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Introduction: Despite improved treatment options, colorectal cancer (CRC)
remains a huge public health concern with a significant impact on affected
individuals. Cell cycle dysregulation and overexpression of certain regulators
and checkpoint activators are important recurring events in the progression of
cancer. Cyclin-dependent kinase 1 (CDK1), a key regulator of the cell cycle
component central to the uncontrolled proliferation of malignant cells, has
been reportedly implicated in CRC. This study aimed to identify
CDK1 inhibitors with potential for clinical drug research in CRC.

Methods: Ten thousand (10,000) naturally occurring compounds were evaluated
for their inhibitory efficacies against CDK1 throughmolecular docking studies. The
stability of the lead compounds in complex with CDK1 was evaluated using
molecular dynamics simulation for one thousand (1,000) nanoseconds. The
top-scoring candidates’ ADME characteristics and drug-likeness were profiled
using SwissADME.

Results: Four hit compounds, namely, spiraeoside, robinetin, 6-hydroxyluteolin,
and quercetagetin were identified frommolecular docking analysis to possess the
least binding scores. Molecular dynamics simulation revealed that robinetin and 6-
hydroxyluteolin complexes were stable within the binding pocket of the
CDK1 protein.

Discussion: The findings from this study provide insight into novel candidates with
specific inhibitory CDK1 activities that can be further investigated through animal
testing, clinical trials, and drug development research for CRC treatment.
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1 Introduction

Colorectal cancer (CRC) is the third most common cancer next
to lung and breast cancers with an estimated diagnosis of 2 million
individuals and a mortality of approximately 900,000 annually (Bray
et al., 2020; Holowatyj et al., 2020). It is thought to be a disease in
high-income countries; however, studies have shown the incidence
of CRC to increase at a projected rate of 70% by 2030 for low and
middle-income countries (Ferlay et al., 2015) with a 5% lifetime
average-risk incidence globally (Weitz et al., 2005). These gory
statistics have significant implications for the public health
systems both in the country and globally hence the need for a
more dynamic scientific approach to the CRC burden.

The onset of CRC follows a pattern of abnormal growth of the
epithelial cells of the colon and/or rectum leading to a tumor mass
that fills the intestinal lumen, metastasizing into nearby organs of
the abdominal area, lymph nodes, and other parts of the body
(Adeoti et al., 2016). It usually begins as a small, adenomatous mass
of cells known as polyps that form on the inside of the colon, which
may becomemalignant or remain benign (Ikwu et al., 2020). As with
many cancers, the cause of CRC is not known (Simon et al., 2017),
however, risk factors such as age, lifestyle habits (alcohol and
tobacco use), high-fat diet, predisposing medical conditions such
as type 2 diabetes, and a family history of CRC have been associated
with the disease course. Although traditional chemotherapy options
have yielded remarkable results in CRC treatment with possibilities
of relapses, limited molecular understanding of the oncogenetic
initiation and interplay of biochemical mechanisms/factors have
impaired the development of novel pharmacologically therapeutic
anti-cancer drug agents.

Cyclin-dependent kinase 1 (CDK1) enzyme has been implicated
in the oncogenesis of CRC (Sofi et al., 2022a). It is a serine/threonine
kinase known to be the catalytic subunit of the M-phase promoting
factor (MPF) complex (Kalous et al., 2020) and belongs to a family of
cyclic cell regulatory proteins involved in maintaining cell cycle
efficiency (Sofi et al., 2022a; Sofi et al., 2022b). Though involved in

many cellular events that ensure cell survival, CDK1 specifically acts
by regulating the G2/M and G1/S phases oscillating in activity
between the M transition stages to bring about replication,
activating checkpoints, and more recently has been essential to
replication fork maintenance (Adhikari et al., 2012; Liao et al.,
2017; Matthews et al., 2022). Prior to initiating cell replication,
CDK1 is activated by binding to cyclin B1 to form CDK1-cyclin B
complex (Figure 1) (Brown et al., 2015). However, the over
expression of CDK1 has been linked to unrestricted cell
proliferation. Its over expression has been linked to unrestricted
cell proliferation, tumor development, and dysregulation associated
with the initiation of many cancers including colorectal cancer (Li
et al., 2020; Sofi et al., 2022a; Sofi et al., 2022b). Gene expression has
been associated with biomarkers in complex diseases like prostate
cancer (Chikwambi et al., 2023), epilepsy (El Abed et al., 2023),
malaria/COVID-19 (Nzungize et al., 2022) and SARS-CoV-
2 infection (Nyamari et al., 2023). Several studies suggest that
overexpression of CDK1, which is the hallmark event in many
malignancies is associated with 5 = fluorouracil resistance through
altered activation of Wnt/β-catechin signaling, mTOR, and
p53 pathways leading to poor prognosis in CRC (Zhu et al.,
2019; Zhu et al., 2020a; Zhu et al., 2020b; Sofi et al., 2022a).

Natural products have drawn a lot of attention recently as
potential sources of treatments for a variety of illnesses. In recent
years, bioactive compounds from plants have been proven to have
opportunities in the pharmaceutical industry for therapeutic
purposes (Sasidharan et al., 2011). Resveratrol, a polyphenol has
been documented for its ability to reduce or inhibit cell proliferation,
reduce apoptosis and suppress angiogenesis andmetastasis in cancer
cells (Greenlee et al., 2022; Dar et al., 2023). Also, flavopiridol, a
flavonoid based substance has undergone clinical trials for its anti-
cancer benefits and as a potent Cyclin-Dependent Kinase (CDK)
inhibitor (Deep et al., 2018). By specifically targeting CDK1, cell
cycle arrest is initiated, slowing down the growth of tumors.
Compared to synthetic alternatives, natural products have fewer
adverse effects.

FIGURE 1
Structure of CDKI binding to CKs1 and complexation with cyclin B. The complexes shown above depict (A) CDK1-Cks1 (B) CDK1-cyciln B-Cks1 (C)
residues of CDK1. In each image, the following colours apply; CDKI N-lobe (white), CDK1 C- lobe (coral), Cks subunit (ice-blue), C-helix (red), activation
segment (cyan), cyclin subunit (lawn green) (Brown et al., 2015).
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Despite recent advances in diagnostics and treatments for CRC
as well as the failure of conventional cancer treatments including
chemotherapy and radiotherapy to sustain lower relapse rates, there
remains a gap in treatment and increasing incidence of CRC cases.
With the vast plethora of computer-aided drug design and
combinatorial chemistry technologies available, a potentially wide
array of therapeutic options from small molecule compounds that
can target significant aspects of CDK1 activity exists. Our study
investigated potential inhibitors of CDK1 in silico and explored their
pharmacokinetic properties using a number of computational
techniques.

2 Materials and methods

2.1 Ligand preparation

A library of ten thousand bioactive plant compounds was
compiled and downloaded from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov). Pubchem is a publicly available small
molecule database (Li et al., 2010; Gozalbes and Pineda-Lucena,
2011; Cheng et al., 2014) used in drug discovery and other
applications. It contains information on over 250 million unique
chemical molecules along with their descriptors. Before carrying out
docking, the two-dimensional (2D) structure data file (SDF) format
of the compounds downloaded from the pubchem repository were
imported into Maestro (Schrodinger suite) for transformation in the
LigPrep module of the software (Epik, 2017a). Ionization states were
generated at a pH range of 7 ± 2.0 and stereoisomers were calculated
at default (Sastry et al., 2013).

2.2 Protein preparation

The three-dimensional (3D) human crystal X-ray diffraction
structure of Cyclin-dependent kinase 1 (http://www.rcsb.org/pdb/
home; PDB ID: 4Y72) (Brown et al., 2015), was downloaded as a pdb
file and imported into Maestro suite. For appropriate structural
preparation of the virtual protein using the Protein Preparation
wizard of the Schrodinger software, hydrogen, bond orders, and
missing side chains were added appropriately while water molecules
beyond 5 Å from het groups were deleted before optimization at
pH 7.0 + 2.0. The protein structure was subsequently minimized
using the optimized potentials for liquid simulations (OPLS)
2005 force field to a root-mean-square-deviation (RMSD) of 0.
30 Å (Epik, 2017b).

2.3 Molecular docking

The compounds were subjected to molecular docking within the
active site of CDK1. Using the receptor grid generation feature in the
Schrodinger suite, a grid box where each ligand will be docked was
generated. The binding pocket where the co-crystallized ligand is
located was used to construct the defining box as well as the residue
locations within 4 Å radius of the ligand. Molecular docking was
performed via the standard precision (SP) and extra precision (XP)
of the Glide tool in the software (Friesner et al., 2006; Tripathi et al.,

2013). Following docking, the top compounds with optimal binding
scores were selected for further studies.

2.4 Drug likeness and in silico ADME
predictions

The drug-likeness of the lead compounds was evaluated by
subjecting them to computational pharmacological and
pharmacokinetic analyses on the SwissADME web server
(http://www.swissadme.ch) (Daina et al., 2017; Guan et al.,
2019), using the generated Canonical SMILES (simplified
molecular-input entry system) transformations of the
structures (Cheng et al., 2022). Lipinski’s rule of five was used
to assess the compounds based on the following parameters of
molecular weight, number of hydrogen bond donors and
acceptors and octanol-water partition (Lipinski et al., 1997;
Veber et al., 2002; Yang et al., 2019). Pro-Tox II online server
(https://tox-new.charite.de/protox_II) was used to predict the
toxicity of the compounds (Banerjee et al., 2018).

2.5 Induced fit docking

The top four ligands with the least binding scores were
selected and subjected to the mixed molecular docking and
dynamic protocol used by the induced-fit docking (IFD)
module of the Maestro algorithm. An implicit solvent model
with the OPLS 2005 force field was used to apply the standard
IFD protocol to the chosen (centroid) amino acid side chains
(8–10, 18–20, 31–33, 64, 80–89, 135, 145–146). The IFD
procedure included a ring conformational sampling with a
2.5 kcal/mol energy barrier and a non-planar conformation
penalty on amide bonds. Each ligand was given a maximum of
20 permitted postures, with the scaling for both the receptor and
the ligand fixed at 0.5. The Prime Refinement technique was used
to further refine residues that were within 5 Å of the docked
ligand. The protein-ligand complexes with the improved
structure were ranked using prime energy. For a final round
of Glide docking and scoring, the receptor structures that were
less than 30 kcal/mol from the minimal energy structure were
submitted. In the next second docking stage, all ligands were re-
docked into all revised low-energy receptor structures using
Glide XP’s default settings.

2.6 Molecular dynamics simulation

The docked complexes were further subjected to molecular
dynamics (MD) simulations using the Desmond module of the
Schrodinger package on a GPU-enabled Linux computer. To
simulate physiological conditions, the model was created in a
TIP3P (transferable intermolecular potential-three point),
orthorhombic water buffered solvation box of 10 Å dimensions
and 0.15 M salt. The simulation model was then minimized and
neutralized by adding sodium (Na+) and chloride (Cl−) ions, placed
at least 20 Å from the ligands. The protein-ligand complexes were
simulated for one thousand nanoseconds in an OPLS-2005 force
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field. At the end of the simulation period, the root mean square
deviation (RMSD), root mean square fluctuation (RMSF), radius of
gyration (Rg), Ligand RMSD, solvent accessible surface area (SASA),
and intramolecular hydrogen bonds (intraHB) were computed and
subsequently analyzed (Chow et al., 2008; Bergdorf et al., 2014;
Release, 2014).

2.7 Molecular mechanics/generalized born
and surface area solvation (MMGBSA)
calculations

Molecular mechanics/generalized Born solvent area (MM/
GBSA) calculations (Kollman et al., 2000; Massova and
Kollman, 2000; Tsui and Case, 2000) were performed to
estimate the relative binding energies of the selected ligands
to CDK1. This method estimates the amount of free energy
involved in interactions of the protein-ligand complex. The
binding energy for 2000 independent snapshots of each ligand-
protein complex was generated and average binding energies
calculated. ΔG of each ligand was calculated following the given
equation:

ΔGbind � ΔGRL – ΔGR + ΔGL( ) (1)
Where ΔGRL represents the free energy of protein-ligand complex;
ΔGR is free energy of receptor, and ΔGL the free energy of ligand.

The free binding energy establishes the binding affinity of
ligands to a given protein. A more negative ΔG value indicates
better binding of the ligand to the protein (Gilson et al., 1997). The
free energy of each state was calculated, using FF14SB force field, by
the given equations. . .

ΔGbind � ΔEgas + ΔGsol –TΔS (2)
Egas � Eint + EvdW + Eele (3)

Gsol � GGB + GSA (4)
GSA � ɣSASA (5)

Contribution of each residue to the total binding free energy was
also obtained using MM/GBSA method in Amber 18.

3 Results

3.1 Analysis of the binding modes of co-lig
and hit compounds in CDK1 active site

We performed molecular docking study of the phyto-
compounds against CDK1 target protein. We selected the top
four hits with the most favourable binding scores for subsequent
studies. To validate the docking procedure, the co-crystallized ligand
was re-docked into the binding pocket of CDK1. The RMSD
between docked and native pose (Figure 2) is given as 0.28 Å.
Figure 3 depicts the result from molecular docking studies of the
four top-scoring compounds: Spiraeoside (−12.47 kcal/mol),
Robinetin (−12.22 kcal/mol), 6-hydroxy luteolin (−12.07 kcal/
mol), Quercetagetin (−12.06 kcal/mol), and the co-crystallized
ligand, LZ9 (−13.99 kcal/mol). The 2D protein-ligand interaction
diagrams (Figure 4) show the hydrogen and hydrophobic bond
network and interactions shared between the compounds and
CDK1. In this study, it was observed that all 4 hit compounds
formed hydrogen bonds and hydrophobic interactions with the
Ile10 residue of CDK1. Hydrogen bond interactions also existed
between the compounds and CDK1 via Leu83, Ser84, and/or Gln
132 residues. Hydrophobic interactions were seen between all the
compounds and Ile10, Val18, Ala31, Val64, Phe80, Phe82, Leu83,
Met85, Leu135 and Ala145 residues of CDK1. LZ9 shared
hydrophobic bonding with Tyr15, in addition to the
aforementioned residues. Hydrophobic bonds observed from
molecular docking were preserved during induced fit docking.
Bond interactions for molecular docking, induced fit docking and
molecular dynamics simulation are summarized in Table 1. The
complexes formed from induced-fit docking are displayed in
Figure 5.

FIGURE 2
Validation of docking showing the co-crystallized ligand (in grey) and the re-docked pose (in red) with an RMSD score of 0.28 Å. The low RMSD value
obtained demonstrates the efficacy of the docking protocol used.
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3.2 In silico ADME predictions

Table 2 gives details of ADME and toxicity predictions.
Physicochemical descriptors, ADME (Absorption, Distribution,
Metabolism, and Excretion) parameters, and pharmacokinetic
properties of the compounds, except spiraeoside, were predicted to
be within the permissible parameter ranges.

From toxicity prediction, spiraeoside was predicted to be
inactive for all parameters. LZ9 was predicted to be
hepatotoxic and carcinogenic, but not mutagenic. Robinetin,
6-hydroxyluteolin, and quercetagetin were predicted to be
inactive for hepatotoxicity, while results for carcinogenicity
and mutagenicity were predicted to be active. Their
probability scores are shown in brackets.

FIGURE 3
Molecular docking results of the top four scoring compounds: Spiraeoside, Robinetin, 6-hydroxyluteolin, Quercetagetin and the co-crystalized
ligand (LZ9).

FIGURE 4
2D interaction diagrams of top scoring compounds in complex with CDK1 from molecular docking studies. Maestro 2D interaction diagram
(Schrödinger) was used to generate the image.
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3.3 RMSD analysis of CDK1 and hit
compounds

The protein backbone RMSD (Ca) & ligand heavy atoms RMSD
over the course of simulation time were plotted. The average values
of each system were also calculated. The RMSD depicts the dynamic
behavior and stability of the complexes over the simulation period
and estimates the average change in atom displacement for a given
frame relative to a reference frame. All protein frames were first

aligned on the reference frame backbone before determining the
RMSD based on the atom selection. RMSD fluctuations give insight
to the stability of a ligand within the binding pocket of a protein. A
gradual increase in RMSD values was observed in the first 200 ns of
the apo protein system, after which it stabilised and had an average
value of 2.48 Å (Figure 6A). The CDK1-LZ9 system fluctuated for
the first 400 ns, after which it stabilised and had an average of 2.36 Å.
CDK1-robinetin stystem stabilised after 200 ns with an average
value of 2.40 Å, while the CDK1-quercetagetin system fluctuated

TABLE 1 Bond interactions between ligands and CDK1 during molecular docking, induced fit docking and molecular dynamics simulation.

Compounds Hydrogen bonds π- π bonds

MD IFD MDS MDS

LZ9 Glu81, leu83 Ile10, Glu81, Leu83 Glu81, Leu83, Asp146 Tyr15

Spiraeoside Glu8, Ile10, Leu83, Ser84, Asp86 Glu8, Ile10, Lys33 Leu83, Ser84, Asp146 — —

Robinetin Ile10, Leu83, Ser84, Asp86 Ile10, Lys33, Leu83, Asp86, Asp146 Thr14, Lys33, Val64, Glu81, Leu83, Arg158 Phe80

6_hydroxyluteolin Ile10, Glu81, Leu83, Ser84 Ile10, Lys33, Glu81, Leu83, Ser84 Thr14, Lys33, Glu51, Leu83, Arg158, Phe147 —

Quercetagetin Ile10, Glu81, leu83, asp86 Tyr15, Glu81,
Leu83, Gln132

Lys33, Glu51, Leu83 —

MD, molecular docking; IFD, induced fit docking; MDS, molecular dynamics simulation.

FIGURE 5
2D interaction diagrams of poses from Induced fit docking.

Frontiers in Chemistry frontiersin.org06

Ogbodo et al. 10.3389/fchem.2023.1264808

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1264808


TABLE 2 Predicted physicochemical descriptors, ADME parameters, pharmacokinetic properties, druglike nature, medicinal chemistry friendliness and toxicity of
compounds.

LZ9 Spiraeoside Robinetin 6-Hydroxyluteolin Quercetagetin

Physicochemical properties

Molecular weight (g/mol) 360.29 464.38 302.24 302.24 318.24

Heavy atoms 26 33 22 22 23

Rotatable bonds 6 4 1 1 1

Hydrogen bond acceptor 6 12 7 7 8

Hydrogen bond donor 3 8 5 5 6

TPSA (Å2) 86.88 210.51 131.36 131.36 151.59

Lipophilicity

Log Po/w (XLOGP3) 3.07 1.31 1.61 2.17 1.18

Log Po/w (WLOGP) 4.21 −0.54 1.99 1.99 1.69

Log Po/w (MLOGP) 2.64 −2.59 −0.56 −0.56 −1.08

Consensus Log Po/w 3.03 −0.19 1.12 1.42 0.92

Water solubility

LogS (ESOL) −4.10 −3.64 −3.20 −3.55 −3.01

Solubility (mg/mL) 2.89 e−02 1.07e-01 1.91e-01 8.46e-02 3.14e-01

Class Moderately soluble Soluble Soluble Soluble Soluble

Pharmacokinetics

GI absorption High Low High High Low

BBB permeant No No No No No

P-gp substrate No Yes No No No

CYP1A2 inhibitor Yes No Yes Yes Yes

CYP2C19 inhibitor No No No No No

CYP2C9 inhibitor No No No No No

CYP2D6 inhibitor Yes No Yes Yes No

CYP3A4 inhibitor No No Yes Yes Yes

Druglikeness

Lipinski Yes (0 violation) No (2 violations) Yes (0 violation) Yes (0 violation) Yes (1 violation)

Ghose Yes No Yes Yes Yes

Veber Yes No Yes Yes No (1 violation)

Bioavailability score 0.55 0.17 0.55 0.55 0.55

Leadlikeness No No Yes Yes Yes

Toxicity

Predicted LD 50 (mg/kg) 1,000 5,000 159 3,919 159

Toxicity Class 4 5 3 5 3

Hepatotoxicity (probability score) Active (0.65) Inactive (0.82) Inactive (0.69) Inactive (0.69) Inactive (0.69)

Carcinogenicity (probability score) Active (0.53) Inactive (0.85) Active (0.68) Active (0.68) Active (0.68)

Mutagenicity (probability score) Inactive (0.71) Inactive (0.76) Active (0.51) Active (0.51) Active (0.51)
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more, however, had an average value of 2.24 Å. The most
fluctuations were observed in the CDK1-6-hydroxyluteolin
system which also had the highest mean value of 3.17 Å. From
the ligand RMSD plot (Figure 6B), the ligands displayed quite stable
trends over the simulation period, except for quercetagetin, which
fluctuated significantly after 400 ns, even though it had an average
RMSD value of 4.48 Å. LZ9 had an average RMSD value of 1.27 Å,
robinetin, 5.10 Å and 6-hydroxyluteolin, 7.00 Å.

3.4 RMSF analysis of CDK1 and hit
compounds

In general, secondary structure components of a protein like
alpha helices and beta strands are more rigid than the
unstructured part and fluctuate less than loop regions during
molecular dynamics simulation runs. Analysis of the RMSF
plots (Figure 6C), show that all the systems displayed similar
patterns. Notable distinctions include quercetagetin with the
highest peak value at residue 100, robinetin also displayed
highest peak at residue 130, whereas LZ9 had highest peak
value at residue 240. LZ9 had the least peak at residue 165 while
robinetin had the least value between residues 230 and
240 where other system had highest peaks. A comparative
3D representation of the crucial residue regions of the
systems which exhibited higher fluctuations has equally been
presented.

3.5 Radius of gyration, solvent accessible
surface area and intra-hydrogen bond
analysis

The radius of gyration for all systems is shown in Figure 6D.
When comparing the plots of the apo form to the CDK1 bound
states, there is no apparent alteration to the global protein
compactness in response to ligand binding. The solvent-
accessible surface area describes the surface area of a molecule
accessible to water. In addition to examining the impacts on the
molecule, it expresses the degree to which a simulated protein
interacts with solvent molecules. Evaluating the SASA value is an
important way to estimate conformational changes caused by
complex interactions. This is essential for characterizing protein-
ligand interactions and understanding structural changes during
simulations. Solvent Accessible Surface Area (SASA) plots
(Figure 7A) show that LZ9 and quercetagetin have high SASA
values, while robinetin and 6-hydroxyluteolin have lower SASA
values. Intramolecular hydrogen bonds show the number of internal
hydrogen bonds (HB) within a ligand molecule and give insight into
the behavior of ligands in the active site of a protein. They can also
stabilize conformations that are conducive to protein binding, thus
increasing the affinity for the receptor. Intra-hydrogen bond
(intraHB) plots (Figures 7B–D) reveal that LZ9 had intraHB
interactions almost throughout the simulation time, 6-
hydroxyluteolin and quercetagetin had more intraHB interactions
at the beginning of the simulation, while robinetin maintained a

FIGURE 6
Molecular dynamics simulation trajectories of CDK1 in presence of ligands and absence of ligand (Apo) as a function of 1,000 ns simulation time. (A)
Root Mean Square Deviation (RMSD) of Cα atoms backbone. Insert, # shows the mean Cα RMSD values. (B) Root Mean Square Deviation of the ligands
with respect to CDK1 protein. The plot displays the RMSD of the ligands after measuring the RMSD of the heavy atoms in the ligand and aligning the
protein-ligand complex on the reference protein backbone. If the reported values are noticeably greater than the protein’s RMSD, the ligand has
probably diffused away from its initial binding site. Insert, * shows themean RMSD values. (C): Root Mean Square Fluctuation (RMSF) per residue over time.
(D): Radius of gyration for the Apo state and CDK1-ligand complexes.
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value of zero, that is zero intraHB interactions throughout the
simulation time.

3.6 Protein-ligand contacts

Figure 8 shows a schematic of the detailed ligand atom
interactions with the protein residues. The interactions in this
trajectory that occur for more than 30% of the simulation period
are displayed. LZ9 and robinetin make pi-pi contacts with Tyr15 and
Phe80 for more than 50% of the time. All the ligands made contact
with Leu83 via hydrogen bonds; LZ9 and robinetin form hydrogen
bonds with Glu81, while 6-hydroxy luteolin6-hydroxy luteolin and
quercetagetin form hydrogen bonds with Glu51. Robinetin, 6-
hydroxyluteolin, and quercetagetin form salt bridges with Lys33.
All the ligands show relatively high solvent exposure. Protein-ligand
contacts as illustrated by bar charts (Figure 9) during the simulation,
show that hydrogen bonds, hydrophobic interactions, and water
bridges were predominant in LZ9. The other ligands had ionic
interactions in addition to the aforementioned. All compounds
exhibited strong hydrogen bonding on Leu83 and hydrophobic
interactions on Leu135. They also showed a water bridge on
residue Asp146. Only the lead compounds showed ionic bonds at
residue Lys33.

3.7 Potential energy

Figure 10 shows the potential energy plot of the systems in the
apo state and in complex with the ligands. When bound to LZ9,
robinetin and quercetagetin, we observe energies in the same range

as that of the apo state; −115,500 to −117,000 kcal/mol. On the other
hand, when bound to 6-hydroxyluteolin, a lower energy state
of −144,000 kcal/mol is observed.

3.8 Free binding energy

Robinetin and 6-hydroxyluteolin exhibited good ΔG values
of −30.40 kcal/mol and −30.63 kcal/mol, respectively (Table 3).
The co-lig, LZ9, had a value of −34.96 kcal/mol. Quercetagetin
had a binding energy of −18.52 kcal/mol. Energy contributions of
active site residues responsible for stabilizing the CDK1-ligand
complexes are shown in Figure 11. Worthy of note is Glu81 as
the residue showing the highest energy contribution in the CDK1-
LZ9 complex, while Asp86 is the residue showing highest binding
energy contribution to the CDK1-robinetin and CDK1-6-
hydroxyluteolin complexes. The CDK1-quercetagetin system has
Asp146 as the active site residue contributing the highest energy.
Visual inspection of the figure shows that Van der Waals forces
contribute more to the interaction between CDKI-LZ9 and CDK1-
6-hydroxyluteolin complexes. Robinetin has more electrostatic
energy contributing to the stability of the complex it forms with
CDK1. Quercetagetin forms weak interaction with CDK1 as a result
of the overall low Van der Waals forces and electrostatic energy.

4 Discussion

The prevalence of colorectal cancer is fast becoming a public
health concern (Holowatyj et al., 2020). Development of new
pharmacologically therapeutic anti-cancer drug agents has been

FIGURE 7
(A) Solvent Accessible Surface Area (SASA) plot. Intramolecular Hydrogen Bonds (intraHB) plot showing the number of internal hydrogen bonds
within the ligand molecules—Robinetin (B), 6-hydroxyluteolin (C), Quercetagetin (D), compared with LZ9.
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hampered by the limited molecular understanding of the
oncogenetic initiation and the interaction of biochemical
mechanisms/factors, although traditional chemotherapy options
have produced impressive results in the treatment of CRC with
the possibility of relapses.

Natural products are a valuable source of novel therapeutic
leads given that they contain a wide variety of chemical
components (Cragg and Newman, 2013; Newman and Cragg,
2016). They have been essential in the development of new drugs,
particularly for the treatment of cancerous disorders (Atanasov
et al., 2015; Harvey et al., 2015). The compounds identified from
this study were found to be in the class of flavonoids. There is
growing evidence that flavonoids may be useful in the prevention
and treatment of cancer and they are also reported to have a
variety of anti-cancer effects, including inducing apoptosis in
cancer cells, inhibiting cell proliferation, and may enhance
chemotherapy (Abotaleb et al., 2018). Flavonoids have also

been reported to play a potential role in colorectal cancer
therapies (Amado et al., 2014).

Given the importance of cyclin-dependent kinases (CDK) in
cancer, targeting CDKs is a viable strategy for combating the
cancer menace (Sofi et al., 2022a). Because of the significant role
it plays in one of the phases of cell cycle control, which is a crucial
one for the growth of tumor cells, specifically targeting
CDK1 became a strategic focus for optimized treatment. The
drug discovery pipeline greatly benefits from the use of
computational screening techniques (Choudhury et al., 2022).
In recent years, computer-aided drug development methods have
been widely used to find lead compounds with therapeutic value.
These technologies include molecular docking, in silico
pharmacokinetic profiling, and molecular dynamics
simulations (MDS) (Wan, 2013; Salmaso and Moro, 2018).
MDS are anticipated to become more significant as new
pharmacological therapies are developed (Durrant and

FIGURE 8
A schematic of detailed ligand atom interactions of LZ9 (A), Robinetin (B), 6-hydroxyluteolin (C) and Quercetagetin (D)with the protein residues of
CDK1. Interactions that occur more than 30.0% of the simulation time in the selected trajectory (0 through 1000 ns) are shown.
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FIGURE 9
Protein-Ligand Contacts. (A) LZ9. (B) Robinetin. (C) 6-hydroxyluteolin. (D) Quercetagetin. Contact interactions can be categorized by type and
summarized, as shown in the plot. Protein-ligand contacts are categorized into four types: Hydrogen bonds, Hydrophobic, Ionic and Water Bridges. The
stacked bar charts are normalized over the course of the trajectory: for example, a value of 0.7 suggests that 70% of the simulation time the specific
interaction is maintained. Values over 1.0 are possible as some protein residue may make multiple contacts of same subtype with the ligand.

FIGURE 10
Potential energy plot of 1,000 ns simulation time. The plots show the energies of the systems in apo and bound states.
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McCammon, 2011). Several studies now use these computational
methods to quickly identify potential inhibitors of key proteins in
disease progression as treatment options (Choudhary et al., 2020;
Sofi et al., 2022a; Rathod et al., 2022; Castrosanto et al., 2023)
others have identified experimentally validated leads (Kalani
et al., 2013; Yilmaz Goler et al., 2022). Here, we used these
computational techniques to screen phyto-compounds and
identify possible inhibitors of CDK1.

Molecular docking is a computational method used to predict
the preferred binding orientation of a ligand to a receptor. The

software algorithm used predicts possible binding orientations and
provides scores ranked according to the predicted binding affinity
between the receptor-ligand complex (Huang and Zou, 2010;
Salmaso and Moro, 2018). To better understand the binding
dynamics of the four compounds selected in this study to CDK1,
they were subjected to molecular dynamics simulations (MDS).
Prior to running simulation studies, we carried out induced fit
docking (IFD) (Achilonu et al., 2020). Induced fit docking is a more
realistic model of how proteins and ligands interact in nature as it
considers the flexibility of the protein and ligand, allowing them to

TABLE 3 Energy component calculations obtained by MM/GBSA method.

Compounds Energy components (kcal/mol)

ΔEvdw ΔEele ΔGgas ΔGsol ΔGbind

LZ9 −41.88 ± 2.97 −22.02 ± 3.62 −63.90 ± 4.39 28.95 ± 2.98 −34.96 ± 2.90

Robinetin −28.32 ± 3.22 −36.89 ± 7.32 −65.21 ± 6.41 34.81 ± 5.61 −30.40 ± 2.66

6-hydroxyluteolin −37.20 ± 2.32 −28.94 ± 7.81 −66.14 ± 7.60 35.51 ± 5.17 −30.63 ± 3.78

Quercetagetin −29.00 ± 3.043 −15.95 ± 10.06 −44.95 ± 10.04 26.43 ± 6.44 −18.52 ± 5.17

ΔEvdw, Van der Waals energy; ΔEele, Electrostatic energy; ΔGgas, Gas phase energy; ΔGsol, Solvation energy; ΔGbind, Total binding energy.

FIGURE 11
Active site residues and the resultant energy contributions in stabilizing the complexes formed between CDK1 and LZ9 (A); robinetin (B); 6_
hydroxyluteolin (C); and Quercetagetin (D).
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move and rotate during the docking process, resulting in more
accurate predictions of the binding of ligands. For traditional rigid
docking, the proteins and ligands are treated as rigid bodies, and the
docking algorithm attempts to find the best orientation of the ligand
in the protein’s binding site. However, in reality, proteins are flexible
molecules, which can undergo conformational changes upon ligand
binding. Both minor backbone relaxations and substantial side-
chain conformational changes in the receptor structure are
accounted for by the induced-fit docking (IFD) technique
(Sherman et al., 2006; Xu and Lill, 2013).

All systems ran through the complete one thousand
nanoseconds duration during MDS, except spiraeoside, which ran
for only 700 ns? It could be that due to conformational changes in
the protein, spiraeoside left the binding site of the protein during the
simulation run. For this reason, the post-simulation analysis could
not be completed, consequently, results for spiraeoside were
excluded.

It is important to pay attention to the protein’s RMSD value to
properly infer structural changes occurring in a protein which could
affect ligand binding. Ca-RMSD demonstrated a stable structural
conformation across the course of the simulation, showing that it
was balanced. The low RMSD values of LZ9, robinetin and
quercetagetin indicate low fluctuations and suggests that the
system maintained stability during simulation and the protein
did not undergo significant structural changes as a result of
binding of the ligands. The higher RMSD value of 6-
hydroxyluteolin system might suggest that the binding of this
ligand might have perturbed the structure of the CDK1 protein.

Ligand RMSD provides insight into how stably the bound ligand
sits within the protein binding pocket. The Ligand RMSD results
show that LZ9, robinetin, and 6-hydroxyluteolin did not move
much, therefore forming a stable complex with CDK1, unlike
quercetagetin which had a lot of fluctuations. The fluctuations
observed with quercetagetin after 400 ns tell us that it is not
tightly bound to the protein and has possibly diffused away from
the binding pocket, so it forms an unstable protein-ligand complex
and is less likely to perform its intended function.

RMSF measures the structural flexibility of a protein and
characterizes local perturbations along a protein chain (Cob-
Calan et al., 2019). It also provides information on how each
amino acid residue is changing relative to its reference position
during simulation (Sarkar and Sen, 2022). Here, we analysed the
RMSF of the CDK1 protein in the apo and bound states. Peaks
represent regions of the protein where the simulation-induced
fluctuations were greatest (Tripathi et al., 2022). Illustrative 3D
images of the peaks have been presented to clearly elucidate the
silent fluctuation dynamics depicted by the represented peaks. The
3D images reveal a comparative conformational variation exhibited
by the various system due to the perturbations created by the MD
simulation. The 3D images have been color-coded to tally with their
respective corresponding RMSF trajectories. The spikes observed
from RMSF results may have been caused by increased flexibility
within the protein’s loop regions. It may be inferred from the RMSF
result that CDK1 has a great deal of flexibility to accommodate the
ligand at the binding pocket.

The radius of gyration measures how compact a protein
structure is and is equivalent to its principal moment of inertia,
describing the common separation of each scattered element from

the molecule’s mass center (Lobanov et al., 2008). During
simulation, a more rigid structure is represented by lower Rg
values (Jiang et al., 2019). Since not much difference was
observed between the Apo and bound states, we can say that the
binding of the ligands did not interfere with the compact structure of
CDK1. In this study, the Rg, RMSD, and RMSF were correlated, and
this relationship shed light on how complex compressibility affected
the variations in complex RMSD and the residual fluctuations seen
in RMSF. No noticeable changes are observed in the bound and
unbound states of CDK1, suggesting that the protein structure
retained its compact conformation. Our results indicate that the
surface area of LZ9 and quercetagetin have higher exposure to water
than robinetin and 6-hydroxyluteolin. This result is in tandem with
that observed from the ligand-atom interaction diagram.

Hydrogen and hydrophobic bonds play key roles in protein-
ligand interactions. Crucial hydrophobic and/or hydrogen bonds,
including Ile10, Phe80, Leu83, and Ser84 between CDK1 and the
lead compounds that were first seen after molecular docking were
maintained during MDS. Phe80 has previously been described as a
hydrophobic checkpoint enabling water molecules to gain access to
the catalytic portion of the ATP catalytic domain for an additional
hydrogen bond (McGrath et al., 2005). Robinetin is seen to form a
pi-pi bond with Phe80 during simulation run, which may further
account for its strong inhibitory properties. 6-hydroxyluteolin also
forms a bond with Thr14 for 88% of the simulation time. Inhibition
of Thr14 by small molecule compounds has been proposed as a
promising option for the regulation of the G2/M transition of the cell
cycle (Schmidt et al., 2017). Inhibition of CDK1 due to the
phosphorylation of the kinase on Tyr15 residue by flavonoids
(Casagrande and Darbon, 2001) as well as induction of G2/M
phase arrest and apoptosis by the flavonoid tamarixetin on
human leukemia cells (Nicolini et al., 2014) have previously been
reported.

The hydrophobic and hydrogen bonds formed between the
compounds and CDK1 may play a vital role in stabilizing the
complexes for the compounds to exert their inhibitory efficacies
(Zhang et al., 2011). Ionic bonds observed on only the lead
compounds might also play a significant role in their inhibition
of CDK1. Interestingly, the lead compounds are all of the flavonoid
class; another study by ((Navarro-Retamal and Caballero, 2016))
also gave insight into flavonoids as CDK1 inhibitors. Natural
flavonoids such as Luteolin and Daidzein have also been found
to inhibit CDK1 (Ravishankar et al., 2013).

Higher free energy values in fact correlate with more preferable
binding affinities of a ligand to a protein. Robinetin, which had
good binding energy to CDK1, as revealed by the ΔG values, might
have been a result of higher electrostatic and van der Waals energy
contributions. Interactions between robinetin and Asp86 residue
which was observed from molecular docking and induced fit
docking results was maintained after the MM/GBSA run. We
can say this interaction might be a key factor to stablizing the
CDK1-robinetin complex. Energetic analysis reveals that van der
Waals interaction and non-polar contributions are favorable in the
formation of complexes and amine group of the ligand, which
plays a crucial role for binding (Tripathi et al., 2012; He et al.,
2023). Potential energy (PE) and RMSD are both vital indicators of
protein stability. In previous work done by Yuan et al. (2012) to
ascertain if the structures were stabilized, MD simulation was
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examined using PE and RMSD from the original model structure
(Coutsias et al., 2004) The potential energy plot for 6-
hydroxyluteolin is a reflection of the trajectory pattern exhibited
by the Cα-RMSD plot of 6-hydroxyluteolin system between 230 ns
and 420 ns, where a perturbation on the 6-hydroxyluteolin system
seems to have created conformational alteration within the system,
making it assume a new/different trajectory. The new structural
conformational deviation of 6-hydroxyluteolin relative to other
systems could presumably have produced the obtained PE.

The physicochemical properties of a compound are important
parameters in the pipeline of drug development as they directly
affect the absorption, distribution, metabolism, excretion, and
toxicity profile (ADMET) of a drug candidate (Manallack et al.,
2013). The drug-like and ADMET predictions are used in
identifying properties of a ligand suitable for formulation into
drugs. Even though all the compounds are adequately
hydrophilic and lipophilic, robinetin and 6-hydroxyluteolin
showed high intestinal absorption. This implies that the
compounds are capable of achieving pharmaceutical and
therapeutic bioavailability at the intestinal linings and target cells
in the colon. This is further corroborated by their bioavailability
scores. A study on natural compounds as inhibitors of CDK1 by
Saikat (Saikat, 2021) also reported similar ADME properties.

Lipinski’s Rule of five is used to assess and predict the drug-
likeness of compounds based on oral absorption, membrane
permeability and bioavailability (Lipinski et al., 1997). Although,
parenteral administration may be applicable in most cases of cancer
treatment, oral administration is a valuable treatment option for
cancer patients as it is more convenient and reduces the frequency of
their clinic visits or venipuncture. In recent times, oral anti-cancer
drugs such as capecitabine, topotecan and vinorelbin are successfully
used in the treatment of a variety of tumours like colon, breast,
ovarian or lung cancer (Colomer et al., 2010). With the advent of
targeted deliveries, most of the drug molecules approved as oral
medications for cancer treatment including hormone therapies such
as, dasatinib, sorafenib, imatinib, lapatinib and abiraterone have
resulted in good clinical outcomes (Gralow et al., 2008; Rehman and
Rosenberg, 2012).

Despite the fact that natural products frequently violate these
rules due to their complexity, they still serve as reliable sources for
novel drug discovery and development (Doak et al., 2014). Some
anti-cancer agents such as vincritine, irinotecan, paclitaxel and
etoposide, widely used for decades in cancer treatments originate
from natural compounds (Huang et al., 2021).

The ProTox–II server is a web-based tool that predicts the
potential toxicity of a given small molecule compound on various
organs and systems in the body. The toxicity is predicted using a
machine learning model that has been trained on a sizable dataset of
toxic and non-toxic molecules. The toxicity prediction and
probability score are considered important parameters for
predicting a compound’s toxicity (Han et al., 2019). The
probability score can be used to evaluate the prediction’s level of
confidence. A forecast with a high probability score is more certain
to occur, whereas one with a low probability value may not.
Additionally, if the organ toxicity and/or toxicity end points of a
compound are classified as active, it suggests that the compound
may have harmful effects if it is ingested, inhaled, or otherwise
exposed to the body. Conversely, “inactive” could mean that the

compound has not been predicted to have a toxic effect. Early
identification of toxicity in the drug development steps is critical in
reducing late-stage attrition rates (Roberts et al., 2014; Segall and
Barber, 2014). The predicted toxicity class exhibited by the
compounds indicates that they can be administered within the
accepted safety doses. Although the test ligands are predicted to
be non-hepatotoxic, lead optimization may be required to modify
the other toxicity endpoints.

5 Conclusion and next steps

In this study, computational techniques including molecular
docking, induced fit docking, molecular dynamics simulation and
MM/GBSA were used to study the potential inhibitory activities of
natural compounds against CDK1. The findings provided insight
into molecular interactions of significant residues involved in
inhibitory CDK1 activities through molecular docking and
molecular dynamics simulation results. The current investigation
of small molecule inhibitors in the activity of the CDK1 explored
viable options for the roles of Robinetin and 6-hydroxyluteolin in
the pathogenesis of CRC. This research, however, provides a basis
for further examination of potential phytochemicals for medical
intervention of several cancers. This study aimed to identify
potential small molecule inhibitors of CDK1 hence the use of
molecular modeling approaches was deployed to highlight
compounds of strong binding energies, good spatial amino acid
residue arrangement, and better pharmacokinetic properties among
others. The MD simulations showed that the hit compounds stably
interacted with the CDK1 enzyme and maintained firm positions
within the binding pocket of the enzyme over the simulation
timeframe. The findings of this study should undergo
experimental validation to confirm the interaction between the
top ligands identified in our research and the target protein.
Additionally, the ADME/Tox properties that were predicted
using computational models need to be verified through
experimental testing.
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