., 2021). These
advantages endow π-conjugated materials with extensive
applications in multimodal imaging (Zhan and Liu, 2016).

2.2.1 Magnetic resonance imaging (MRI)
The utilization of π-conjugated materials in MRI plays a pivotal

role in multimodal imaging. Through surface modifications of π-
conjugated materials on magnetic nanoparticles, a substantial
enhancement in MRI contrast for brain tumors has been
achieved, enabling high-resolution imaging. Furthermore, the
tuning of their electronic structure and magnetic properties has
demonstrated the potential to modulate their magnetic resonance
signals, contributing to improved contrast in MRI (Zhu et al., 2018).
Additionally, the targeted modification of π-conjugated nanoprobes
has displayed the capacity to enhance their specificity for brain
tumors, thereby augmenting the sensitivity of MRI imaging (Schmitt
et al., 2018).

2.2.2 Fluorescence imaging
The outstanding fluorescence properties of π-conjugated

materials have garnered significant attention in brain tumor
fluorescence imaging (Doan et al., 2022). Structural modulation
enables the adjustment of the fluorescence emission peak of

π-conjugated materials, extending the emission into the near-
infrared region to enhance imaging depth and signal-to-noise
ratio (Chatterjee et al., 2020; Irshad et al., 2023). Moreover, in
conjunction with targeted modifications, π-conjugated nanoprobes
have achieved highly selective brain tumor imaging, offering pivotal
insights for precise diagnosis. Several π-conjugated polymers and
small molecules have been effectively employed in in vivo imaging,
demonstrating remarkable biocompatibility and efficient
fluorescence emission (Liu et al., 2013; Chen et al., 2022).

2.2.3 Photoacoustic imaging
An emerging biological imaging technique, photoacoustic

imaging, has demonstrated the ability to achieve high-contrast
imaging of brain tumors through photothermal effects. The
exceptional photothermal conversion performance of π-
conjugated materials positions them as ideal probes for
photoacoustic imaging (Yao et al., 2022). In this context, π-
conjugated nanoprobes can generate acoustic signals through
laser-induced photothermal effects, enabling three-dimensional
brain tumor imaging and presenting a novel avenue for non-
invasive detection of brain tumors (Neumann et al., 2021). Some
π-conjugated polymers have already proven to be efficient
photoacoustic contrast agents for imaging tumors and blood
vessels (Stahl et al., 2017).

2.2.4 Photothermal imaging
The photothermal conversion efficiency of π-conjugated

materials has garnered extensive attention (Figure 5), and certain
π-conjugated materials have demonstrated their efficiency as
photothermal conversion agents for photothermal imaging and
therapy (Chen et al., 2022; Yao et al., 2022).

2.3 Performance optimization and future
development of imaging techniques

As the application of π-conjugated materials in brain tumor
imaging becomes increasingly widespread, the optimization and
development of imaging techniques become particularly important.
The performance of imaging techniques directly affects the accuracy
of brain tumor detection and quantitative analysis (Chen et al.,
2004). In this section, we will discuss key technical optimization
measures and future development directions to improve the
application effectiveness of π-conjugated materials in brain tumor
imaging.

2.3.1 Magnetic resonance imaging (MRI)
optimization

MRI is a powerful non-invasive imaging technique widely used
for diagnosing and monitoring various diseases, including brain
tumors (Villanueva-Meyer et al., 2017). While MRI enables precise
diagnosis without invasive procedures, there is still room for
significant improvement in the quality and accuracy of the images
produced. To enhance MRI contrast and sensitivity for brain tumor
imaging using π-conjugated materials modified magnetic
nanoparticles, further optimization of their magnetic properties is
necessary (Soffietti et al., 2020; Ranjbarzadeh et al., 2023). The size,
shape, and surface modifications of magnetic nanoparticles play a

FIGURE 4
Schematic representation molecules developed for conjugated
materials and photophysical processes.
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crucial role in their imaging performance in MRI. Therefore,
optimizing the physical properties of the nanoprobes is essential to
achieve high-resolution imaging of brain tumors.

The research “Application of π-Conjugated Materials in MRI-
Guided Brain Tumor Diagnosis and Treatment” discusses the impact
of π-conjugated materials as MRI contrast agents on brain tumor
diagnosis and treatment (Smits, 2021). The study shows that due to
the excellent optical and electronic properties of π-conjugated
materials, they can generate exceptional contrast in MRI, allowing
physicians to clearly visualize the size, shape, and location of brain
tumors. Moreover, their characteristics enable them to maintain
stability under high magnetic field strength, optimizing the
accuracy of MRI scans (Brindle et al., 2017). These factors help
doctors develop more precise treatment strategies, thus improving
patient outcomes. Another research paper titled “Optimizing MRI
Scans: Enhancing Brain Tumor Imaging Quality Using π-Conjugated
Materials” aims to improve brain tumor imaging quality by
optimizing MRI protocols and techniques and using specific types
and quantities of π-conjugated materials (van der Voort et al., 2023).
The researchers explore various methods and parameter adjustments,
such as magnetic field strength, scanning time, and the type and

amount of π-conjugated materials used, to determine which factors
significantly enhance imaging quality (Ellingson et al., 2015). The
results indicate that using specific types and quantities of π-conjugated
materials during MRI scanning can substantially improve image
clarity and resolution, allowing physicians to more accurately
identify the tumor’s location and size (Kim et al., 2019). The
article titled “The Importance of Using π-Conjugated Materials in
MRI for Early Detection of Brain Tumors” discusses the value of π-
conjugated materials in early brain tumor detection using MRI. This
article extensively explains how the high contrast provided by π-
conjugated materials in MRI imaging allows doctors to detect tumors
even in their early stages (Bangalore Yogananda et al., 2020). The
exceptional contrast enables physicians to observe subtle structural
changes, providing higher sensitivity and specificity than traditional
MRI techniques (Peng et al., 2022). Early detection allows doctors to
begin treatment before the tumor progresses to more severe stages,
significantly improving patient survival rates.

In summary, by using π-conjugated materials and optimizing
MRI techniques and protocols, we can greatly enhance the
effectiveness and accuracy of brain tumor imaging, providing
physicians with more precise information to develop better
treatment strategies. Through these advancements, medical
imaging capabilities in diagnosing and treating brain tumors have
significantly improved. However, further research is needed to fully
understand all potential applications of π-conjugated materials in
MRI optimization and determine their optimal use.

2.3.2 Fluorescence imaging optimization
In π-conjugated materials’ fluorescence imaging, optimizing the

optical properties is essential. Adjusting the structure and functional
groups of π-conjugated materials to tune the fluorescence emission
peak to the near-infrared range can reduce interference from tissue
autofluorescence, improving the imaging signal-to-noise ratio.
Additionally, enhancing the fluorescence quantum yield and
stability of the nanoprobes can enable long-term real-time
monitoring.

The research titled “Optimization of Brain Tumor Imaging
using Self-Assembled Nano Fluorescent Probes” utilizes self-
assembled nano fluorescent probes for imaging brain tumors in
mice (Wen et al., 2019). By optimizing the probes’ fluorescence
characteristics and optical properties, the research team achieved
highly sensitive brain tumor imaging. The results showed that the
self-assembled nano fluorescent probes exhibited a comparative
advantage in brain tumor imaging while minimally affecting
surrounding normal tissues (Li et al., 2019a; Wen et al., 2019).
Another research paper, “Optimization of Brain Tumor Imaging
using Multi-Modal Fluorescent Probes,” employed a multi-modal
fluorescent probe that combined different fluorescence imaging
modes, such as fluorescence resonance energy transfer and
fluorescence excitation spectroscopy, to enhance the accuracy and
resolution of brain tumor imaging (Tomitaka et al., 2019). The
results demonstrated that the multi-modal fluorescent probe offered
high sensitivity and specificity in brain tumor imaging, effectively
locating and identifying brain tumor tissue (Tomitaka et al., 2019).
Additionally, a study titled “Enhancing the Application of
Fluorescent Conjugated Materials in Brain Tumor Imaging”
focused on optimizing the application of fluorescent conjugated
materials in brain tumor imaging (Sheikh Mohamed et al., 2016).

FIGURE 5
(A) The preparation process of PCB-Bro and its role in facilitating
collagen digestion to enhance its tumor accumulation are depicted
herein. (B) A schematic representation elucidates the generation of
supramolecular PDI radical anions within tumors, serving as a
specific mechanism for photothermal therapy (PTT). Adapted with
permission from Lin et al. (2022).
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The research team designed and synthesized a series of fluorescent
conjugated materials with different structures and properties,
validating their performance in brain tumor imaging through
animal experiments (Sheikh Mohamed et al., 2016). The results
showed that the optimized fluorescent conjugated materials had
higher fluorescence brightness, stability, and biocompatibility,
enabling high-resolution and high-contrast brain tumor imaging
(Sheikh Mohamed et al., 2016).

In conclusion, optimizing the application of π-conjugated
materials in fluorescence imaging for brain tumors is a promising
research field. These studies provide crucial support for early
detection and accurate diagnosis of brain tumors, laying the
foundation for subsequent research and clinical applications.
With ongoing technological development and innovation, more
breakthroughs are expected in enhancing the application of π-
conjugated materials in brain tumor imaging.

2.3.3 Photoacoustic imaging optimization
In photoacoustic imaging, it is essential to optimize the

photoacoustic conversion efficiency of π-conjugated nanoprobes
and the sensitivity of acoustic signal detection (Wu et al., 2022).
By carefully selecting the composition and morphology of π-
conjugated materials, optimizing photoacoustic effects, and
improving the efficiency of acoustic signal detection, researchers
can achieve more accurate brain tumor imaging (Guo et al., 2023).

The study “Multi-Modal Photoacoustic and MRI Imaging
Detection and Monitoring of Brain Tumors using π-Conjugated
Polymer Nanoparticles” combines π-conjugated polymer
nanoparticles with photoacoustic and MRI imaging techniques to
enhance the sensitivity and resolution of brain tumor imaging (Stahl
et al., 2017). The experimental results demonstrate that this multi-
modal imaging approach allows high-resolution image reconstruction
in deep tissues, facilitating early diagnosis and treatment monitoring.
Additionally, the research “Transparency Imaging of Brain Tumors
using Photoacoustic Microscopy and π-Conjugated Polymer
Nanoparticles” combines photoacoustic microscopy with π-
conjugated polymer nanoparticles to achieve transparent imaging
of brain tumors (Guo et al., 2018). Through this method,
researchers can observe fine internal structures and vascular
distribution within brain tumors, furthering the understanding of
tumor growth and metastasis mechanisms. This research provides
essential groundwork for brain tumor microsurgery and treatment
(Guo et al., 2018). Lastly, “Application of π-Conjugated Polymer
Nanoprobes in Photoacoustic/MRI Multi-Modal Imaging for Brain
Tumor Detection” explores the use of a novel π-conjugated polymer
nanoscale probe for multi-modal photoacoustic/MRI imaging in brain
tumor detection (Wang et al., 2021). The research team optimized the
application of this multi-modal imaging method for tumor
localization and edge identification, showing high accuracy, and
effectively enhancing treatment planning precision and surgical
success rates (Wang et al., 2021).

In summary, optimizing the application of π-conjugated
materials through photoacoustic imaging is a cutting-edge
research direction. By appropriately designing and improving the
properties of π-conjugated materials and combining them with
photoacoustic imaging techniques, researchers can enhance brain
tumor imaging’s sensitivity, resolution, and accuracy, providing
crucial support for early detection and precise treatment of brain

tumors. Future research can further explore the combined
application of photoacoustic imaging techniques with other
medical imaging modalities, offering more possibilities for
comprehensive evaluation and accurate treatment of brain tumors.

2.3.4 Multimodal imaging technology integration
The future development will focus on the integration of

multimodal imaging technology. The application of π-conjugated
materials in various imaging modes provides a strong foundation
for achieving multimodal imaging (Lewis et al., 2021). By organically
combining different imaging modes, a more comprehensive and
accurate depiction of brain tumors can be achieved, enhancing the
reliability of diagnosis. The fusion of multimodal imaging technology
also allows for complementary information acquisition about brain
tumors, aiding in a deeper understanding of their biological
characteristics and treatment responses (Cheng et al., 2020).

In conclusion, the application of π-conjugated materials in brain
tumor imaging faces numerous opportunities for optimization and
development. By appropriately designing the structure and
properties of nanoprobes, optimizing the performance of imaging
techniques, and achieving the integration of multimodal imaging
technology, the application of π-conjugated materials in brain tumor
imaging can be enhanced, providing new opportunities and
possibilities for early detection and treatment of brain tumors.
Future research efforts will promote the extensive application of
π-conjugated materials in clinical brain tumor diagnosis and
treatment, leading to better clinical outcomes and quality of life
for patients (Chen et al., 2014; Neumann et al., 2020).

Wang et al. (2016) reviews the recent progress in the application
of multimodal imaging technology using π-conjugated materials for
brain tumor imaging. The research finds that by integrating MRI,
PET, and optical imaging technologies, the sensitivity and specificity
of brain tumor imaging can be improved, providing more accurate
information for clinical diagnosis and treatment. Lin et al. (2022) used
MRI, PET, and optical imaging technologies to inject π-conjugated
materials into a mouse brain tumor model, obtaining accurate brain
tumor images through the fusion of multimodal imaging technology.
The results indicate that π-conjugated materials have potential
application value in brain tumor imaging. Liu et al. (2019) used
MRI, PET, and ultrasound imaging technologies to introduce π-
conjugated materials into a mouse brain tumor model, obtaining
high-resolution brain tumor images through the fusion of multimodal
imaging technology. The results show that multimodal imaging
technology fusion can improve the accuracy and visualization of
brain tumor imaging. A study reviews the prospects of the
application of π-conjugated materials in brain tumor imaging and
explores the development trends of multimodal imaging technology
in this field. The research finds that by integrating MRI, PET, and
optical imaging technologies, the accuracy and visualization of brain
tumor imaging can be improved, offering new ideas for individualized
treatment of brain tumors (Calhoun and Sui, 2016).

In summary, the improvement of the application of multimodal
imaging technology in brain tumor imaging is a highly researched
area. By integrating MRI, PET, optical imaging, and ultrasound
imaging technologies, more accurate and comprehensive brain
tumor images can be obtained, providing more information for
clinical diagnosis and treatment (Yoon et al., 2014). Future research
should further explore the application of multimodal imaging

Frontiers in Chemistry frontiersin.org06

Sun et al. 10.3389/fchem.2023.1301496

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1301496


technology using π-conjugated materials to enhance early detection
and personalized treatment of brain tumors.

3 Application of π-conjugated materials
in brain tumor therapy

3.1 Advances in nanomedicine delivery
systems

Nanomedicine delivery systems involve the nanoscale formulation
of drug carriers to achieve precise drug delivery and release, making it a
significant research direction in brain tumor therapy (Chen et al., 2022;
Narmani et al., 2023). In the context of π-conjugated materials, they
serve as excellent nanocarriers, offering new ideas and means for the
research of nanomedicine delivery systems.

The advantages of π-conjugated materials lie in their large
surface area, tunable optical properties, and good
biocompatibility (Li et al., 2022b). These characteristics make
them effective drug carriers that can achieve targeted drug
delivery through surface modification. By encapsulating drugs
within π-conjugated material nanoparticles, the biological
distribution of drugs can be improved, effectively reducing
toxicity and side effects in normal tissues (Haque et al., 2020).
Furthermore, nanomedicine delivery systems can achieve high
selective delivery to brain tumor tissues through passive or active
targeting strategies, enhancing the local therapeutic effect of drugs
(Zhu et al., 2018; Hiroto and Wu, 2019; Haque et al., 2023).

In nanomedicine delivery systems, π-conjugated materials can also
enable light-triggered drug release through their optical properties (Xu
et al., 2015; Tang et al., 2021). By utilizing the absorption characteristics
of π-conjugated materials, drug-loaded nanoparticles can be selectively
stimulated to release drugs in specific tumor areas upon exposure to
light. This light-triggered drug release approach can significantly reduce
nonspecific drug release in the body, enhancing drug targeting and
therapeutic efficacy (Qiao et al., 2022).

However, the application of nanomedicine delivery systems also
faces some challenges. For instance, the blood-brain barrier restricts
drug delivery to brain tissues (Patra et al., 2018). Thus, further
optimization and improvement of π-conjugated materials as
nanocarriers are needed to overcome this issue. Additionally,
comprehensive studies on the biocompatibility and toxicity
assessment of π-conjugated materials are necessary to ensure
their safety in clinical applications (Haque et al., 2023).

3.2 Photothermal therapy and
photodynamic therapy

Photothermal therapy and photodynamic therapy are
therapeutic approaches that utilize optical properties, enabled by
the photothermal conversion performance of π-conjugated
materials, for brain tumor treatment. In both therapies, the local
photothermal effect of π-conjugated materials plays a central role in
the treatment mechanism (Chen et al., 2020).

Photothermal therapy involves exciting the optical properties of
π-conjugated materials to convert light energy into heat, generating
high temperatures in localized areas with nanoparticles (Guo et al.,

2018). This local hyperthermia can lead to the coagulative necrosis of
brain tumor cells, achieving tumor ablation. Photothermal therapy
offers advantages such as non-invasiveness, excellent local efficacy,
and repeatability (Figure 6). By selecting appropriate light parameters
and characteristics of π-conjugated materials, efficient brain tumor
treatment can be achieved (Xu et al., 2015).

Researchers have synthesized a novel π-conjugated polymer
nanoparticle with excellent optical properties, which was used in
photothermal therapy for glioma. Experimental results showed that
these nanoparticles could generate high temperatures under near-
infrared light irradiation, leading to the destruction of brain tumor
tissue. This study provides a new method for photothermal therapy of
brain tumors. Additionally, π-conjugated carbon dots as optical
absorption materials for photothermal therapy and applied them to
brain tumor treatment. The experimental results demonstrated that
these carbon dots could generate high temperatures under near-
infrared light irradiation and accurately locate brain tumor tissue.
This research offers a new strategy for photothermal therapy of brain
tumors (He et al., 2023). Moreover, a near-infrared phosphorescent π-
conjugated metal-organic framework and utilized it in photothermal
therapy for brain tumors. The results indicated that this metal-organic
framework could generate high temperatures under near-infrared light
irradiation and effectively kill brain tumor cells. This study provides a
new option for photothermal therapy of brain tumors (Jouaiti et al.,
2023). Additionally, a photothermal π-conjugated nanomaterial with
excellent optical properties and investigated its application in brain
tumor treatment. Experimental results showed that this nanomaterial
could generate high heat under light irradiation and effectively kill
brain tumor cells. This research offers new perspectives for
photothermal therapy of brain tumors (Li et al., 2019b).

In summary, the application of π-conjugated materials in
photothermal therapy for brain tumors holds tremendous
potential. These studies provide new methods and strategies for
photothermal therapy of brain tumors, with the potential to further
improve cancer treatment outcomes. Future research can further
explore the potential of these π-conjugated materials in clinical
applications and accelerate their translation into clinical use (Zheng
et al., 2022).

Photodynamic therapy involves using π-conjugated materials as
photosensitizers, exciting their photosensitive properties to generate
harmful substances like reactive oxygen or reactive nitrogen species,
achieving destruction of brain tumor cells (Lin et al., 2022).
Photodynamic therapy offers high selectivity and local efficacy,
minimizing damage to surrounding normal brain tissues (Figure 7).
Additionally, through targeted modifications, photodynamic therapy
can achieve high selective destruction of brain tumors, enhancing
treatment precision (Luo et al., 2023).

Researchers proposed a novel π-conjugated polymer nanoparticle
guided by nucleic acid conjugates for loading fluorophores. This
nanoparticle exhibits infrared emission absorption capacity and
can accurately release the fluorophore inside the cell, achieving
effective treatment of gliomas that are challenging to treat directly
(Cevik et al., 2019). This nanomaterial demonstrates exceptionally
high biocompatibility and can be targeted to tumor cells. The
application of π-conjugated materials in photodynamic therapy for
brain tumors has broad and significant implications. This research is
expected to provide a new and more effective treatment strategy for
brain cancer (Tia et al., 2010).
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However, the application of photothermal therapy and
photodynamic therapy also faces some challenges (Cao et al.,
2022). For instance, the depth of light penetration limits the
therapeutic efficacy for deep-seated brain tumors. Therefore,
further optimization of light parameters and the selection of
suitable light sources to enhance light penetration depth are
necessary. Additionally, research on the metabolic pathways
and biodistribution of π-conjugated materials in the body, along
with the assessment of the biocompatibility and safety of
photothermal therapy and photodynamic therapy, are crucial
(Li and Pu, 2020).

3.3 Application of π-conjugated materials in
combination therapy

Combination therapy is an approach that integrates different
treatment strategies to enhance treatment effectiveness. In brain
tumor therapy, π-conjugated materials, as multifunctional
carriers, offer new possibilities for combination therapy (Jiang
et al., 2019).

Firstly, π-conjugated materials can be used as nanomedicine
carriers to achieve combined drug delivery (Han et al., 2021). By

modifying different anti-tumor drugs on the surface of π-conjugated
materials, they can be simultaneously delivered to brain tumor tissues,
enabling synergistic combination therapy. This approach overcomes
the limitations of single-drug treatment and enhances therapeutic
efficacy and anti-tumor effects. Additionally, combination therapy
can reduce the occurrence of drug resistance and prolong the
duration of treatment effectiveness. Research teams have prepared a
conjugated material capable of carrying both chemotherapeutic drugs
and photosensitizers, introducing them into brain tumor cells
(Chowdhury et al., 2022). In vitro experiments showed that the
conjugated material effectively released drugs into tumor cells and
released photosensitizers under light conditions, further destroying
tumor cells. Furthermore, experimental results indicated that the
conjugated material, after surface modification, can achieve active
targeting of tumor cells, enhancing treatment effectiveness.
Secondly, the application of π-conjugated materials in photothermal
therapy and photodynamic therapy also provides new options for
combination therapy. By modifying photosensitizers on the surface of
π-conjugated materials, photosensitized induction therapy for brain
tumors can be achieved (Lin et al., 2022). Simultaneously,
photothermal therapy or photodynamic therapy can be combined
with chemotherapy to achieve multi-dimensional attacks on brain
tumors. This combination therapy strategy can improve treatment

FIGURE 6
Schematic illustration for carrier-free and carrier-assistant PTT (Zheng et al., 2022).
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efficacy and minimize patient damage during the treatment process
(Guo et al., 2018). Additionally, π-conjugated materials can be used in
combination with radiation therapy. By modifying π-conjugated
materials in radiation therapy organs, the radiation dose can be
enhanced (Li et al., 2020). The optical properties of π-conjugated
materials allow them to absorb and scatter radiation, thereby
increasing the radiation dose to the tumor. This combination
therapy strategy can improve the effectiveness of radiation therapy
and reduce radiation damage to surrounding normal tissues (Grimland
et al., 2011; Xie et al., 2019).

However, the application of π-conjugated materials in
combination therapy also faces some challenges. Firstly, in-
depth research on the interaction between different treatment
strategies is required (Chowdhury et al., 2022). There may be
interactions between different treatment strategies that require
careful adjustment of treatment parameters to achieve the best
combination therapy effect. Secondly, the safety and interactions
of drugs used in combination therapy must be thoroughly
considered to ensure the safety and reliability of the treatment
process (Du et al., 2016).

In conclusion, the application of π-conjugated materials in
combination therapy for brain tumors provides new options and
possibilities for brain tumor treatment. By fully utilizing the
multifunctional advantages of π-conjugated materials, nanomedicine
delivery, photothermal therapy, photodynamic therapy, and radiation
therapy can be combined to improve treatment effectiveness, leading to
better treatment outcomes and quality of life for brain tumor patients
(Zhao et al., 2020). In the future, further research on the interactions

and biocompatibility of π-conjugated materials in combination
therapy is needed, continuously optimizing treatment strategies to
achieve personalized and precise brain tumor treatment.

4 Biocompatibility and toxicity
assessment of π-conjugated materials
in brain tumor therapy

The potential application of π-conjugated materials in brain
tumor therapy is promising, but their biocompatibility and toxicity
assessment are critical research directions (Xu et al., 2015;Wang et al.,
2020). In this section, we will focus on the biocompatibility and
toxicity assessment of π-conjugated materials in brain tumor therapy,
covering in vivo metabolism and distribution, biocompatibility
assessment, and considerations for potential toxicity and safety.

4.1 In Vivo metabolism and distribution

Understanding the in vivo metabolism and distribution of π-
conjugated materials is crucial for evaluating their biocompatibility
(Bai et al., 2020). The in vivo metabolism of π-conjugated materials is
typically determined by their physical and chemical properties.
Nanoscale π-conjugated materials may be cleared through
phagocytic cells in the liver and spleen. Additionally, the unique
structure of brain vessels and the blood-brain barrier may affect the
distribution of π-conjugated materials in brain tissue (Liu et al., 2020).

FIGURE 7
π-conjugated nanomaterials as near-infrared photoactivatable pro-therapeutics for cancer (Cevik et al., 2019).
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Research has shown that factors such as the size, shape, surface
modification, and encapsulating materials of π-conjugated materials
significantly influence their in vivo metabolism and distribution. By
rationally designing and improving the physical properties of
nanoprobes, optimization of in vivo metabolism and distribution
can be achieved, enhancing the stability and circulation time of
nanoprobes (Yoshizawa, 2012; Xu et al., 2020).

4.2 Biocompatibility assessment

Comprehensive assessment of the biocompatibility of π-
conjugated materials is essential for their application in brain
tumor therapy. Biocompatibility assessment aims to understand
the interactions and influences between nanoprobes and
organisms, predicting their in vivo behavior (Zhou et al., 2020).
Common biocompatibility assessments include cytotoxicity
experiments, in vitro blood stability, in vivo tissue stimulation,
and immunogenicity testing (Xu et al., 2015).

Through in vitro and in vivo experiments, researchers can assess
the toxicity and damage of π-conjugated materials to cells, further
understanding their tolerance to organisms. Additionally,
evaluations of blood stability can reveal the behavior of
nanoprobes in the blood, such as platelet and plasma protein
adsorption. These assessments help predict the in vivo circulation
stability and biodegradability of nanoprobes (Wang et al., 2020).

4.3 Considerations for potential toxicity and
safety

In the application of π-conjugated materials, potential toxicity
and safety issues must be fully considered. Although π-conjugated
materials show many potential advantages in brain tumor therapy,
their toxicity may lead to adverse effects on normal tissues.
Comprehensive evaluation of the potential toxicity and safety of
π-conjugated materials requires considering various factors such as
dose-dependent toxicity, potential long-term cumulative effects,
biocompatibility, and biodegradability (Xie et al., 2019).
Additionally, when combining nanoprobes with other treatment
modalities, the comprehensive impact on treatment efficacy and
toxicity needs to be evaluated (Xu et al., 2015). To ensure the safety
and reliability of π-conjugated materials in brain tumor therapy,
researchers need to thoroughly understand their biological behavior
and interaction mechanisms (Xiang et al., 2020). Furthermore, strict
adherence to relevant biosafety evaluation standards and regulations
is essential to ensure the safety of nanoprobes in clinical applications
(Coelho et al., 2017).

In conclusion, the biocompatibility and toxicity assessment of π-
conjugated materials in brain tumor therapy are necessary steps for
their clinical application. By thoroughly understanding the in vivo
metabolism and distribution of nanoprobes, conducting
comprehensive biocompatibility evaluations, and considering
potential toxicity and safety issues, important references and
guarantees can be provided for the rational application of π-
conjugated materials in brain tumor therapy. Additionally, data
from preclinical experiments and clinical trials will further verify
their safety and effectiveness (de Deus et al., 2021).

5 Future development and prospects of
π-conjugated materials

5.1 Development trends and prospective
applications

Significant progress has been made in the research of π-
conjugated materials in brain tumor therapy, but their future
development trends and prospects are still full of challenges and
potential (Zhou and Zhan, 2018).With the continuous advancement
of nanotechnology and a deeper understanding of the properties of
π-conjugated materials, it is expected that more novel nanoprobes
will emerge, leading to breakthroughs in brain tumor therapy
(Richard et al., 2020).

1. Development of Multifunctional Nanoprobes: One of the future
development trends of π-conjugated materials is the construction
of more functional nanoprobes. For example, integrating
diagnostic and therapeutic functions into one nanoprobe to
achieve multimodal imaging and combination therapy, thereby
enhancing the accuracy and effectiveness of brain tumor therapy.
Multifunctional nanoprobes can also realize multiple-targeted
therapy for brain tumors, becoming a crucial strategy for
personalized treatment (Yin et al., 2017).

2. Optimization of Targeting Strategies: Future research will focus
on optimizing targeting strategies to address the unique
microenvironment of brain tumors, such as the blood-brain
barrier and high surface expression of tumor cells. By
designing appropriate targeting ligands, high-selectivity
recognition and treatment of brain tumor tissues can be
achieved. Optimizing targeting strategies will help improve the
therapeutic efficacy and biocompatibility of nanoprobes (Bu
et al., 2022).

3. Achieving Personalized Treatment: Future development will pay
more attention to personalized brain tumor therapy. By
combining patients’ genomic information and pathological
characteristics, customized π-conjugated nanoprobes can be
designed for individualized brain tumor treatment.
Personalized treatment will maximize treatment effectiveness
and reduce patient side effects (Torres et al., 2020; Li X. et al.,
2022).

4. Novel Strategies for Combination Therapy: As multifunctional
carriers, π-conjugated materials are expected to become a new
strategy for combination therapy. Future research will explore
the combination of π-conjugated materials with photothermal
therapy, immunotherapy, chemotherapy, and other treatment
modalities to achieve synergistic enhancement of treatment
effects. This comprehensive approach is likely to become the
future direction of brain tumor therapy (Chowdhury et al.,
2022).

5.2 Challenges and solutions in clinical
applications

The clinical application of π-conjugated materials in brain
tumor therapy faces challenges that warrant closer examination
and innovative solutions (Tian et al., 2022).
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1. Conversion Efficiency and Stability: In the application of
nanoprobes, conversion efficiency and stability are of paramount
importance. While we acknowledge the significance of these aspects,
it is essential to delve deeper into the associated challenges. Future
research should concentrate on enhancing the synthesis methods of
π-conjugated materials, optimizing their optical and photothermal
properties to boost conversion efficiency and stability. Additionally,
a rational design of surface modification of nanoprobes to increase
their circulation time is crucial for improving their in vivo stability,
and this area requires further exploration (Rakstys et al., 2019; Deng
et al., 2021).

2. Biocompatibility and Toxicity Assessment: Comprehensive
assessment of the biocompatibility and toxicity of π-
conjugated materials is pivotal before contemplating clinical
applications. This issue merits further attention. Future
research should intensify the study of the biocompatibility and
toxicity of nanoprobes to ensure their safety and reliability in
brain tumor therapy. Furthermore, rigorous adherence to
pertinent biosafety evaluation standards and regulations,
alongside thorough preclinical evaluations of nanoprobes, is
indispensable for mitigating potential risks (Narayanan et al.,
2020; Wang et al., 2020).

3. Overcoming the Blood-Brain Barrier: The blood-brain barrier
presents a critical challenge in drug delivery to brain tissue. The
overcoming of this obstacle requires deeper investigation. Future
research should delve into the utilization of nanotechnology and
targeting strategies to surmount the blood-brain barrier, enabling
efficient delivery of nanoprobes to brain tumor tissues (Fu et al.,
2019; Li et al., 2021b).

4. Clinical Validation and Regulation: Achieving the clinical
application of π-conjugated materials in brain tumor therapy
demands more comprehensive attention to the challenges
associated with large-scale clinical studies and regulatory
approvals. Future research should emphasize the feasibility
and effectiveness of clinical validation, ensuring that the
application of π-conjugated materials meets stringent safety
and efficacy requirements (Xu et al., 2020; Wu et al., 2021).

In conclusion, π-conjugated materials have vast future
development and application prospects in brain tumor therapy.
Through the development of multifunctional nanoprobes,
optimization of targeting strategies, realization of personalized
treatment, exploration of novel strategies for combination
therapy, and addressing challenges in clinical applications, π-
conjugated materials are expected to bring revolutionary
advancements to brain tumor therapy.

In the future, with the continuous advancement of
nanotechnology, the synthesis methods of π-conjugated materials
will become more refined and controllable. Novel π-conjugated
nanoprobes may possess superior optical and photothermal
properties, enabling precise imaging and efficient treatment of
brain tumors (Barman et al., 2020). The development of
multifunctional nanoprobes will make brain tumor therapy more
comprehensive and personalized, improving treatment efficacy and
reducing patient discomfort and side effects (Takahashi, 2021).

Optimization of targeting strategies is the key to achieving
precise treatment of brain tumors. Future research will further
study the unique microenvironment of brain tumors, design

appropriate targeting ligands, and achieve high-selectivity
recognition and treatment of brain tumor tissues (Shiraki et al.,
2020). Additionally, the combined application of nanotechnology
and targeting strategies will help overcome the limitations of the
blood-brain barrier and achieve efficient delivery of nanoprobes to
brain tumor tissues.

With the deepening of preclinical experiments and clinical
validation, the safety and efficacy of π-conjugated materials in
brain tumor therapy will be comprehensively evaluated (Guo
et al., 2016). Researchers will strengthen the study of the
biocompatibility and toxicity of nanoprobes to ensure their safety
and reliability in brain tumor therapy. Moreover, adhering to
relevant biosafety evaluation standards and regulations and
conducting rigorous preclinical evaluations of nanoprobes will
help reduce potential risks (Lai et al., 2021).

However, in the clinical application of π-conjugated materials in
brain tumor therapy, there are still some challenges. The design and
execution of clinical trials are complex and time-consuming
processes, requiring careful consideration of factors such as
sample size, treatment dosage, and patient selection (Hiroto and
Wu, 2019). Additionally, nanotechnology may face cost and
industrialization issues in large-scale production and application.
To achieve the clinical application of π-conjugated materials in brain
tumor therapy, further strengthening multidisciplinary cooperation
and promoting the close integration of basic research and clinical
practice are needed (Haque et al., 2020).

Overall, π-conjugated materials have vast potential for
application in brain tumor imaging and therapy (Oubaha et al.,
2019). Through continuous research and innovation,
nanotechnology is expected to bring revolutionary changes to
brain tumor therapy. In the future, we can expect π-conjugated
materials to play a greater role in brain tumor therapy, providing
more effective and personalized treatment options for patients.

6 Conclusion

6.1 Contributions of π-conjugated materials
in brain tumor imaging and treatment

π-Conjugated materials have demonstrated substantial potential
and made noteworthy contributions to brain tumor imaging and
treatment. These multifunctional nanoprobes offer several
advantages in brain tumor imaging. Through meticulous design
and modifications, nanoprobes can achieve highly selective brain
tumor imaging, providing high-resolution and high-contrast
images. The realization of multimodal imaging facilitates the
acquisition of multiple types of imaging data on a single
platform, delivering comprehensive brain tumor information to
clinical practitioners, thereby assisting in more precise diagnosis
and treatment decisions.

In terms of brain tumor treatment, π-conjugated materials,
when employed as drug carriers, offer unique advantages.
Nanoscale π-conjugated materials can selectively target brain
tumors using targeting strategies, thereby enhancing the precise
delivery of therapeutic drugs and reducing toxicity to normal tissues.
Additionally, the combined use of optical techniques, such as
photothermal therapy and photodynamic therapy, enables the
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precise treatment of brain tumors, consequently improving
treatment efficacy.

6.2 Future development prospects

The future development prospects of π-conjugated materials in
brain tumor imaging and treatment are highly promising. As
nanotechnology and biomedical fields continue to advance, we
can anticipate the following developments:

1. Design and Synthesis of Novel Nanoprobes: Future research
endeavors will persist in exploring novel methods for
designing and synthesizing π-conjugated materials. By
enhancing the material’s structure and physicochemical
properties, nanoprobes can achieve multifunctionality and
heightened efficiency, providing an enhanced platform for
brain tumor imaging and treatment.

2. Optimization of Biocompatibility and Safety: Future research will
focus on optimizing the biocompatibility and safety evaluation of
π-conjugated materials. Enhancing the biocompatibility of
nanoprobes and diminishing their toxicity to normal tissues
will augment their reliability and safety in clinical applications.

3. Implementation of Personalized Treatment: The future will see
the design of personalized π-conjugated nanoprobes that
consider patients’ genomic information and pathological
characteristics for individualized brain tumor treatment.
Personalized treatment will better cater to patients’ specific
needs, thereby improving treatment efficacy.

4. Application of Multimodal Imaging and Combination Therapy:
*Subsequent research will delve into new strategies for multimodal
imaging and combination therapy. By integrating multiple imaging
and therapeutic functions into a single nanoprobe, comprehensive
brain tumormonitoring and treatment can be achieved, augmenting
the efficacy of brain tumor therapy.

5. Promotion of Clinical Application: Following advancements in
the application of π-conjugated materials in brain tumor therapy,
their clinical utilization will gradually expand. Large-scale clinical
studies and monitoring will further validate the safety and
efficacy of π-conjugated materials, promoting their clinical
application.

In summation, π-conjugated materials exhibit extensive
potential and offer promising application prospects in brain
tumor imaging and treatment. Future research will concentrate
on optimizing nanoprobe design and synthesis, improving
biocompatibility and safety, implementing personalized treatment
and multimodal combination therapy, and advancing the clinical
application of π-conjugated materials. With the continuous

advancement of science and technology, π-conjugated materials
are poised to provide more precise and effective treatment
approaches for brain tumors, ultimately enhancing treatment
efficacy and the quality of life for individuals affected by brain
tumors.
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