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Thyroid carcinoma (TC) is a prevalent malignancy of the endocrine system, with a
notable rise in its detection rate in recent decades. The primary therapeutic
approaches for TC now encompass thyroidectomy and radioactive iodine
therapy, yielding favorable prognoses for the majority of patients. TC survivors
may necessitate ongoing surveillance, remedial treatment, and thyroid hormone
supplementation, while also enduring the adverse consequences of thyroid
hormone fluctuations, surgical complications, or side effects linked to
radioactive iodine administration, and encountering enduring physical,
psychosocial, and economic hardships. In vitro and in vivo studies of natural
products against TC are demonstrating the potential of these natural products as
alternatives to the treatment of thyroid cancer. This therapy may offer greater
convenience, affordability, and acceptability than traditional therapies. In the early
screening of natural products, we mainly use a combination of database prediction
and literature search. The pharmacological effects on TC of selected natural
products (quercetin, genistein, apigenin, luteolin, chrysin, myricetin, resveratrol,
curcumin and nobiletin), which hold promise for therapeutic applications in TC,
are reviewed in detail in this article throughmost of the cell-level evidence, animal-
level evidence, and a small amount of human-level evidence. In addition, this article
explores possible issues, such as bioavailability, drug safety.
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1 Introduction

Thyroid carcinoma (TC) is a prevalent malignancy, with a notable increase in its
detection rate over recent decades. According to the categorization outlined in the 5th
edition of theWorld Health Organization (Baloch et al., 2022), endocrine tumors originating
from follicular cells in the thyroid gland are primarily classified as follicular carcinoma,
papillary carcinoma, eosinophilic carcinoma, high-grade follicular-derived carcinoma, etc.
High-grade follicular-derived carcinoma mainly includes differentiated high-grade
carcinoma, poorly differentiated carcinoma, and undifferentiated follicular-derived
carcinoma, and medullary thyroid cancer is a unique type as thyroid C-cell-derived
tumor. The prevalence of papillary thyroid carcinoma (PTC), the most commonly
occurring type of thyroid cancer, has exhibited an upward trend over the past 30 years,
particularly in Northern America, Asia, Europe, and other regions (SEER*Explorer: an
interactive website for SEER cancer statistics [Internet], 2023). In the last decade, this
increase has plateaued. PTC generally presents a positive prognosis, with a five-year survival
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rate surpassing 99% irrespective of gender (Bray et al., 2018).
However, the prognosis for advanced PTC is typically
unfavorable (Zhong et al., 2019). Medullary thyroid carcinoma
(MTC) is a relatively uncommon form of thyroid cancer,
representing approximately 1%–2% of all cases (Angelousi et al.,
2022). However, it is responsible for a significant proportion of
thyroid cancer-related deaths, accounting for approximately 13% of
all thyroid cancer-related deaths. The majority of MTC cases are
sporadic, and 25 percent are associated with genetic mutations in the
RET proto-oncogene (Randle et al., 2017). Anaplastic thyroid cancer
(ATC), as undifferentiated thyroid cancer, is a rare but highly
aggressive malignancy of the thyroid. It constitutes a mere 2% of
all thyroid cancers, yet its aggressive nature is evident as it accounts
for 15%–50% of patients with distant metastases (Haddad et al.,
2022). The prognosis for patients with anaplastic thyroid carcinoma
is exceedingly unfavorable, with a median survival time less than
4–12 months (Jannin et al., 2022) and a five-year disease-free
survival rate approaching 0% (Ramirez-Moya and Santisteban,
2021). Standard therapies for certain types of thyroid carcinomas,
such as differentiated thyroid carcinomas (DTCs) and medullary
thyroid carcinomas, as well as virtually all cases of ATC,
demonstrate limited efficacy, frequently leading to metastasis to
distant sites (Naoum et al., 2018). Consequently, there remains a
pressing need to introduce more dependable treatment modalities
for thyroid cancer.

Natural products (NPs) can be broadly defined as a group of
small molecules from the environment, mostly genetically encoded
and produced by secondary metabolic pathways, and NPs and their
molecular frameworks are becoming an important source for the
exploration of medicinal chemistry and therapeutic compounds
(Pye et al., 2017). From 1981 to 2019, a significant proportion of
anticancer drugs approved by the Food and Drug Administration
(FDA) consisted of NPs and their derivatives, accounting for
approximately 75% of the total (Newman and Cragg, 2020).
Notable examples include paclitaxel, a broad-spectrum anti-

cancer drug approved in the previous century, pyrotinib, recently
approved for breast cancer treatment, and sintilimab, approved for
Hodgkin lymphoma treatment. Consequently, NPs remain pivotal
in the quest for novel agents and are considered the optimal selection
for active templates. NPs are of interest due to their interesting
biological activity and chemical structure (Ahmed et al., 2022). Over
the years, natural product-based medicines have made significant
progress in the treatment of human diseases and have shown great
potential, which is one of the reasons why researchers around the
world remain enthusiastic about it (Newman, 2022). Contemporary
computation omics technology can help researchers effectively
identify drug candidates and develop clinical drugs from too
many molecules produced in nature (Rodrigues et al., 2016;
Mullowney et al., 2023), encompassing genomics,
transcriptomics, proteomics, metabolomics, bioinformatics, and
integrative omics (Zhang HW. et al., 2021a).

In in vitro and in vivo studies of thyroid cancer, NPs have
shown good therapeutic potential. Numerous studies have
demonstrated that various natural compounds derived from
food and herbs possess the ability to inhibit TC, including
inhibiting the occurrence and development of TC (Yu et al.,
2013; Hong et al., 2021; Lu et al., 2022), promoting
redifferentiation of poorly differentiated TC (Lakshmanan
et al., 2015; Zhang L. et al., 2021b), alleviating TC drug
treatment resistance (Li et al., 2018; Bian et al., 2020; Celano
et al., 2020), and so on. Previously, my research group published
basic research on tangeretin and nobiletin. Based on the good
experimental results, we are full of interest in plant-derived NPs,
especially those distributed in traditional Chinese medicine. I
made a preliminary prediction of disease-related active
ingredients through the traditional Chinese medicine systems
pharmacology database (TCMSP) and analysis platform database
(Ru et al., 2014), and combined with the literature search results,
to select nine NPs for review. Details are in Table 1. The
pharmacological effects on TC of selected NPs, which hold
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promise for therapeutic applications in TC, are reviewed in detail
in this article through most of the cell-level evidence, animal-
level evidence, and a small amount of human-level evidence.

2 Thyroid cancer treatment and
challenges

Thyroidectomy and radioactive iodine therapy have become the
mainstay of treatment for TC. Patients with DTC without local
progression and local/distant metastases can usually achieve better
outcomes with surgery and radioactive iodine (RAI) therapy (Liu
et al., 2023). Nonetheless, the rates of structural recurrence
(locoregional or distant metastases) in low-risk, intermediate-risk,
and high-risk patients are 3%–13%, 21%–36%, and 68%,
respectively, and patients are classified by the American Thyroid
Association risk stratification criteria (Coca-Pelaz et al., 2023).For
patients with unresectable or metastatic DTC, RAI therapy is
considered the primary therapeutic approach. Only one-third of
patients achieve complete remission, and those outside of it become
RAI refractory (RAIR) and have a poor overall prognosis, which is
an unavoidable problem in the current medical management of the
disease (Jin et al., 2018). 5%–15% of DTCs and 50% of metastatic
DTCs progress to RAIR, and overall survival is significantly reduced,
less than 10% at 10 years (Lorusso et al., 2023). Treatment options
for symptomatic, rapidly progressing, inoperable locally advanced/
extensive metastatic RAIR-DTC are limited to FDA-approved
tyrosine kinase inhibitors (TKIs) (Satapathy and Bal, 2022).
However, the use of TKIs is associated with a variety of adverse
events, such as cardiotoxicity, hematologic toxicity, fatigue, skin
reactions, etc., which can limit patients’ daily activities, reduce
compliance, and lead to high treatment withdrawal rates
(Chrisoulidou et al., 2015). Timely identification and intervention
for MTC are crucial, as patients diagnosed with early-stage MTC
exhibit a five-year survival rate of 90 percent. Nevertheless, the
overall survival in all stages of MTC remain disheartening, with a
five-year survival rate of less than 40 percent (Bhoj et al., 2021). The
objective response rates of cytotoxic chemotherapy are suboptimal,
while targeted therapy and immunotherapy demonstrate limited
effectiveness (Angelousi et al., 2022). Due to genetic factors and the
lack of effective and safe medical therapy, guidelines from both the

American Thyroid Association and the British Thyroid Association
recommend total thyroidectomy for MTC (Yang et al., 2022). As the
deadliest thyroid malignancy, ATC is highly metastasis and has long
lacked reliable treatment, with a mortality rate approaching 100%
(Haddad et al., 2022). ATC patients often do not respond well to
conventional treatment, including radio-iodine ablation,
chemotherapy, and external-beam radiotherapy (Saini et al., 2019).

Thyroid cancer survivors may necessitate ongoing surveillance,
remedial therapy (surgery or RAI therapy), and thyroid hormone
supplementation. Additionally, they may contend with the adverse
consequences of thyroid hormone fluctuations, surgical
complications, or side effects linked to RAI administration, as
well as encounter enduring physical, psychosocial, and economic
challenges (Lubitz and Sosa, 2016; Hedman et al., 2017). Standard
treatments frequently entail complications, including postoperative
issues such as damage to the parathyroid glands, recurrent laryngeal
nerve, and laryngeal nerve, which significantly impact patients’
quality of life (Nagel et al., 2022). The administration of RAI
entails immediate risks such as nausea, vomiting, insomnia, loss
of taste, swelling and pain in the salivary glands. Additionally, there
are potential long-term complications including recurring
sialadenitis accompanied by dry mouth, oral pain, dental caries,
pulmonary fibrosis, nasolacrimal outflow tract obstruction, and a
secondary primary malignancy (Lee, 2010).

Furthermore, the long-term postoperative survival of TC
patients poses a significant financial burden on both individuals
and society. A comprehensive analysis of stacked cohorts in the
United States (Lubitz et al., 2014), spanning from 1985 to 2013,
revealed that the total societal cost of care for TC patients diagnosed
after 1985 amounted to $1.6 billion in 2013. Notably, the expenses
associated with survivor surveillance and non-surgical deaths
resulting from thyroid cancer care accounted for 59% of the
overall cost, surpassing the expenditures related to diagnosis,
surgery, and adjuvant treatment for newly diagnosed patients,
which constituted 41% of the total cost. A study of 52,012 adult
thyroid cancer patients undergoing thyroid surgery (Sahli et al.,
2021) suggests that there is a more cost-effective shift in thyroid
surgery practice, such as an increase in outpatient surgery, but the
cost continues to increase by 4.3% per year. Mongelli (Mongelli
et al., 2020) et al. included 1,743 TC survivors for a questionnaire.
The findings of the research indicated that 23.7% of the participants
had depleted a significant portion or the entirety of their savings.
15.1% of the respondents resorted to borrowing funds from
acquaintances or family members, and a smaller percentage of
3% declared bankruptcy. Moreover, 12% of the individuals
reached the maximum limit on their credit cards, and 4.4% were
compelled to seek additional loans or mortgages, and 15.9%
reported being contacted by debt collection agencies. They
suggested that TC survivors had relatively high bankruptcy
filings, and that various forms of financial strain were linked to
diminished health-related quality of life in this population. Based on
the current increase in thyroid cancer incidence, it is projected that
the total societal cost of care for TC patients will reach a sum of
$3.5 billion by the year 2030 (Lubitz et al., 2014).

Patients often require lifelong monitoring, and cancer
recurrence also carries a psychological burden. They may
confront chronic psychiatric issues such as health anxiety (Zoltek
et al., 2022). The apprehensions associated with TC are particularly

TABLE 1 Natural product properties in the TCMSP database.

Name Pubchem CID OB (%) DL Caco-2 MW

Quercetin 5280343 46.43 0.28 0.05 302.25

Genistein 5280961 17.93 0.21 0.43 270.25

Apigenin 5280443 23.06 0.21 0.43 270.25

Luteolin 5280445 36.16 0.25 0.19 286.25

Chrysin 5281607 22.61 0.18 0.70 254.25

Myricetin 5281672 13.75 0.31 −0.15 318.25

Resveratrol 445154 19.07 0.11 0.80 228.26

Curcumin 5281767 5.15 0.41 0.50 368.41

Nobiletin 72344 61.67 0.52 1.05 402.43
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pronounced among younger survivors, as well as those who have
been confirmed or suspected relapses. Various factors, such as age,
sex, educational attainment, marital status, ethnicity, transition to
parenthood, time and disease severity after thyroid cancer diagnosis,
have been found to be linked to the level of concern (Bresner et al.,
2015; Papaleontiou et al., 2019). Consequently, the importance of
thyroid cancer therapy optimization should not be overshadowed by
the relatively high survival rate. The identification of cost-effective
and convenient drug and effective therapeutic targets is of utmost
urgency, which helps to reduce the physical, economic,
psychological pain and social burden of patients.

3 Promising natural products for the
treatment of thyroid cancer

3.1 Quercetin

Quercetin, a polyphenolic flavonoid that is commonly present in
numerous foods and herbs, constitutes a regular component of a
typical dietary intake. It has been employed for the purpose of
mitigating or averting an array of ailments, encompassing
cardiovascular disease, cancer, diabetes, neurological disorders,
obesity, allergic asthma, and atopic diseases (Ulusoy and Sanlier,
2020). Quercetin can diminish PTC cell (BCPAP) viability through
the initiation of apoptosis, reduction of cell adhesion and migration,
induction of partial mesenchymal-to-epithelial transformation
phenotype, and stimulation of NIS expression and RAI uptake
(Goncalves et al., 2021; Sun et al., 2022). The significance of NIS
expression, localization, and function in RAI treatment is widely
acknowledged, thereby indicating the potential therapeutic value of
quercetin in RAI treatment. NAG-1, a member of the TGF-β
superfamily cytokine, exists in two primary forms: precursor and
mature (Baek and Eling, 2019). These two forms of NAG-1 exhibit
distinct activities in relation to cancer: the precursor type
demonstrates anticancer properties, while the mature type
promotes cancer development during tumorigenesis (Min et al.,
2016). In comparison to normal controls, thyroid cancer tissue
expresses higher levels of mature NAG-1, whereas normal thyroid
tissue expresses higher levels of precursor NAG-1. When applied to
PTC cell lines, quercetin induces the expression of precursor NAG-1
but not mature NAG-1, leading to apoptosis and cell cycle arrest
(Hong et al., 2021). Bromodomain and extra-terminal (BET)
proteins play a crucial role as epigenetic readers in the
development of cancer. BET inhibitors have been developed as
anticancer drugs, and their limited monotherapy activity and
drug resistance have led to the attention of combination therapy
(Stathis and Bertoni, 2018). hnRNPA1 and BET protein BRD4 are
co-expressed in the human thyroid gland. Notably, the targeted
intervention of hnRNPA1 with quercetin has been found to enhance
the efficacy of BET inhibitors in thyroid cancer cells (K1 and 8505c)
(Pham et al., 2019). Solafenib, a multi-kinase inhibitor possessing
antiangiogenic properties, has been granted approval for the
treatment of DTC (Cabanillas et al., 2016). However, the
frequent dose-dependent side effects of sorafenib in clinical trials
impede its efficacy in suppressing cancer. In vitro studies have
demonstrated that co-administration of quercetin with sorafenib

can mitigate the required anticancer dose against thyroid cancer
cells (Celano et al., 2020).

3.2 Genistein

Genistein, a 7-hydroxyisoflavone, is commonly recognized as an
angiogenesis inhibitor, phytoestrogen and insect repellent. Its
primary source is soybeans and soy products. It exerts inhibitory
effects on PTC cell proliferation, induces cell death and cell cycle
arrest, and counteracts epithelial-mesenchymal transition trends by
preventing nuclear translocation of β-catenin (Zhang et al., 2019).
As previously mentioned, certain medullary thyroid carcinomas
(MTCs) arise due to gain-of-function mutations in the RET
proto-oncogene, which encodes the transmembrane tyrosine
kinase receptor. In vitro evaluation of MTC cells by tyrosine
kinase inhibitors, genistein effectively inhibits cell growth and
RET tyrosine kinase activity in a dose-dependent manner (Cohen
et al., 2002). A case-control study comprising 387 histologically
confirmed cases of thyroid cancer and 433 normal control
populations suggests that adequate intake of genistein is
protective in women with thyroid cancer (>1 cm) (Wang
et al., 2020).

3.3 Apigenin

Apigenin, a trihydroxyflavonoid, exhibits low toxicity and is
frequently present in olive oil, sage, marjoram, and other sources.
It possesses a diverse range of advantageous biological properties,
encompassing antitumor, antioxidant, anti-inflammatory,
antiviral, and other activities (Xu X. et al., 2020a). By
stimulating the production of reactive oxygen species,
apigenin induces DNA damage, resulting in G2/M cell cycle
arrest and subsequent autophagic cell death. This mechanism
effectively inhibits the activity of papillary thyroid cancer cells
(Zhang L. et al., 2015a). And apigenin can induce apoptosis in
ATC cells through c-Myc-mediated apoptosis, accompanied by
phosphorylation of p53 and p38 (Kim et al., 2013). The inhibitory
effect of TGF-β on radioactive iodine uptake, achieved through
the downregulation of NIS, can be counteracted by the
administration of apigenin. This suggests that apigenin holds
potential as a dietary supplement to improve the therapeutic
efficacy of radioactive iodine at the margins of aggressive tumors,
thereby mitigating the incidence of metastatic events
(Lakshmanan et al., 2015).

3.4 Luteolin

Luteolin is a tetrahydroxyflavonoid with antioxidant, anti-
inflammatory, anticancer, and immunomodulatory activities. It
was initially employed in the production of dyes derived from
thyme, olive oil, rosemary, artichoke and oregano (Lopez-Lazaro,
2009). Luteolin can reduce the expression of BRAF-activated
BANCR, further downregulate TSHR, and exert anti-PTC and
FTC effects in vitro (Liu et al., 2017).
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3.5 Chrysin

Chrysin is a dihydroxyflavonoid present in honey, propolis,
passionflower, and Indian trumpet flower, and is widely
acknowledged for its neuroprotective, anti-inflammatory,
antioxidant, and anticancer properties (Zhang Z. et al., 2015b).
The functional activity of Notch1 induced by chrysin is
confirmed through a luciferase reporter gene assay incorporating
the C promoter-binding factor 1 binding site. The novel
Notch1 activator chrysin inhibits tumor growth in ATC both
in vitro and in vivo. Compared with the control group, oral
administration of chrysin leads to a significant average inhibition
of ATC xenograft growth by 59%. Additionally, the median tumor
progression time in the group treated with chrysin is approximately
twice as long as that observed in the control group of mice with
tumors (Yu et al., 2013).

3.6 Myricetin

Myricetin is a hexahydroxyflavonoid commonly found in wine,
oranges, and other sources, which exhibits cytotoxic effects on PTC
cells and ATC cells. Furthermore, it induces dose-dependent DNA
agglomeration, upregulates the activation of the caspase pathway,
and enhances the expression of bax/bcl2, thereby inducing apoptosis
(Ha et al., 2017; Jo et al., 2017). In a comparative study examining
the variances in growth and iodide content among various natural
flavonoids (kaempferol, apigenin, luteolin, myricetin) within human
Na+/I− homologous transfected FTC cell lines, myricetin exhibited
the unique characteristic of enhancing iodization intake while
concurrently reducing iodine efflux. This finding implies a
potentially superior therapeutic efficacy in TC RAI therapy
(Schroder-van der Elst et al., 2004).

3.7 Resveratrol

Resveratrol is a stilbene compound predominantly found in red
grapes, red wine, cranberries, strawberries, red currants, mulberries,
and peanuts (Neveu et al., 2010). This widely recognized NP exhibits
a diverse range of biological activities, including anti-inflammatory,
antioxidant, anticancer, anti-aging, anti-diabetic, and anti-obesity
activities (Bird et al., 2017; Wu SX. et al., 2022a). DMD encompasses
three different genotoxic carcinogens, namely, diethylnitrosamine
(DEN), dihydroxy-di-N-propylnitrosamine (DHPN), and
N-methyl-N-nitrosourea (MNU). Animal models of TC induced
by the carcinogen DMD are suitable for investigating potential
therapeutic agents capable of impeding the progressive cellular
and molecular alterations of TC. The administration of
resveratrol via intragastric and intraperitoneal injection has been
shown to effectively mitigate the occurrence and severity of TC-
related lesions. Furthermore, prolonged resveratrol treatment has
demonstrated the potential to enhance the overall health of rats
induced with DMD. Additionally, oral administration of resveratrol
can achieve a similar therapeutic effect to intraperitoneal injection
(Zheng et al., 2018a). Multiple studies have demonstrated that
resveratrol has good inhibitory effects in PTC, ATC and MTC.
Resveratrol exerts its effects by modulating the Ras-MAPKK-MAPK

signaling pathway, leading to increased expression of p53, serine
phosphorylation of p53, and p53-dependent apoptosis in PTC and
FTC cell lines, thereby exerting tumor suppressor effects (Shih et al.,
2002). The sialyltransferase (ST) family and the Hippo signaling
pathway (Sekido, 2018) play a key role in cancer regulation, with ST
further classified into ST3GAL, ST6GAL, ST6GALNAC, and
ST8SIA. The findings from next-generation sequencing revealed a
significant upregulation of ST6 beta-galactoside alpha-2,6-
sialyltransferase 2 (ST6GAL2) mRNA expression in FTC cells
(FTC133 and FTC238) compared with normal thyroid cells.
Furthermore, in vitro experiments have demonstrated that this
upregulation has a regulatory effect on tumor proliferation,
migration and invasion. In in vitro and in vitro experiments,
resveratrol significantly inhibits the occurrence and development
of FTC by modulating the ST6GAL2-Hippo pathway (Xu G. et al.,
2020b). Oxidative damage caused by the accumulation of reactive
oxygen species in cells is one of the therapeutic effects of anticancer
drugs, which is closely related to the chemical sensitivity of cancer
cells. Resveratrol is able to increase reactive oxygen species
production and oxidation-associated cytopathies in resveratrol-
sensitive ATC cell line THJ-16T by activating the reactive oxygen
species-mitochondrial signaling pathway (Zheng et al., 2018b).
Moreover, resveratrol triggers Notch2-mediated apoptosis of
MTC cells and suppresses the expression of neuroendocrine
markers ASCL1 and CgA (Truong et al., 2011).

Resveratrol has been found to increase iodine capture in rat thyroid
cell FRTL-5, which has an additive effect with TSH and can increase
iodide influx and RIS protein levels in rats even in the absence of TSH
(Sebai et al., 2010). However, it has been suggested that resveratrol has
little effect on the proliferation and intracellular distribution of human
normal thyroid cell lines (Nthy-ori 3-1). Additionally, while resveratrol
may promote the redifferentiation of ATC cells and upregulation of
NIS expression, it remains challenging to enhance ATC iodine uptake
(Xiong et al., 2020). In fact, the existing literature on resveratrol and TC
iodine uptake is limited, necessitating further research to address the
conflicting findings.

Tretinoin is commonly employed in conjunction with radiation
therapy for the treatment of aggressive thyroid cancer. However,
retinoid-based differentiation therapy remains a topic of controversy
(Courbon et al., 2006). The ATC cell line THJ-11T is not sensitive to
tretinoin therapy. CRABP2 is considered a core player in the exertion
of retinoic acid in tumor suppression (Yang et al., 2016), while
resveratrol can upregulate thyroglobulin and cadherin E expression
by activating CRABP2/RAL-mediated tumor suppressor signaling,
thereby effectively reversing the resistance of THJ-11T to tretinoin (Li
et al., 2018). The combination therapy of dabrafenib, an FDA-
approved BRAF inhibitor, and trametinib, a MEK inhibitor,
against BRAFV600E-mutated ATC (Subbiah et al., 2020), can extend
survival to 12 months in 12 percent of patients (Subbiah et al., 2018).
In contrast, resveratrol has a more potent anti-ATC effect compared
to BRAF-MAPK-targeted drugs (dabrafenib and trametinib) by
simultaneously inhibiting the BRAF-MAPK and STAT3 signaling
pathways in ATC cell lines with BRAF fusion or point mutation (Lu
et al., 2022). The activation of JAK2/STAT3 is thought to be a
significant factor contributing to cancer cell resistance towards
drugs targeting the MAPK pathway (Crispo et al., 2019).
Resveratrol can effectively inhibit the signaling of STAT3 activated
by dabrafenib and trametinib, suggesting that combining resveratrol
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with BRAF-MAPK-targeted agents could potentially enhance the
efficacy of treatment for ATC. Furthermore, resveratrol can also
modulate PI3K/AKT/mTOR signaling, increasing the sensitivity of
anti-PTC cell lines to rapamycin (Bian et al., 2020). This non-toxic
polyphenolic compound has potential value in improving the clinical
management of lethal ATCs, especially those that develop drug
resistance.

3.8 Curcumin

Turmeric, a plant frequently employed in South and Southeast
Asian tropical regions for the production of curry powder,
possesses a rhizome that holds significant value for culinary and
medicinal applications. Curcumin, the most potent constituent
within turmeric, exhibits diverse biological functions
encompassing, anti-inflammatory, antibacterial, and anticancer
properties (Shishodia et al., 2005). Curcumin dose-dependently
inhibits the proliferation and migration of PTC cell line K1 cells
(Tan et al., 2015), while also induces its apoptosis. This ability to
resist apoptosis is attributed to the rapid production of significant
levels of reactive oxygen species (ROS) and increased intracellular
Ca2+ concentrations (Song et al., 2012). Curcumin has been
observed to exhibit a dose-dependent inhibition of cell viability
in the PTC cell lines B-CPAP and KTC-1. Additionally, it has been
found to inhibit the JAK/STAT3 signaling pathway and elevate
ROS levels to induce apoptosis (Zhang et al., 2016; Khan et al.,
2020). Furthermore, curcumin can promote cell differentiation
and enhance the expression of thyroid-specific transcription
factors TTF-1, TTF-2, and PAX8, along with iodine metabolism
proteins such as thyroid-stimulating hormone receptor, thyroid
peroxidase and sodium iodide transporter. Significantly, curcumin
has the ability to enhance NIS glycosylation and facilitate its
membrane transport, resulting in notable enhancements in vitro
radioactive iodine uptake. And it can enhance radioiodine
sensitivity by inhibiting the PI3K-AKT-mTOR signaling
pathway (Zhang L. et al., 2021b). RAI therapy, widely employed
in thyroid cancer, frequently induces impaired salivary gland
dysfunction. The combination treatment of RAI and curcumin
showed evidence of tissue remodeling compared with the control
group, and resulted in a higher count of salivary epithelial cells,
salivary duct cells, endothelial cells and myoepithelial cells, thereby
ameliorating RAI-induced salivary gland dysfunction in mice
(Kim et al., 2019). The overexpression of HO-1 has been shown
to reduce cell viability and potentially activate ferroptosis signaling
pathway, while curcumin has the ability to modulate the
expression of HO-1 in the ferroptosis pathway, to thereby
inhibit FTC growth (Chen et al., 2023).

The aggressive nature of ATC is primarily attributed to the
presence of cancer stem cell (CSC) phenotype (Lee et al., 2022). The
efficacy of cytostatic compounds is largely compromised due to the
multidrug resistance mechanism driven by the CSC phenotype. In
intervention experiments conducted on the ATC cell line CAL-62,
curcumin could significantly inhibit the spheroid formation and cell
motility in Matrigel, inhibit the accumulation of G0/1 phase cells
and the oxidative stress index, and alter the invasion behavior of
ATC cells through the inhibition of the CSC phenotype (Kocdor
et al., 2019). Curcumin synergistically enhances the anticancer

activity of cisplatin in PTC cells and cancer stem cell-like cells by
targeting STAT3 (Khan et al., 2020), and can also enhance the
antitumor activity of docetaxel in ATC cells by interfering with NF-
κB and COX-2 (Hong et al., 2014). This suggests that the
combination of curcumin and chemotherapy drugs may provide
better therapeutic effect.

3.9 Nobiletin

Nobiletin is a hexamethoxyflavone with various activities
such as enhancing circadian rhythm (He et al., 2016),
antagonizing metabolic syndrome, inhibiting tumor (Chen
et al., 2022), and treating liver ischemia (Dusabimana et al.,
2019). It is commonly derived from citrus peel but can also be
found in Chinese herbal medicines such as Centipedae Herba,
Citrus Reticulata, Tripterygii Radix. Bioinformatics analysis and
cell assays showed that nobiletin suppressed the proliferation and
migration of a PTC cell line (B-CPAP) by modulating the PI3K/
AKT signaling pathway (Du et al., 2023). The viability of ATC cell
lines (T235 and T238) with the intervention of nobiletin, was
observed to decrease in a dose-dependent manner, but the cell
cycle was not affected. Moreover, at a concentration of 100μM,
nobiletin was as effective in reducing ATC cell viability as
conventional drugs such as cisplatin, while nobiletin was less
toxic to normal thyroid cells (Sousa et al., 2020).

4 Outlook and summary

NPs and their derivatives have consistently demonstrated
remarkable efficacy against a range of diseases (Hassan et al.,
2022), particularly cancer (Memariani et al., 2021) and infectious
diseases. Nevertheless, the advancement and clinical
implementation of these NPs encounter numerous challenges,
necessitating the overcoming of technical barriers in screening,
isolation, characterization, and optimization. Unmodified NPs
may exhibit various deficiencies in absorption, distribution,
metabolism, excretion, and toxicity (Alexander et al., 2016).
Fortunately, recent advances in the field of science and
technology have presented a multitude of opportunities for the
development of NP drugs, such as improved omics analysis tools
(Wolfender et al., 2019), genome mining and engineering
techniques (Kayrouz et al., 2020), microbial culture systems,
and novel drug delivery systems (Lou et al., 2023). Drug
nanotechnologies have proven to be one of the most efficient
and reliable delivery systems due to their ability to enhance
solubility, absorption, pharmacokinetics, bioavailability and
provide toxicity protection (Alexander et al., 2016).
Nanoparticles loaded with nobiletin have a small and uniform
size and show beneficial potential in enhancing colloidal stability
and averting premature drug seepage. These nanoparticles
possess superior capabilities in inducing apoptosis in tumor
cells and inhibiting metastasis in both human non-small cell
lung cancer and human fibrosarcoma, surpassing the efficacy of
naked drug formulations (Wu D. et al., 2022b). Injectable
targeted nanoparticles developed for advanced hepatocellular
carcinoma can effectively transport curcumin and resveratrol
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to hepatoma cells (Zheng et al., 2022). This novel formulation can
reduce the dose of the drug and increase the bioavailability of the
encapsulated drug. A significant increase in the concentration of
the drug around the tumor is often accompanied by a favorable
therapeutic effect and negligible adverse effects. Koppolu et al.
(2012) developed a temperature-sensitive silane-coupled iron
oxide nanoparticles as targeted drug delivery vehicles for
treatments of ATC, and in vitro tests were performed with
doxorubicin. Consequently, despite the numerous obstacles,
the significance of nanoparticles in drug development and the
optimization of novel drugs remains substantial.

This article provides an overview of plant-derivedNPs that exhibit
promising potential in the treatment of TC. Nevertheless, there are
some weaknesses in this review. First, although these components
have shown good results in cell and animal experiments in intervening
PTC, only a small number of relevant clinical studies have been
retrieved, and there is a lack of evidence from a large number of
clinical studies to demonstrate the safety and therapeutic potential of
the selected NPs in TC patients. However, there are studies that show
the safety of the mentioned NPs in cells, animals, healthy people. High
doses of quercetin in animal studies may lead to enhanced
nephrotoxic effects, and limited data from human intervention
studies have not been shown to have an adverse effect on kidney
function (Andres et al., 2018). Nano-genistein is well tolerated by
animals, and no toxic effects are found in animals with an intervention
of nano-genistein doses up to 400 mg/kg/day for up to 7 days per week
for 20 weeks (Kaytor et al., 2023). In vitro studies apigenin has no toxic
effect on some normal cells, such as prostate epithelial cells and
hepatocytes (Ahmed et al., 2021), and computer prediction tools have
shown that apigenin is not hepatotoxic or skin sensitized (Hossain
et al., 2023). Although luteolin has been reported to cause cytotoxicity
in primary rat hepatocytes, this is time- and dose-dependent (Yao
et al., 2023). In vivo experiments on zebrafish eggs showed that the
toxicity of chrysin loaded poloxamer micelles was dose-effective,
which are safe for the growth of zebrafish embryos at drug doses
of 10 ng/mL or less (Sassa-Deepaeng et al., 2016). Myricetin has been
acknowledged as generally safe, as evidenced by the absence of
mortality in mice even at high doses of 1,000 mg/kg administered
intraperitoneally, but the release of reactive oxygen species at
pH above 7.4 may cause toxic effects on biomolecules (Rahmani
et al., 2023). Resveratrol is considered safe. No serious adverse events
were detected on clinical, biochemical, or hematologic measures
during the intervention and 2-week follow-up phases in healthy
populations, with the most common toxicity being gastrointestinal
toxicity (Patel et al., 2011). The safety, tolerability, and non-toxicity of
high-dose curcumin in healthy people have been demonstrated
through clinical trials (Gupta et al., 2013). In a randomized,
placebo-controlled, double-blind, crossover study (Ito et al., 2023),
no associated serious adverse events were observed in nocturia
patients taking a mixture of nobiletin and tangeretin. There was a
lack of statistically significant impact observed on blood pressure or
heart rate, and no clinically aberrant results were identified in
hematological or biochemical parameters. In general, the safety of
NPs in TC needs to be continuously explored.

Second, this review selects only some NPs derived from plants,
especially herbal medicines. Among the NPs involved in this paper, it
is obvious that resveratrol and curcumin havemore preclinical studies
on TC and have better research accumulation compared with other

NPs. The Clinicaltrials.gov currently has 329 clinical trials for
curcumin, of which 86 are anti-cancer, and resveratrol has
209 clinical trials, of which 19 are anti-cancer. Most of these NPs
have inhibitory effects on TC in vitro and in vivo. Quercetin, apigenin,
myricetin, and curcumin may have potential therapeutic value in
promoting iodine uptake in TC, while resveratrol is controversial for
the redifferentiation of TC. Quercetin, resveratrol, and curcumin have
performedwell in combination therapy andmay help alleviate the side
effects and resistance of some approved drugs. In addition, what is
more interesting is the protective effect of genistein in human studies.
There are relatively few studies on luteolin, chrysin, myricetin, and
nobiletin in TC, and they have good therapeutic potential, which
deserve more attention. And the review lacks information on NPs
derived from animals, microorganisms, and marine organisms.

Third, there are still many gaps to be filled in the development of
novel drug delivery systems for TC. Existing studies have focused on
ATC and lack attention to other pathological types. As mentioned
above, resveratrol has more basic research, and we can pay attention
to related nano-formulations, such as liposomes, polymer
nanoparticles, lipid nanocarriers and inorganic nanoparticles, etc.
(Sarfraz et al., 2023), which will open up new ways to explore the
nano-system development of other NPs. Application of these
recommendations may accelerate the clinical translation of NPs
in TC treatment, providing TC survivors with a wider range of
clinical treatment alternatives.
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