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Introduction: The flavivirus NS5, a non-structural protein of Japanese Encephalitis
Virus (JEV), a serious deadly human pathogen responsible for epidemics in South
East Asia, consists of N-terminal methyl transferase (MTase) domain and RNA-
dependent RNA polymerase (RdRp) is known for unique viral genome replication
and cap formation activity. S-adenosyl executes a crucial function in these viral
activities. S-adenosyl derivatives are chosen as potential binders with the MTase
domain of NS5 based on MM and docking studies.

Methods: MM GBSA (Generalized Born Surface Area) simulation were performed
to evaluate the binding energy, following the 100 nanosecond (ns) production MD
simulation in the periodic boundary condition (PBC) for the selected docked
ligands with NS5. Quasi-harmonic entropy of the ligands was also calculated with
semi-empirical calculations at the PM3/PM6 level supporting docking and MM-
GBSA results.

Results and discussion: The residue-wise decomposition energy reveals that the
key hydrophobic residues Gly 81, Phe 133, and Ile 147 in the RdRp-MTase interface,
indicate the biological relevance. These residues act as the key residue stabilizer,
binding vigorously with S-Adenosyl derivatives in the vicinity of the interface
between the MTase domain and RdRp. This paves the way for the other potential
drug as an inhibitor for the enzymatic activity of the NS5.
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Introduction

The Flaviviridae family Japanese Encephalitis Virus (JEV), genus mosquito-borne, is a
flavivirus hosting a positive-sense single-stranded RNA genome of 9,500–12,500 long
nucleotides. It has spread rapidly across South East Asia particularly paddy-cultivated
land including the northern part of India, Japan, and Nepal, and has become a serious deadly
human pathogen owing to its link to the death of millions of children and adults by severe
neurological diseases such as mental fever and Guillain-Barr syndrome (Bollati et al., 2010).
Currently, no effective antiviral drug or vaccine is available to eradicate this menace (Lu and
Gong, 2013; Lu and Gong, 2017). NS5 is the largest and most conserved non-structural
protein of JEV plays a crucial role in viral genome replication and capping process and is
considered a target with the different ligands (Malet et al., 2007). The high-resolution crystal
structures are either available for MTase alone or RdRp.
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The NS5 consists of an N-terminal S-Adenosyl-L-Methionine
(SAM), known as SAMe. In the molecule, there was a SAM-
dependent methyl transferase-(MTase) domain and the C-terminal
RNA-dependent RNA polymerase (RdRp) domain that harbors the
classic thumb, palm, and fingers domains present in all single sub-unit
polymerase, and are central to the viral replication and capping (RC)
with NS5 (Gu et al., 2007). The functions of NS5 are crucial as it harbors
both the MTase domain bearing 5′ cap structure and RdRp for all RNA
viruses which are responsible for inter-regulations and co-operativity
and hence hypothesized as a prosperous site of drug activity (Kofler et al.,
2006; Gu et al., 2007; Liefhebber et al., 2009; Bollati et al., 2010; Sztuba-
Solinska et al., 2013). The S-Adenosyl, amino acid derivatives, normally
synthesized in the body thatmay becomedepletedwith sickness or age, is
important as a potential ligand due to their activity in the liver and brain,
especially antiviral, and is a major methyl donor in the synthesis of
hormones, nucleic acids, proteins, and phospholipids, and
catecholamines and other neurotransmitters (Bottiglieri, 2002;
Krzystanek et al., 2011; Kotandeniya et al., 2018). SAMe
(S-Adenosyl-Methionine) is required for the synthesis of
norepinephrine, dopamine, and serotonin. SAMe facilitates
glutathione usage, which improves the body’s antioxidant defense. It
also helps to maintain acetylcholine levels which are necessary for
cognitive function (Serra et al., 2008; Antoniv et al., 2017; Lanz et al.,
2018). Similarly, S-Deaminosinfungin (SFN) commercially known as
sinfungine (Lanz et al., 2018) belongs to the purine nucleosides. These
are compounds comprising a purine base attached to a sugar. The
proteins that adenosyl-ornithine target include RdmB, modification
methylase TaqI, rRNA (adenine-N6-)-methyltransferase, and
modification methylase RsrI, which was originally isolated from
Streptomyces. Sinefungin proved useful as a non-selective inhibitor of
SET domain-containing methyl transferases in the study of epigenetic
regulations (Chan and Lithgow, 2008; Grove et al., 2011; Stubbe, 2011;
Davis et al., 2017; Kim et al., 2017; LaMattina et al., 2017; Pinotsis and
Waksman, 2017; Uppal et al., 2017; Zhang et al., 2017). S-adenosyl-3-
thiopropylamine (SAT) is indicated as a potential inhibitor based on the
S-Adenosyl homocysteine SAH scaffold (Se? kut? et al., 2011). Molecular
S-adenosyl methionine (SAM) is used as a drug in Europe for the
treatment of depression, liver disorders, fibromyalgia, and osteoarthritis.
(Chan and Lithgow, 2008; Grove et al., 2011; Stubbe, 2011; Davis et al.,
2017; Pinotsis andWaksman, 2017). It has also been introduced into the
United Statesmarket as a dietary supplement for the support of bone and
joint health, as well as mood and emotional wellbeing. Mechanics (MM)
simulations inclusive ofmolecular docking are widely used to explore the
time evolution of conformational aspects and binding aspects of
biomolecules (Wang et al., 2001; Lee et al., 2016; Jo et al., 2017).
Also, the cast factor popularizes the technique as supplementary to
other experimental spectroscopic techniques.

The MD simulation methodology provides detailed microscopic
modeling at the atomic scale as a powerful technique widely used in
the research area of physics, chemistry, and materials science. The
technique was used as a natural time evolution for molecular
systems and allowed for the prediction of static and dynamic
properties directly from the underlying interactions. The dynamic
simulation is concerned with time-dependent processes in the
molecular systems for their structural, dynamic, and
thermodynamic properties by solving numerically the equations
of motion. So, the MD simulations provide information about the
time dependence and fluctuations in both velocity and positions.

Although the MD simulation provides an approximate result, they
are completely under the control of the users for changing and
removing some specific constraints. During the calculations, their
role and influence can be examined. The application of MD
simulation can be classified mainly into three types (Karplus and
McCammon, 2002):

1) They were used mainly for conformational sampling and
refinement or determination of results obtained from X-ray,
NMR, and other experimental techniques.

2) It was used to describe the properties of equilibrated systems. In
this technique, thermodynamic property, root mean square
deviation, thermal fluctuation, the motion of the center of
mass, and correlation factors are generally estimated. This is
assumed as the second stage of MD applications.

3) The motion and evolution with the simulation time.

Recently, the MD simulation combined with density
functional theory (DFT) (Srivastava and Misra, 2021) has been
applied to study a variety of problems of biomolecular interests
(Gupta et al., 2020; Bhattacharya et al., 2022; Biswal et al., 2023;
Parth Sarthi et al., 2023) including finding the potential targets
for coronavirus 2 (Panda et al., 2023) and inhibitors for SARS-
CoV-2 (Abhik et al., 2022).

Methodology

The initial coordinates of S-Adenosyl derivatives were taken
from Pub Chem based on the already reported crystal structure of
the protein-ligand complex (NS5-SAH) with (Compound CID:
439155) (Lu and Gong, 2013; Wang et al., 2017), and the
coordinates of the NS5 protein were obtained from the RCSB
protein data bank (Prlic et al., 2016) (PDB ID: 4K6M). The
missing hydrogen and other residues were added using the LEAP
module of the AMBER14 package (Salomon-Ferrer et al., 2013). The
protein molecule was treated by AMBER ff14SB. The partial atomic
charges and missing parameters for ligands were obtained from the
RESP (Comell et al., 1993) charge fitting method at the B3LYP/6-
31++G(2d,2p) (Becke, 1988; Lee et al., 1988) using the optimized
geometry obtained by the Hartree-Fock (HF) methodology at HF/6-
31G(d,p) level of theory with the Gaussian 09 program (Frisch et al.,
2009). The selection of coordinates of S-Adenosyl derivatives was
done by the best score flexible ligand docking procedure with grid-
based scoring using DOCK6 (Allen et al., 2015). The parameters of
SAM-dependent ligands were generated using the Antechamber
Module of AMBER14 for GAFF2 parameters. During the docking
procedure, all bonds within the ligand were kept rigid and were
allowed to be flexible under the first-order approximation of
molecular flexibility with the protein (Lang et al., 2009; Allen
et al., 2015). Initially, force field scores were obtained by
molecular mechanics interaction energies, consisting of van der
Waals and electrostatic components (Kuntz et al., 1982). These
actions are performed by constructing grids of 0.3 Å across the
receptor molecule in a suitable rectangular box. After a proper
parameterization of the protein and ligand, the system was solvated
in a truncated octahedral box with a TIP3P (Jorgensen et al., 1983)
water model and extended up to 10 A° from the protein surface. The
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resulting charge of the prepared model was neutralized with counter
ions depending upon the total charge of the system (Ibraimova and
Wade, 1998).

NS5 contains 905 residues including N-terminal 265 residues
SAM dependent MTase domain. It is highly analogous to all other
flavivirus MTase crystal structures. In its C-terminus RNA-
dependent RNA polymerase (RdRp), the MTase is connected by
a 10-residue linker (residues 266–275) as the sequence is highly
variable and has unknown conformations. The conformations of
these variable residues are modeled by using the best possible
comparative protein modeling using spatial restraint
methodology (Sali and Blundell, 1993). The complexes are
minimized with 500 possible orientations. The best conformation
of the docked complex has been chosen from all other possible
conformations. In our study, out of them, the best four
conformations of the docked complex were passed through a
molecular dynamics (MD) study.

All the MD simulations were performed by the different units by
sander, a module of AMBER–14 (Case et al., 2005) package. The
modeled systems were first minimized into two steps to get minimum
energy conformations (Braun et al., 2019). In the first step of
minimization, the protein was constrained by position restraint with
a force constant of 50 kcal/mol-Å2, and in the second step of
minimization a full minimization without restraint. All
minimizations were carried out by using 5,000 steps of steepest
descent (Mega, 2010). Thereafter, the system was gently heated to
the targeted temperature from 0 K to 50 K using restraint force 50 kcal/
mol with the SHAKE (Ryckaert et al., 1977) algorithm used to constrain
H-atoms. A similar strategy was used to further increase the
temperature of the system from 50 K to 300 K in six steps, i.e., the
interval of 50 K/cycle; each cycle followed by 1 ns dynamic. The third
step, a constant pressure of 1.0 atm in the NPT ensemble for 10 ns
dynamics at 300 K and at constant pressure using Langevin thermostat
(Lzaguirre et al., 2001) and Bresendsen barostat (Berendsen et al., 1984).

TABLE 1 Docking analysis of different ligands in Kcal/mole.

Ligand Grid score vdw energy Electrostatic energy Internal energy (repulsive)

SAH −64.604324 −42.840862 −21.763460 5.873916

SAM −60.970791 −51.610973 −9.359818 12.808640

SAT −53.453568 −42.693253 −10.760314 3.214480

SFN −60.207264 −45.316769 −14.890495 7.897538

FIGURE 1
Structures of all the ligands (SAH, SAT, SAM, and SFN).

Frontiers in Chemistry frontiersin.org03

Tiwari et al. 10.3389/fchem.2023.1258764

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1258764


Constant pressure was maintained with a relaxation time of 2ps and
temperature was controlled with a collision frequency of 2 ps−1. The
density of the system is calculated to be 0.739g/cc at the given
temperature and pressure. Now, using a Coulombic potential grid of
1 Å distance to neutralize the overall charges of the system. A finite
boundary condition is applied for each ligand with NS5 sequence
including water with counter ions Na+, Zn2+, and SO4

2− by keeping
homogeneity at 4 Å distance from the molecular surface by considering
a suitable unit shell. Now, using a Coulombic potential grid of 1 Å
distance to neutralize the overall charges of the system. This was
followed by equilibration for approximately 10 ns for each system
then after production simulation was carried out for 100 ns to each
system (Case et al., 2005; Dubey et al., 2013) without any restraints for
the study of the behavior of the system. A 10 Å cutoff was used with the
Particle Mesh Ewald (PME) method (Mendieta-Moreno et al., 2014) to
treat long-range electrostatic and nonbonded interactions. MM-GBSA
calculations (PM3 and PM6) were initiated after examining the
production 100 ns trajectory.

The results were analyzed using the CPPTRAJ, a module available
in the AMBER–14 packages, and molecular graphics images were
produced by using the CHIMERA package (Beccuti et al., 2014) and
the online tool Chem Draw Direct 1.5 (Probst and Reymond, 2018). A
similar strategy was adopted for each set of the complex. The
AMBER–14 nomenclature has been used to define atoms.

Binding energy calculations

The free energy of binding, ΔGbind, is given by

ΔGbind � GP+D– GP + GD( ) (1)
Where GP + D, GP, and GD are the free energies of the complex,
receptor, and ligand, respectively. In the MM/PBSA approach, each
free energy term in Eq. 1 is calculated as:

G � Ebound + EvdW + Eele + GPB + GSA–TSS (2)
Where Ebound is the contribution from the molecular mechanics

bond energy, i.e., the sum of the bond, angle, and dihedral energies. EvdW
is the van der Waals energy contribution and Eele is the electrostatic
energy in free energy. Similarly, T represents the absolute temperature
while Ss represents the solute entropy. However, we ignored this term in
this study (Lzaguirre et al., 2001). GPB and GSA are polar and non-polar
contributions to the solvation energy, respectively, which were calculated
by using the AMBER–14 software.

Result and discussion

The binding energy of receptor-ligand was determined by the
component analysis of MMGBSA calculation of many structures on

FIGURE 2
Residue-wise free energy analysis of SAH.

FIGURE 3
Residue-wise free energy analysis of SAM.
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the time interval of 1 ns of 100 ns dynamics of the ligand with
266 residues receptor (MTase). Here, we present molecular docking
and molecular dynamics study of some derivatives of SAM shown in
Table 1 and Figure 1.

The Flavivirus NS5 represents a unique natural fusion of two
important enzymes–MTase and RdRp, although MTase is
common for viruses bearing a 5′ cap structure, and similarly,
RdRp is required for all RNA viruses. However, the mechanism
of inter-regulations and co-operativity between the two
enzymes of NS5, i.e., MTase domain and RdRp domain
remains elusive. The 10-residue linker not conserved in
sequence would provide freedom for the sampling of other
possible conformations to some extent, but larger-scale
rearrangements may require additional flexibility at the
MTase-RdRp junction. It has been argued that the
N-terminal extension (residues 276–303) may play a role in
such a process (Srivastava and Misra, 2021). This 28-residue
region is sometimes covered as part of the MTase. The Grid
score of any complex made by ligand and receptor is important
to predict the potential binder for the receptor. We have selected
a total of four residues among different S-Adenosyl derivatives
which have comparable and satisfactory grid scores. The
docking study successfully predicts the active site of the
protein. The conformation of the active sides agrees well
with the corresponding experimental study (Lu and Gong,
2013; Lu and Gong, 2017). The analysis indicates that the
van der Waals component of energy plays a leading role over
two other, electrostatic and internal energy components. The
electrostatic component of the binding energy of SAM is the
lowest among the ligands. Similarly, the internal repulsive
component is the highest for this ligand. The study predicts
that the active pocket of the receptor is made by approximately

33 residues of the MTase domain. These important amino acids
are in the range from Val 55–Gly 58, Ile 78–Trp 87, Tyr 103–Glu
111, Val 130– Phe 133, and Phe 144–Glu 149.

QM-GBSA analysis

We again verify the results in light of molecular mechanics
(MM) and Generalized Born Surface Area (GBSA) calculations.
We took the initial coordinates of the docking simulation and
performed the MM simulation, whose results are given in Figures
2, 3 for SAH and SAM, respectively. For MM-GBSA analysis, the
free energy differences are calculated by combining the gas phase
energy contributions that are independent of the chosen solvent
model as well as solvation-free energy components (both polar
and non-polar) calculated from an implicit solvent model for
each species shown in Table 2. The ligands are here subjected to
quantum mechanical calculations under PM3 and PM6 with a
semi-empirical Hamiltonian for van der Waals and electrostatic
energy separately. The different energy components are shown in
Table 3. The contribution of translation, rotational and
vibrational parts in entropies for different ligands are listed in
Tables 4–7 for SAH, SAM, SAT and SFN, respectively.

Quasi-harmonic estimation of free energy

Estimation of absolute conformational entropy is important
because it allows a detailed understanding of the thermodynamic
driving forces at the molecular level. This method calculates the
thermodynamic conformational entropy of a bio-molecule during
molecular dynamics simulation. Principal component analysis (the
quasi-harmonic approximation) provides the first decomposition
of the correlations in particle motion and entropy is calculated
analytically as a sum of independent quantum harmonic
oscillators.

The decomposition energy per residue for the complex having
SAH ligand shows that the residues His 110, Tpr 87, Thr 104, Asp
146, and Ile 147 (energy is in decreasing order in Kcal/mole)
contribute larger as a side-chain composition. However, Gly 81,
Lys 105, and Gly 58 are major backbone energy contributors. The
backbone composition of Gly 81 (−4.4) was much higher in
comparison to other residues. On the other hand, the
contribution of energy through the side of the chain by the
residue is marginal at about −0.4 kcal/mole. On the contrary,
Gly 81 (−4.9) is identified as the most specific residue in binding
energy terms along with the others in decreasing order of free
energy such as His 110 (−2.9), Thr 104 (−2.6), Lys 105 (−2.3), Gly

TABLE 2 MM-PBSA free energy of different ligands with MTase domain of JEV
in a.u.

Energy
component

SAH SAM SAT SFN

VDWAALS −2209.6758 −2160.4899 −5.2031 −43.9828

EEL −16778.1622 −16491.0957 −164.1186 −122.9479

EGB −3770.6748 −3839.0018 −66.3304 134.6573

ESURF 89.8397 91.9507 3.7491 –5.8601

Ggas −18987.8380 −18651.5856 −169.3217 −166.9307

Gsolve −3680.8351 −3747.0510 −62.5812 128.7972

TOTAL −22668.6730 −22398.6367 −231.9029 −38.1335

TABLE 3 MM free energy of ligands with MTase domain of JEV in different simulations in Kcal/mole.

Ligand MM-PBSA MM-GBSA(PM3) MM-GBSA(PM6) Poisson–Boltzmann

SAH −47.4685 −38.1335 −40.2117 −39.6529

SAM −30.5444 −31.0538 −31.0580 −33.555

SAT −35.6435 −30.9427 −30.9427 −24.1393

SFN −40.9812 −30.3128 −30.3345 −16.2215
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83 (−1.97), Trp 87 (−1.95), Asp 146 (−1.9) and Ile 147 (−1.9).
Interestingly, the residues Cys 82 and Arg 84 have significant
contributions to side chain composition shown in the pictorial

graph (Figures 4, 5), although, they do not have any significant
backbone contribution. The electrostatic contributions of Asp
146, Gly 81, Asp 79, His 110, and Arg 57 are high and their
energies are given in decreasing order against the van der Waals
energy components. They produce a negative effect on the
stability of the complex under consideration. Similarly, the
polar solvation energy contributions of His 110, Glu 111, Phe
133, Ilu 14 7, and Gly 81 are significant as they are affecting the
stabilization.

SAM
The role of Glu 149 (−0.925) and Glu 157 (−0.102) are

significant and act as a major backbone contributor. On the
other hand, all the 15 residues (Gly 81, Thr 104, Lys 105, Gly
106, Ala 108, His 110, Val 132, Phe 133, Asp 146, Ile 147, Gly
148, Glu 149, Arg 160, Thr 161 and Val 164) have significant
side chain contributors in terms of free energy. The pictorial
graph of SAH and SAM reveals that the role of Ile 147, Phe 133,
Lys 105, and Thr 104 are important as they provide van der
Walls interaction of MTase and polar interaction of water. It has
been concluded that the free energy contribution of Ile 147
(−1.5), Phe 133 (−1.5), Glu 149 (−1.4), His 110 (−1.34) Lys 105
(−1.28) from the residue side, in which van der Waals
component of energy play a crucial role in comparison to
electrostatic term. The polar and non-polar solvation terms

FIGURE 4
Residue interaction of SAH with Hydrophobic surface of MTase
domain of JEV.

TABLE 4 Translational, Rotational, and Vibrational Entropies of SAH in Kcal/
mole.

Translational Rotational Vibrational Total

Complex 16.9129 17.4698 10.1872 44.5698

Receptor 16.9018 17.465 10.1341 44.501

Ligand 13.0300 10.8383 5.5480 29.4164

ΔS −13.0190 −10.8336 −5.4949 −29.3475

FIGURE 5
Another view of Residue interaction of SAH with MTase domain
of JEV.

TABLE 5 Translational, Rotational, and Vibrational Entropies of SAM in Kcal/
mole.

Translational Rotational Vibrational Total

Complex 16.9725 17.5560 38.8018 73.3303

Receptor 16.9615 17.5491 38.7896 73.3005

Ligand 13.0620 10.6702 17.8917 41.6238

ΔS −13.0509 10.6633 17.8795 −41.5940

TABLE 6 Translational, Rotational, and Vibrational Entropies of SAT in Kcal/
mole.

Translational Rotational Vibrational Total

Complex 16.9117 17.4591 125.6422 160.0129

Receptor 16.9018 17.4549 125.5083 159.8650

Ligand 12.9221 10.6657 21.4307 45.0183

ΔS −12.9123 −10.6613 −21.2969 −44.8704
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emerged as second and third major contributors in the free
energy, respectively.

SAT
The residue Gly 148, Ile 147, and Asp 146 have been immersed

as a major backbone energy contributor along with Lys 105, Leu 80,
Cys 82, and Thr 104. Similarly, Ile 147, Val 132, and Phe 133 are
major side-chain energy contributors. The residue-wise free energy
analysis found 16 residues, in which Ile 147, Gly 148, Val 132, Lys
105, Thr 104, and Asp 146 are important. The polar contribution of
residue to this molecule is significant for Lys 105 (−0.9) and Asp 146
(−0.8), although their electrostatic component is repulsive. The
residues Ile 147 (−2.0), Val 132 (−1.1), and Phe 133 (−1.1) are
significant for side-chain contributions.

SFN
The electrostatic energy of Asp 146 is dramatically higher

(−16.5) than the other 20 residues which have a free energy value
of more than 0.1 kcal/mole. The free energy contribution of the
residues Asp 146 (−8.6), His 110 (−2.9), Ile 147 (−2.6), Thr 104
(−2.3), and Arg 57 (−1.2) provide a major role in binding energy

terms. Out of which Asp 146, His 110, and Ile 147 provide a side-
chain contribution with the decreasing order of energy, while Arg
57, Val 130, Lys 105, and Ile 147 support as backbone contributors.

The main residues of receptor (MTase domain) reported as the
potential binders were Gly 58, Asp 79, Gly 81, Gly 83, Trp 87, Thr
104, Lys 105, His 110, Phe 133, Asp 146, Ile 147, Glu 149, and Arg
160. Among them, the significant binders, binding with S-Adenosyl-
x ligand are Lys 105, His 110, and Ile 147 with a wider range of total
free energy contribution. The hydrophobic active residues with
significant van der Waals component of energy among the total
energy Ala 108 (−0.32) Phe 133 (−1.14) Ile 147 (−2.248) Val 164
(−0.419) Kcal/mole pre dominates in respect of ligands and MTase
domain active sites. Hydrophobic interactions are short-range
interactions that play an important role in the ligand-receptor
binding affinities. It arises due to enthalpic and entropic effects.
The hydrophobic interaction arises between two non-polar residues
and due to the interaction, water is displaced from the interacting
surfaces of two hydrophobic residues. Due to the expulsion of water,
the surface area of the hydrophobic residues decreases leading to the
formation of the ordered arrangement of water molecules around
the solute. It was measured in terms of the decrease in entropy
roughly proportional to the non-polar surface area of the molecule
enhancing the molecular stability.

H-Bonding analysis

SAH
Figure 6 represents the H-bond with different residues of the

MTase domain. The ligand makes H-bond with Ser 56, Asp 146, His
110, Thr 104, and Gly 81. The amide of the methyl group acts as a
donor in the ligand and forms an H-bond with Asp 146 and Gly 81.
Similarly, the amide group of Lys 105 acts as a donor and makes an
H-bond with O2 of SAH. Ser 56 also has an important donor as it
stabilizes the O atoms of SAH.

SAM
N4 of SAM acts as a donor and makes H-bond with Gly 107.

In the trajectory analysis number of water molecules as acceptor
come out as a fraction, half of a water molecule, but the average
number of H-bond as the acceptor comes out near to one water
molecule. Figure 7 represents the conformation of the molecule
inside the MTase domain. In the hydration analysis of the
molecular dynamics trajectory, C9 of the furanose ring of the
ligand appears as a powerful donor. It engaged itself as a donor to
donate a proton to solute water molecules reported during the
dynamics run by a 0.02 fraction of time. Similarly, N4, O5, C13,

FIGURE 6
A view of residue interaction of SAT with MTase domain of JEV.

TABLE 7 Translational, Rotational, and Vibrational Entropies of SFN in Kcal/mole.

Translational Rotational Vibrational Total

Complex 16.9126 17.4498 124.8792 159.2416

Receptor 16.9018 17.4459 124.7033 159.0511

Ligand 12.9850 10.8011 27.4817 51.2678

ΔS −12.9743 −10.7972 −27.3058 −51.0773

The value of ΔS for SAH, SAM, SAT, and SFN is–29.4, −53.7, −44.8, and −51.1 kcal/mole respectively, which are consistent with the MM-BPSA result and satisfactory, near to our expectation.
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and O4 also act as a donor to create an H-bond to the water
molecule of the solution at different snap-shot simulation
periods. The H-bond formed by SAM is shown in Figure 7.
Interestingly, the residues of MTase are more highly exposed
than the other molecules such as water and ligands in the cavity
to stabilize itself, which is also clear from its solvation-free
energy. In the trajectory analysis, water molecules ranging
from (10–35) have been found within the 3.5 Å shell of the
ligand. An average of 20 H2O molecules are found with the
first hydration shell. Similarly, 41 water molecules are found
within 5 Å shells.

SAT
Figure 6 represents the conformation of the ligands inside the

pocket of the MTase domain. H-bonds are represented by a dotted line.
N1 of ligand makes H-bond with Asp 79, Liu 80 as a donor. N of Lys
105, makes H-bond with N3 of the ligand. Similarly, Val 132 acts as a
donor and makes an H-bond with N4 of the ligand shown in Figure 6.

SFN
In comparison to the above three ligands such as SAH, SAM,

and SAT, O2 of the ligand SFN acts as a donor and makes an
H-bond with Glu 149. Whereas in the case of Asp 146, O2 as well as
O4 of the ligand SFN form H-bond. Similarly, O5 forms an H-bond
with Glu 149, Lys 61, and Lys 105 shown in Figure 8.

The MTase domain

In the crystal structure, the MTase domain adopts a canonical
SAM-dependent MTase fold with multiple helices flanking around a

conserved 7-stranded βsheet. The conformation of the JEV MTase
domain is largely consistent with the simulated MTase structures.
MTase structures exhibit the highest similarity among all structures
except the binding site (Grove et al., 2011; Tachikawa et al., 2018).
The high degree of structural conservation also suggests that the
MTase domain is quite rigid, not much affected by the presence of its
natural fusion partner RdRp confirms our theoretical findings,
i.e., the RMSD of heavy atoms of the simulated structure
concerning crystal structure is within 3 Å. However, a slight
variation is observed within the binding site of the MTase made
by approximately 33 residues. Our simulation results find that there
is a groove or cavity of approximately 1,365 Å2 area on the active side
of the JEV. The activity of this pocket can be understood by the
accommodation capacity of the grove as SFN has a larger dimension
inside the groove and has an almost rod-like shape inside the groove
in comparison to other ligands. Similarly, SFN is in a folded shape
just to accommodate itself within the active region. The folding of
SAM in comparison to the other three is important due to the
presence of the methyl group in the backbone. However, we
observed a little distortion at the active surface of JEV and
showed slight variation in the presence of different residues.
Similarly, the shape of SAH and SAT are also not identical but
they show reasonable bindings with MTase. The important torsional
angle of these different ligands is shown in Table 8. Therefore, we
may predict that the site made by these amino acids is important for
ligand binding, and the ligands selected here and their analysis have
the potential to be used as a future binder.

A comparison with Zika virus (ZIKV)

Zika virus (ZIKV), emerging as a global health threat. It is a
mosquito-transmitted Flavivirus in the Flaviviride family, including

FIGURE 7
A view of Residue interaction of SAM with MTase domain of JEV.

FIGURE 8
A view of residue interaction of SFN with MTase domain of JEV.
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Dengue (DENV), Yellow Fever Virus (YFV), West Nile Virus
(WNF), Japanese Encephalitis Virus (JEV) and Tick-born
Encephalitis Virus (TBEV) (Minor and Diamond, 2017). ZIKV is
a small enveloped positive-sense single-stranded RNA virus
(Lindenbach and Rice, 2003). Among the non-structural proteins,
NS5 is the largest enzyme with 904 amino acids (Issur et al., 2009). It
consists of two domains, an N-terminal methyltransferase (MTase)
domain and RNA dependent RNA polymerase (RdRp) domain at
the C terminal. The NS5 RdRp domain contributes to the viral RNA
synthesis through a de novo initiation mechanism (Gody et al.,
2017).

The crystal structure of NS5 of ZIKV revealed that the MTase
domain consists of a SAM-binding pocket, cap-binding site, and
positive RNA-binding site. Therefore, the suppression of MTase
activity is a promising strategy for drug development or the
development of anti-ZIKV agents. Both the SAM-binding pocket
and cap-binding site of the MTase domain proved to be essential
targets for the drug development of ZIKV (Duan et al., 2017). Several
inhibitors targeting NS5 MTase SAM-dependent domain have been
identified for drug development. A SAM analog called sinefungin has
been shown to have an inhibitory effect on NS5 MTase of DENV and
WNV with inhibitory concentration IC50 of approximately 0.63 μM
and 14 μM respectively (Dong et al., 2008). Similarly, theaflavin is a
natural compound as one of the components of tea, a polyphenol with
various biological properties, such as anti-viral, anti-bacterial, anti-
metabolic syndrome, and anti-tumor activities (Sahoo et al., 2016) is
reported to bind the active residue (D146) to inactivate the ZIKV
NS5 MTase site (Song et al., 2021).

Conclusion

The study explores the effect of SAM-dependent ligands such as
SAH, SAM, SAT, and SFN on the NS5 protein of JEV with MD
simulations and free energy calculations. The thermodynamical
analysis using MM GBSA showed that the ligands SAH, SAM,
SAT, and SFN binding is mainly governed by hydrophobic and van
der Waals interactions. The electrostatic interactions are relatively
weak. Gly 81, His 110, and Thr 104 make strong H-bond with SAH.
Lys 105, Phe 133, Ile 147, and Gly 149 make strong H-bond with
SAM. Cys 82, Gly 83, Trp 87, Thr 104, and Glu 149 make strong
H-bond with SAT. Similarly, Ser 54, Gly 81, Cys 82, and Thr
104 make strong H-bonds with SNF. In addition, Gly 81, His
110, Thr 104, and Lys 105 provide the most energetic interaction
via its hydrophobic side chain and are diagnosed as the main
contributor to the hydrophobic and van der Waals interactions.

The residue-wise estimate of decomposition analysis finds some
more amino-acids such as Val 55-Gly 58, Ile 78-Trp 87, Tyr 103-Glu
111, Val 130-Phe 133, and Phe 144-Glu149 are the key residues for
complexes stabilization. These residues are in the close vicinity of the
catalytic tetrad K 61, D 146, and E 218; therefore, they are potentially
important for further drug discovery as well as canmodel a new drug
that can interact more efficiently and must be a better binder. Also,
the pattern of intra-molecular interaction between the MTase
domain and RdRp was not available so far providing a great
opportunity to study a full-length crystal structure of NS5 and
proceed with the simulation to resolve the mystery of the active
residues in the interface between MTase domain and RdRp.
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TABLE 8 Conformational analysis of different ligands in the pocket of MTase domain of JEV.

Torsional angles SAH SAM SAT SFN

C–N–C–O (Angles between adenosyl and purine plane) 49.243 152.3 −14.9 36.1

The angle between the purine plane and backbone 179.3 55.3- 139.2

S–C1–C2–C3 159.935 59.8 −160.6 -

C3–C2–C1–C4 162 −82.4 - -

C3–C2–C1–N1 - - 171 -
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