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1 Introduction

The progress of human civilization depends on the development of all kinds of materials.
The establishment of modern science has led to the rapid development of synthetic materials.
However, increasing energy demand and environmental pollution urgently require the
search for new materials to solve the energy and environmental crisis.

Carbon is an extremely abundant element in nature and provides the basis for all life on
Earth (Li et al., 2008; Toth et al., 2016). The carbon atom has six electrons outside the
nucleus, and its outermost electron arrangement is 2s22p2, which shows a strong ability to
form covalent bonds (Krueger, 2010). Porous carbon materials have advantages such as
chemical stability, low density, high thermal conductivity, high electrical conductivity, and
high mechanical strength (Gallo, 2017). Porous carbon materials also have a large specific
surface area, adjustable pore size, and functional groups and can be prepared from a wide
range of precursors at relatively low cost.

In recent years, a large number of researchers have been devoted to the synthesis and
application of porous carbon (Ang, 2019; Liu, 2019; Liu, 2020a; Hwang, 2020; Raj, 2021).
Depending on the pore size distribution, the pore structure of carbon materials can be divided
into three categories, namely, micropores (pore size <2 nm), mesopores (2 nm < pore
size <50 nm), and macropores (pore size >50 nm) (Vu, 2012). The size of the pore structure
of porous carbonmaterials has a significant impact on their performance in practical applications.

Due to these advantages, carbonmaterials are widely used in the fields of adsorption (He,
2019), catalysis (Dong et al., 2020), and energy storage (Peng, 2019). This paper mainly
introduces the synthesis and application of carbon materials and describes the main
improvement ideas for current carbon materials (Figure 1). Importantly, the future
direction of carbon materials is further discussed.

2 Synthesis methods of carbon materials

2.1 Activation method

Many designs are currently focused on how to increase the specific surface area of carbon
materials, which include heat treatment, physical activation, and chemical activation. The
physical activation method refers to the use of CO2, water vapor, O2, and other gases as
activation media for the preparation of activated carbon under high-temperature conditions
(Sevilla, 2014; Rashidi, 2019; Ma, 2020). The CO2 molecules move at a slower rate thermally
compared to water vapor activation, resulting in a larger specific surface area and a higher
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volume of microporous material. However, the small size and low
activation of the activating molecules with a single activator result in a
large number of blind pores and an ineffective specific surface area of
the carbon material (Kim, 2017).

Chemical activation is the reaction of chemical reagents with the
carbon source during pyrolysis, commonly known as KOH, NaOH,
H3PO4, and ZnCl2 (Molina, 1995; Lillo, 2003). The main factors
influencing the preparation of porous carbon materials by chemical
activation include the composition of the precursor material, the
activation temperature, the activator, and the impregnation ratio
(Maia, 2018). A high impregnation ratio (raw material/activator)
allows the formation of activated carbon with a high specific surface
area, usually between 1:1 and 5:1 (Rashidi, 2016). KOH is the most
commonly used activator, and the pore structure of the prepared
material is well developed. Prasankumar converted Tasmanian blue
gum tree bark into activated carbons through a simple KOH
activationand carbonization method. The generated activated carbons
have a hierarchically connected mesoporous structure and a surface area
of 971 m2 g-1 with an average pore size of 2.2 nm (Thibeorchews, 2022).

Activated carbon is mainly derived from various organic precursors
rich in carbon (bitumen, coal, polymers, etc.). Due to the
environmentally unfriendly nature of fossil fuels, a large number of
activated carbons prepared from biomass as precursors have attracted a
great deal of attention in recent years. They are prepared from natural
substances such aswalnut shell powder (Pang, 2016; Jiang, 2022), banana
stem fibers (Taer, 2021), American poplar fruit (Kumar, 2020), bamboo
(Khuong, 2022), castor seed (Neme, 2022), and lotus seed shell (Hu,
2018), synthesizing activated carbons with a high specific surface area.

2.2 Template method

Specific surface area and pore size distribution are key factors
that affect the properties of carbon materials. The template method

is considered to be an effective method for achieving controlled
mesoporous structures. The template method can be divided into
the hard template method and the soft-template method. The
former involves thorough mixing of the hard template with the
precursor materials, carbonization, and subsequent removal of the
template. The synthesis of porous carbon materials using various
structural silica templates, such as SBA-15 (Yan, 2020) and 3D cubic
KIT-6 (Karthikeyan, 2022), has been reported in recent years. The
pore size and pore volume of the obtained porous carbon materials
can be systematically adjusted by changing the size of the template
(Sang, 2011). In addition, porous carbon can also be prepared using
CaCO3, MgO, Mg(OH)2, magnesium acetate, magnesium citrate, or
magnesium gluconate as templates (Wei, 2019; Zhou, 2020), which
can be subsequently removed with dilute hydrochloric acid. Liu
found a new solvent-free method for the preparation of mesoporous
carbon using mesoporous silica KIT-6 as a hard template for the
preparation of mesoporous carbon, overcoming the disadvantages of
the conventional filling process (Liu, 2019).

The soft-template method involves the self-assembly and co-
condensation of a soft template with a precursor to produce a
material with a specific structure (Zhang, 2009). The advantages
of the soft-template method are that the template does not require
subsequent processing and the experimental steps are simple and
environmentally friendly. Soft templates include various triblock
copolymers, such as F127 and F108. Peng prepared a unique
hierarchical porous N-, O-, and S-enriched carbon foam via a
combination of a soft-template method, freeze-drying, and
chemical etching (Peng, 2019). The structure offers not only an
ultra-high specific surface area but also a network of multiple-scale
channels.

2.3 Hydrothermal carbonization method

Hydrothermal carbonization is a process in which carbon
precursors are gradually hydrolyzed, dehydrated, condensed,
and aromatized under high temperature and pressure using
water as a solvent and eventually converted into carbon
materials. This method is milder and allows for autonomous
control of product morphology and better regulation of pore
size distribution. In the hydrothermal carbonization process,
there are many factors that influence the properties of the
carbon material, such as the hydrothermal temperature, the rate
of temperature increase, and the holding time. The specific surface
area of the carbon material produced is generally low, and the
pores are not well developed, so it is often used in combination
with activation to obtain porous carbon materials with a high
specific surface area.

Liu prepared nitrogen-doped porous carbon materials with a
specific surface area of up to 2,864 m2 g-1 and a total pore volume of
1.6 cm3 g-1 by hydrothermal treatment of biomass raw materials and
the addition of an activator, KOH, to the aqueous solution, followed
by high-temperature pyrolysis and activation (Liu, 2016). Veltri
prepared a nitrogen–oxygen co-doped biomass-based carbon
material by hydrothermal charring of orange juice with a specific
surface area of 1,725 m2 g-1 (Veltri, 2020). The pore structure tended
to be reasonable, and the mass fractions of nitrogen and oxygen were
as high as 5.65% and 5.38%

FIGURE 1
Schematic illustration of the synthesis and application of porous
carbon materials.
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3 Applications

3.1 Application of porous carbons in
adsorption

The International Panel on Climate Change (IPCC) report
shows that the atmospheric concentrations of greenhouse gases
(mainly CO2) continue to increase (Lunn, 2021). Porous carbon
has a wide range of sources, stable physical and chemical properties,
and fast adsorption and desorption rates. It is a kind of CO2

adsorption material with great potential for application.
The carbonized coconut shell was modified with urea at 350°C and

activated with K2CO3 to produce a nitrogen-doped carbonmaterial with
good CO2 adsorption properties (Yue, 2018). He used polydopamine
andmelamine as carbon sources andCaCO3 nanoparticles as templating
agents to synthesize porous carbon materials, which showed high CO2

adsorption capacity and selectivity at room temperature (He, 2019).
Pluronic P123 as a soft template was polymerized with D-glucose by the
hydrothermal method and activated by CO2 to produce a porous
adsorbent with high microporous content (Nicolae, 2020). The CO2/
N2 adsorption selectivity of 9 was achieved at 6.00 mmol g-1.

3.2 Application of porous carbon in energy
storage

In order to mitigate climate change and environmental pollution
caused by excessive use of fossil energy, clean and sustainable alternative
energy sources are urgently needed around the world (Weigelt, 2016;
Azcárate, 2017). In the past decades, a large number of researchers have
been devoted to the development of new types of energy storage
(Gondal, 2017; McKone, 2017). Carbon is widely used in energy
storage and has the advantages of a large specific surface area, well-
developed pores, good electrical conductivity, good electrolyte wetting,
high chemical stability, and a wide potential window (Luo. 2020; Kim,
2021). The electrochemical properties of porous carbon electrode
materials are a key factor affecting their energy storage properties.

Porous carbon materials are often used as anodes in batteries due
to their good electrolyte wetting. The formation of uniform and elastic
solid electrolyte interphase (SEI) or the use of tailored electrolytes can
improve the stability of the SEI on the carbon surface, thereby
increasing the safety and cyclability of the batteries (Fan, 2023; Gu,
2023). The porous carbon used as an electrode in a supercapacitor
achieves a high specific capacitance and superior rate capability. Sun
prepared nitrogen and sulfur co-doped carbon materials by chemical
vapor deposition using magnesium hydroxide as a template, which
had a large specific surface area (674 m2 g-1) and a porous interleaved
network with a high level of heteroatom doping (Miao, 2019). As an
anode material for Li-ion batteries, it shows a very high reversible
capacity and excellent cycling stability.

3.3 Application of porous carbons in
catalysis

The development of highly selective, catalytic, stable, green, and
economically accessible catalysts is extremely important in
industrial production. Carbon materials are often used as

catalysts in CO2 electroreduction, oxygen reduction reactions
(ORRs), and hydrogen evolution reactions (HERs) due to their
abundance of sources and their excellent chemical properties.

Chen proposed an NH3 heat treatment strategy to completely
remove pyrrole nitrogen and pyridine nitrogen dopants, and the
prepared porous carbon material could efficiently electroreduce CO2,
achieving a CO Faraday efficiency of 95.2% at a current density
of −2.84 mA cm-2 (Dong et al., 2020). Saravanan treated peanut shells
using a simple pyrolysis technique assisted by chemical activation and
explored the HER properties of peanut shell-derived carbon nanosheets
in acidic media (Saravanan, 2019). The nitrogen-doped carbon
nanosheets with a high specific surface area and a large number of
active sites showed excellent HER catalytic activity in aqueous electrolysis
devices (Liu, 2020b). Lai synthesized two-dimensional porous disordered-
layer carbon nanowebs with a large number of N-doped C defects using
an aromatic ring as the carbon source and urea as the nitrogen source in a
novel molecular design strategy (Lai, 2020). It was shown that carbon
edge defects doped with graphitic N atoms could lead to materials
exhibiting excellent ORR catalytic properties.

4 Discussions

Due to their high specific surface area, tunable physicochemical
properties, low cost, and accessibility, porous carbon materials have
shown a wide range of applications in areas such as catalysts, adsorbents,
and energy storage. Previously, various methods were used to produce
porous carbon materials with different pore structures, but most of the
preparation was carried out in the laboratory with complexmethods and
processes, which made it difficult to meet the requirements of industrial
preparation.Moreover, in order to regulate and optimize the structure of
porous carbon materials at a more microscopic level and to point the
way to the design and preparation of materials, further research on the
mechanisms of action of carbonmaterials in their applications is needed.
Thus, with the increasing energy shortage and environmental pollution,
the further enhancement of the development of simple, clean, and cost-
effective porous carbon materials could make a huge difference in a
wider range of areas.
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