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In this study, the reactivity of the alkyl nitrenes, generated from the substituted
hydroxylamine precursors, was determined using the same rhodium catalyst. The
results revealed that in competitive C–H insertion experiments, the
regioselectivity between benzylic and tertiary C–H bonds could be modulated
by adding Brønsted acids or changing the substituents on oxygen. This study
enhances our understanding of the metallonitrene structures and provides
valuable insights for further development of selective N-heterocycle syntheses.
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1 Introduction

Nitrogen-containing compounds prevail over biologically active compounds (Lovering
et al., 2009; Vitaku et al., 2014). Therefore, the synthetic chemists have made considerable
efforts to introduce nitrogen atoms at desired positions in the molecular skeleton (Park et al.,
2017; Trowbridge et al., 2020). Among various approaches, utilizing nitrenes is preferred, as
they can functionalize the otherwise inert C–H bonds (Müller and Fruit, 2003; Díaz-Requejo
and Pérez, 2008; Darses et al., 2017). Given the high reactivity of free nitrenes,
metallonitrenes are primarily used for nitrogen insertion as their reactivity can be
regulated by the structure of the metal complexes (Ju and Schomaker, 2021). Metalated
nitrenes are typically generated from oxidized precursors, either prepared in situ or from
those containing a labile bond (Breslow and Gellman, 1982; Nägeli et al., 1997; Lebel et al.,
2005).

The substituents on the nitrogen can be used to classify nitrene structures such as
carbamoyl (Cui and He, 2004), sulfamoyl (Espino et al., 2001), aryl (Stokes et al., 2007), acyl
(Hong et al., 2018), and alkyl (Hennessy and Betley, 2013) nitrenes. The class of nitrenes
determines the structure of the resulting product. For instance, intramolecular C–H
insertion of sulfamoyl nitrenes provides a 1,3-aminoalcohol unit, whereas that of alkyl
nitrenes delivers a saturated N-heterocycle. Therefore, the advancement in nitrene chemistry
is directed toward expanding the product structures and its evolution has resulted in the
development of efficient catalysts and new precursors (Roizen et al., 2012; Alderson et al.,
2017; Hong et al., 2021). The chemoselective amination reactions have garnered considerable
interest in this area that has triggered the identification of various catalyst-controlled
aminations (Noda et al., 2021). However, there are limited studies in the literature
investigating the reactivity difference between various nitrene classes using identical
catalysts. The comparison of the same nitrene class obtained from different precursors is
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also lacking. This could be attributed to the lack of a suitable system
for studying the reactivities.

We previously reported that substituted isoxazolidin-5-ones
(Annibaletto et al., 2017; Noda, 2021) acted as alkyl nitrene
precursors in the presence of rhodium (Yu et al., 2019) or copper
catalysts (Tak et al., 2021a). The generated metallonitrene reacted
intramolecularly with an aromatic ring (Tak et al., 2021b) or C(sp3)–
H bond (Espinosa et al., 2019) to afford the corresponding
unprotected cyclic β-amino acids. In our study to synthesize
remotely decorated trisubstituted pyrrolidines via C(sp3)–H
insertion (Tang et al., 2022) using Rh2(esp)2, a Du Bois catalyst
(Espino et al., 2004), it was observed that the alkyl nitrene derived
from the heterocycle selectively aminated the C(sp3)–H bond at the
allylic position without touching the double bond (Scheme 1A),
which was in contrast to the sulfamoyl nitrene favoring aziridination
over C(sp3)–H insertion, using the same rhodium catalyst (Scheme
1B) (Fiori et al., 2009). These results highlighted the unique nature of
the nitrene reactivities associated with their structural classes.

Driven by the significance of saturated N-heterocycles in drug
discovery programs, we further investigated alkyl nitrenes and
identified O-benzoyl hydroxylamines as efficient alkyl nitrene
precursors for the transformation of a linear primary amine into
the corresponding five-membered cyclic amine (Noda et al., 2020).

When we subjected substrate 9 to the catalytic conditions to explore
the scope of the method, no reaction was observed, resulting in full
recovery of the substrate (Scheme 1C). As both substrates 1 and 9
were expected to generate similar alkyl rhodium nitrene species 2 and
10, respectively, as shown in Scheme 2, this difference in the outcomes
could be attributed to the precursor structure. However, the lack of
insight into the structure-reactivity relationship between nitrene
precursors and the reaction conditions required a further detailed
examination of these factors. Herein, we report our study on the
reactivity of alkyl nitrenes derived from substituted hydroxylamines.

2 Results

From the outset, we focused on the reactivities of alkyl nitrenes, as
the products obtained from the intramolecular amination are
medicinally important saturated N-heterocycles. In addition to
isoxazolidin-5-ones and O-Bz hydroxylamines, alkyl azides (Thacker
et al., 2016; Bagh et al., 2017; Shing et al., 2018;Qin et al., 2019), andO-Ts
hydroxylamines (Munnuri et al., 2017) act as nitrene precursors. Owing
to their stability and facile structural modification,O-Bz hydroxylamines
were used as model substrates in this study, and Rh2(esp)2 was used as
the catalyst. Examination of the presumed nitrene structures 2 and 10

SCHEME 1
(A–C) Background of this work. esp: α, α, α′, α′-tetramethyl-1,3-benzenedipropionic acid, HFIP: 1,1,1,3,3,3-hexafluoroisopropanol.
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implied that a suitably located acidic proton in 2 played an important
role in determining the reactivity, which was the driving force to
investigate the additive effect using Brønsted acids and bases.

Table 1 summarizes the influence of additives on the
regioselectivity of reactions, where the selectivity between
benzylic and tertiary C–H bonds was used as a reactivity probe.

SCHEME 2
KIE experiments using Rh2(esp)2 as a catalyst under various conditions.

TABLE 1 Evaluation of additives on the regioselectivity of Rh-alkyl nitrene.

Entry Additive (x equiv) Conversion (%)a 12a:13ab

1 — >95 21:79

2 TFA (3) >95 29:71

3 TFA (10) >95 31:69

4c TfOH (3) 12 (21) 4:>96 (4: > 96)

5 PPTS (3) 27 4:>96

6 2,6-Lutidine (3) >95 24:76

7 Et3N (3) >95 26:74

8 Cs2CO3 (3) >95 19:81

9 Barton’s base (3) Complex mixture

aConversion was determined using 1H NMR, analysis of unpurified reaction mixture.
bThe regioselectivity was determined using 1H NMR, and reverse-phase HPLC, analysis of unpurified reaction mixture.
cThe values in parentheses were obtained after 48 h. TFA, trifluoroacetic acid; TfOH, trifluoromethanesulfonic acid; PPTS, pyridinium p-toluenesulfonate.
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In the absence of additives, the site selectivity of 11aA is close to 1:4,
favoring the tertiary C–H bond (entry 1). The ratio marginally
decreases in the presence of trifluoroacetic acid (TFA) (entry 2),
suggesting that an acidic proton source plays a vital role in the
selectivity-determining transition state. Higher acid loadings do not
decrease the selectivity further (entry 3). It was observed that all the
acids do not lower the selectivity, and the addition of a stronger acid,

trifluoromethanesulfonic acid (TfOH), creates a strong bias in the
reaction site for the tertiary C–H bond, although with a considerably
slower kinetics (entry 4). Similar trend is observed for pyridinium
p-toluenesulfonate (PPTS), which is a milder Brønsted acid
compared to the TFA (entry 5). In contrast to acidic additives,
the addition of a Brønsted base does not lead to a noticeable shift in
the regioselectivity (entries 6–8).

TABLE 2 Comparison between O-Bz and O-Ts hydroxylamines using rhodium catalyst.a

Entry 11 Conditions Yield (%) 12:13 anti/syn (12)

1 A 73 31:69 83/17

2 B 77 43:57 84/16

3 A 83 >96:4 81/19

4 B 84 >96:4 88/12

5 A 82 >96:4 83/17

6 B 83 >96:4 89/11

Conditions A: Rh2(esp)2 (1 mol%), TFA (10 equiv), HFIP., Conditions B: Rh2(esp)2 (2 mol%), TFA (2 equiv), TFE.
aProducts were isolated after conversion into the corresponding N-Ts adducts. TFE; 2,2,2-trifluoroethanol, Ts; p-toluenesulfonyl.
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A change in the selectivity is often accompanied by a change in the
reaction mechanism. Therefore, to understand the nature of reactive
intermediates under Brønsted acidic conditions, kinetic isotope effect
(KIE) experiments were conducted (Scheme 2). Fluorine-substituted
compounds were used for this purpose as the high sensitivity of 19F
nuclei in nuclear magnetic resonance (NMR) is beneficial for
determining the selectivity. Under standard conditions, using 1 mol
% Rh2(esp)2 as a catalyst in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP)
at ambient temperature, a KIE value of 4.0 is obtained (Scheme 2A).
The value remains the same in the presence of TFA (Scheme 2B),
suggesting similar properties of the reactive intermediate in both
cases. Despite the distinct selectivity trend observed in Table 1, the
addition of PPTS does not change the KIE value (Scheme 2C). The
KIE value of a similar N-Boc-O-Ts substrate was reported to be 5.3
(Munnuri et al., 2017), therefore, electronically tuned benzoate
substrates were subjected to identical conditions. The obtained
values are approximately same to those of the unmodified
substrate (Scheme 2D).

We questioned whether the difference in the KIE values between
O-Bz andO-Ts hydroxylamines would be translated into a difference in
regioselectivities. Although the reactivity trend ofO-Ts hydroxylamines

has been previously studied using a different rhodium catalyst, a
comparison with three classes of substrates was carried out for
ranking the reactivities of various C–H bonds (benzylic, tertiary,
secondary, and primary). In addition to regioselectivity,
diastereoselectivity was utilized as the other reactivity probe.

The instability of the N-H form of O-Ts hydroxylamines
requires in situ removal of a protective group from the nitrogen.
Following the previous reports, the N-Boc group was used to mask
the nitrogen atom and TFA was used as the proton source in TFE.
Thus, TFA was included in the reactions with O-Bz substrates for a
fair comparison (Table 2). All the products were isolated after
conversion to their N-Ts forms. Examining the regioselectivity
between benzylic and tertiary C–H bonds, a marginally lower
selectivity is obtained using the O-Ts substrate compared to that
of O-Bz substrate, although the diastereoselectivity is similar for
both (entries 1 and 2). Owing to their diminished reactivity toward
metallonitrene, cyclization products are not obtained at the
secondary or primary C–H bonds for either of the substrates.
However, better diastereoselectivities are recorded with O-Ts
substrates compared to those with O-Bz substrates (entries 3 vs.
4 and 5 vs. 6).

SCHEME 3
(A) Reagent-controlled chemoselectivity switch under rhodium-catalyzed conditions. (B) Possible interconversion between nitrenes and nitrenium
ions.

FIGURE 1
BDEs for various representative C–H bonds.
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3 Discussion

Falck and coworkers reported aziridination of olefins with O-
(2,4-dinitrophenyl)hydroxylamine under the influence of a
Rh2(esp)2 catalyst (Jat et al., 2014). The group revealed in a
subsequent report that the combination of the same rhodium
catalyst with O-Ts hydroxylamine aminated an aromatic C–H
bond keeping the olefin moiety intact (Scheme 3A) (Paudyal
et al., 2016). The authors proposed that the rhodium nitrene
generated upon N–O bond cleavage was in equilibrium with the
protonated nitrenium ion and the two species exhibited distinct
reactivity, which justified the remarkable chemoselectivity switch
(Scheme 3B). Moreover, acidity of the liberated Brønsted acids
determined the equilibrium positions; the nitrophenol was not
strong enough to protonate metallonitrenes, whereas a stronger
sulfonic acid propelled the equilibrium forward to yield
nitrenium ions.

Given that the acidity of the reaction medium is responsible for
the equilibrium position, it was hypothesized that the addition of
external Brønsted acids should play an identical role. The results in
Table 1 reveal that the inclusion of sulfonic acids drastically changes
the regioselectivity trend (entries 4,5, Table 1), which can be explained
by a possible shift in the equilibrium. The observed lower reactivity
could be ascribed to either the lower C–H insertion activity of the
nitrenium ion intermediate or the slower N–O bond cleavage to form
a reactive intermediate. However, the addition of external Brønsted
acids does not alter the KIE values (Scheme 2A–C), suggesting that a
similar reactive intermediate is involved in the C–H amination step in
the absence or presence of acids.

Over the years, KIE experiments have been used to assess and
elucidate the nature of reactive intermediates in various C–H
functionalization reactions. It is well-known in nitrene chemistry
that KIE values lower than three indicate the presence of a concerted
mechanism involving a singlet nitrene. For instance, the KIE values
of sulfamoyl nitrenes using a similar rhodium catalyst were in the
range of 1.9–2.9 (Fiori et al., 2009; Varela-Álvarez et al., 2016). In
contrast, a stepwise mechanism displays higher KIE values (Badiei
et al., 2008; Harvey et al., 2011). The difference in KIE values
between O-Bz (4.0) and O-Ts (5.3) hydroxylamines using the
same catalyst inferred that precursor structures play a significant
role in determining the nature of reactive intermediate but the
acidity of the reaction medium. As a slight modification of the
benzoic acid derivatives (pKa in H2O: p-CN-C6H4 3.55, C6H5 4.21,
p-MeO-C6H4 4.47) did not affect the KIE values (Scheme 2D), a
considerably drastic change in the acidity of the leaving groups
might be required to induce a change.

The precursor structure-dependent KIE value implies that the
reactive intermediate generated from O-Ts substrates possesses a
triplet, radical-like nature. Radical-like intermediates typically
follow the bond dissociation energy (BDE) order, which is the
enthalpy change associated with the homolytic scission of the
bond (Figure 1). The results summarized in Table 2 agree with
this trend. Therefore, the O-Ts substrate undergoes the benzylic
amination preferably compared to that for O-Bz (entry 1 vs. 2,
Table 2). Comparable results are obtained in HFIP using 11aB (76%
yield, 12a:13a 41:59, anti/syn 83/17), excluding the possibility that
the choice of solvent governs the selectivity. The observed

diastereoselectivities support the different natures of the reactive
intermediates generated from O-Bz and O-Ts hydroxylamines.

4 Conclusion

We have investigated the reactivity of rhodium alkyl nitrenes
generated from substituted hydroxylamines. The addition of
Brønsted acids modulated the regioselectivity of the
intramolecular C–H insertion between the benzylic and tertiary
positions. Despite the distinct regioselectivities, approximately
identical KIE values were observed for various Brønsted acids. In
contrast to external acids, the KIE values fluctuated as a function of
the precursor structures. The conditions that produced the more
radical-like reactive intermediate followed the expected reaction
tendency. Although further efforts are required to completely
understand the nature of reactive intermediates, particularly with
the external addition of Brønsted acids, our results comprehensively
confirmed that the reactivities of seemingly similar reactive
intermediates could be regulated by incorporating additives or
changing the precursor structures. This work significantly
enhances our understanding of the rhodium nitrene structures,
which are typically devoid of precursor residues, and opens up
new avenues for a substrate-controlled approach to fine-tune the
reactivity, as with other hydroxylamine-involving reactions (Noda
et al., 2014; Niu and Buchwald, 2015).
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