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Transition metal (TM) single atom catalysts (SACs) are of great potential for
photocatalytic H2 production because of their abundant catalytic active sites
and cost-effectiveness. As a promising support material, red phosphorus (RP)
based SACs are still rarely investigated. In this work, we have carried out systematic
theoretical investigations by anchoring TM atoms (Fe, Co, Ni, Cu) on RP for
efficient photocatalytic H2 generation. Our density functional theory (DFT)
calculations have revealed that 3d orbitals of TM locate close to the Fermi
level to guarantee efficient electron transfer for photocatalytic performances.
Compared with pristine RP, the introduction of single atom TM on the surface
exhibit narrowed bandgaps, resulting in easier spatial separation for photon-
generated charge carriers and an extended photocatalytic absorption window
to the NIR range. Meanwhile, the H2O adsorptions are also highly preferred on the
TM single atoms with strong electron exchange, which benefits the subsequent
water-dissociation process. Due to the optimized electronic structure, the
activation energy barrier of water-splitting has been remarkably reduced in RP-
based SACs, revealing their promising potential for high-efficiency H2 production.
Our comprehensive explorations and screening of novel RP-based SACs will offer
a good reference for further designing novel photocatalysts for high-efficiency H2

generation.
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1 Introduction

Hydrogen energy is a clean and renewable energy, attracting increasing research
attention in recent years. Especially, it has a high gravimetric energy density, and the
product of H2 combustion is only pure water, making it a promising candidate to cope with
the fossil energy crisis and meet the challenge of peak carbon dioxide emission limitation.
(Wang S. et al., 2019; Pan et al., 2021; Xue et al., 2022). However, the high cost of H2

production as well as safety issues in storage and transportation have greatly restricted its
commercial applications. Without additional electric power consumption, solar energy-
driven catalytic water splitting has been considered as an eco-friendly strategy for low-cost
H2 production. Currently, photocatalytic H2 evolution has not been broadly adopted in
large-scale industrial production since it still suffers from the low solar-to-hydrogen (STH)
conversion rate, which is caused by intrinsic unfavorable thermodynamics and sluggish
kinetics of solar-driven catalytic water splitting reaction. (Chen et al., 2020; Bie et al., 2022).
In recent decades, to improve the catalytic activity of photocatalysts, researchers have tried a
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series of modulation strategies to enhance surface reactivity, reduce
the activation energy barrier, and restrain the intrinsic fast
recombination of photoinduced charge carriers.

Previously, phosphorus has been treated as an effective
heteroatom dopant for the band structure engineering of TiO2-
based photocatalysts. (Yu et al., 2003; Wang et al., 2012a; Hu et al.,
2017; Zhu et al., 2019; Huang et al., 2022). Afterwards, it has been
discovered that phosphorus itself can also act as an efficient
photocatalyst for hydrogen evolution through water-splitting.
(Shen et al., 2014; Hu et al., 2017; Liu et al., 2019; Chen et al.,
2022). Among its three allotropes (black, P4-white, and red
phosphorus), red phosphorus (RP) is the most available form
and has excellent chemical stability at room temperature, and it
has been treated as a promising semiconductor material in
the construction of photocatalytic platforms. (Wang et al., 2012a;
Xia et al., 2015; Hu et al., 2017; Liu et al., 2019; Chen et al., 2022;
Fung et al., 2022). It has been reported that RP is a durable
photocatalyst with the stable catalytic activity of H2 evolution
for more than 90 h under visible light irradiation. (Wang et al.,
2012a; Wang et al., 2012b). Though RP has good absorption of
visible light at about 700 nm, the overall water-splitting efficiency of
pristine RP is relatively limited due to its low conductivity, poor
electron-hole separation efficiency, and sluggish charge-carrier
mobility. (Zhu et al., 2019; Wang M. et al., 2020; Wu et al., 2021;
Chen et al., 2022).

Since RP has good lattice compatibility, it is possible to modify
the catalytic surface through the doping method or heterostructure
construction. As a result, the electronic structures of RP can be well-
manipulated to benefit the photocatalytic reaction. (Li et al., 2019;
Zhu et al., 2020a; Huang et al., 2022; Wang et al., 2022; Jia et al.,
2023). With the assistance of appropriate active co-catalyst atoms
such as Pt, the overall photocatalytic H2 production performance of
RP is greatly improved. (Wang et al., 2012a). In consideration of
material cost and future industrial applications, developing non-
precious metals based catalysts is of great significance for the
popularization of hydrogen energy. In particular, 3d transition
metals (TMs) are the most commonly studied candidates to
replace noble-metal catalysts due to their high catalytic activity.
By suitable tuning strategies, the novel non-noble metal catalysts can
also achieve comparable or even superior catalytic activity to noble
metal catalysts. Scientists have reported that both morphological
and scale controls are effective for the electronic property tuning of
semiconductor materials. (Zhu et al., 2020b; Wu et al., 2020;
Khandelwal et al., 2022). By downsizing the material scale from
the nanoscale to the cluster scale and then finally the atomic scale, an
enhanced inter-atomic strain is induced, leading to the modulations
in geometrical structure and electronic structures. (Liu and Corma,
2018; Khandelwal et al., 2022). Hence, developing single-atom
catalysts (SACs) is a potential method for the modulation of
catalytic activity on the atomic scale. The atomic dispersion of
active metal atoms on the RP surface will maximumly improve
the atomic utilization rate, offering maximum photocatalytic active
sites to enable the light adsorption and activation of H2O molecules
with a minimum consumption of metal atoms. (Wang B. et al., 2019;
Gao et al., 2020). In previous studies, the Ni-anchored RP SACs have
been proven to be very efficient photocatalysts for water splitting,
with a greatly improved catalytic activity than the pristine RP.
(Wang et al., 2022; Jia et al., 2023). However, the detailed

photocatalytic reaction mechanisms of Ni-RP SACs and the
potential of other 3d TMs SACs still lack sufficient studies.

In this work, we have conducted comprehensive calculations of
the electronic structures of commonly used TMs-based SACs (TM =
Fe, Co, Ni, and Cu) on RP support (denote as TMs-RP) to predict
their performances of photocatalytic H2 generation. Based on the
band structures and work functions, the thermodynamic driving
force for hydrogen and oxygen evolution reaction (HER and OER)
of each TMs-RP SACs is obtained and the pH tuning is also realized
based on the Nernst equations. Besides, the kinetics for water
adsorption and activation, the energy barrier for H adsorption,
and the activation barrier of H2 evolution are demonstrated in detail.
This work will offer an atomic scale insight into the reaction
mechanisms of TMs-RP SACs based photocatalytic H2 evolution.
Meanwhile, the detailed theoretical explorations also serve as
fundamental theoretical references for the rational design of
TMs-based SACs with enhanced photocatalytic performances in
the future.

2 Calculation setup

In this work, we have conducted density functional theory
(DFT) calculations within the CASTEP module. (Clark et al.,
2005). The geometry optimizations and single-point energy
calculations for all models have been conducted based on the
GGA-PBE (Perdew et al., 1992; Perdew et al., 1996; Hasnip and
Pickard, 2006) functional, ultrasoft pseudopotentials, and the
BFGS algorithm. To guarantee the electronic minimization and
convergence requirement, we have adopted the ensemble DFT
method of Marzari et al. for the solution of the Kohn-Sham
equation. (Marzari et al., 1997). The cutoff energy has been
applied with the ultrafine quality, which is set as 380 eV for
RP and Fe-RP, Co-RP, Ni-RP, and 440 eV for Cu-RP. The k-point
set is 2 × 2×1 for all the energy minimizations. The convergence
parameters are set up as follows: the SCF tolerance is 5.0 ×
10−7 eV/atom; the Max. Hellmann-Feynman force per atom is
0.01 eV/Å; the Max. stress is 0.02 GPa; and the Max.
displacement is 5.0 × 10−4 Å. According to previous
experimental studies, the [001]-oriented Hittorf’s phosphorus
has been proven to be very efficient for water-splitting. (Zhu
et al., 2020a). Thus, in this work, we choose the RP (001) surface
to act as the supporting host to stabilize the single-atom (SA)
TMs. The RP (001) facet is built from relaxed bulk Hittorf’s
phosphorus, (Thurn and Krebs, 1966), with a thickness of two
layers including 84 atoms (Supplementary Figure S1A). The top
view of pristine RP (001) and TMs-RP (Fe, Co, Ni, and Cu)
catalysts are demonstrated in Supplementary Figures S1B–F. The
lattice parameter is 9.27 Å and 9.21 Å for length A and
B-orientations, respectively. The vacuum thickness is set to be
20 Å, resulting in a length of 40.95 Å in C-orientation to ensure
sufficient space for geometry optimizations. During the
adsorption of H2O and H on different TMs-RP in this work,
the SAC surfaces have been constrained in order to highlight the
behaviors of key adsorbates. The H-adsorption free energy
(ΔGH*) serves as a key descriptor for the prediction of HER
activity, which can be calculated based on the following equation
(Nørskov et al., 2005; Kerketta et al., 2022):
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ΔEH � EH* − E* − 1/2E H2( ) (1)
In this equation, * indicates the un-adsorbed pure surface, and H*
stands for the surface adsorbed with H.

3 Results and discussions

3.1 Electronic structures of TMs-RP

For photocatalytic reactions, the excitation energy required for
electron-hole separation is largely decided by the bandgap value of
the semiconductor photocatalyst. To make the most use of solar
energy, the bandgap of the photocatalysts is expected to be located
within the spectrum of sunlight, namely, from the UV to NIR range.
In fact, most of the solar energy (nearly 95%) is constituted by visible
light (43%) and NIR (52%). To match the Vis-NIR excitation
window of sunlight, the bandgap of the candidate photocatalyst
is expected to be less than 3.10 eV. And based on the redox potential
of water, to drive the water splitting reaction, the bandgap value is
projected to be wider than 1.23 eV with the location of VBM lower
than the oxidation level of O2/H2O and CBM higher than the
reduction level of H2/H

+. Thus, the bandgap values and band
positions of photocatalysts can largely reflect their absorption
window toward sunlight, and the relative positions of VBM and
CBMwith reference to standard hydrogen electrode potential can be
used to predict the redox tendency for water splitting.

To evaluate the bandgap matching degree of the TMs-RP, we
have first compared the band structure of pristine RP (Figure 1A)

with Fe-, Co-, Ni-, Cu-anchored RP, respectively (Figures 1B–E) to
reveal the anchoring effect from different TM atoms. For the pristine
RP (001) surface, the bandgap is calculated to be 1.86 eV,

FIGURE 1
Band structures of (A) RP (001), (B) Fe-RP, (C) Co-RP, (D) Ni-RP, and (E) Cu-RP, respectively. (F) Summarized bandgap positions and values for
pristine-RP (001) as well as Fe-, Co-, Ni-, and Cu-anchored RP.

FIGURE 2
The calculated PDOS results of (A) P atom in RP (001), (B) Fe atom
in Fe-RP (C) Co atom in Co-RP, (D) Ni atom in Ni-RP, and (E) Cu atom
in Cu-RP respectively. The dashed line means the Fermi level.
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corresponding to an excitation energy of 667 nm in the red-light
range. For Fe-, Co-, and Ni-anchored RP, we find additional TM
states generated upper to the valence band maximum (VBM) and
below the conduction band minimum (CBM), resulting in a
narrowed bandgap of 0.68 eV, 1.15 eV, and 1.29 eV, respectively.
Notably, the bandgap of Cu-RP is not affected by Cu single atoms,
which still remains 1.87 eV. In particular, owing to the states
appeared below CBM in Co-RP (0.81 eV) and Ni-RP (0.79 eV),
the excitation energy required for the generation of photon-induced
charge carriers has largely shifted to the NIR range
(1531 nm–1824 nm), as indicated in Figure 1F. For Cu-RP, there
is an obvious downshifting of both VB and CB, which shows only
one mid-gap state with a distance of 1.44 eV from the VBM, which
reduces the absorption energy to a lower NIR window (861 nm).

Besides band structures, the calculated partial density of states
(PDOS) is another important indicator of electronic structures. In
Figure 2, we focus on the analysis of the d-orbital property of each
TM since the d-band center is also strongly related to the
photocatalytic activity and the electron transfer efficiency.
(Zhou et al., 2022). The pristine RP shows an evident bandgap
between CBM and VBM, which are both dominated by the P-3p
orbitals (Figure 2A). For Fe-, Co-, and Ni-anchored RP, the
localized d orbitals locate very close to the Fermi level (EF) and
VBM (Figures 2B–D). Especially, Co-RP and Ni-RP both display
very sharp 3d orbitals with higher electron density near EF,
exhibiting better performance for electron transmission. In
contrast, the 3d orbitals of Cu-RP have significantly moved to a
lower position of VB, which is far from the EF (Figure 2E). This
results in a wider gap for the transition of photo-induced charge
carriers during photocatalysis. The band edge is mainly
contributed by the p-orbitals of P with overlapping of 3d
orbitals of TMs, which induces the p-d coupling effect to
further facilitate charge-carrier transfer. For all four TMs-RP
catalysts, we notice the contribution of s-orbital to the CBM,
which serve as a ladder to lower the excitation energy for

electron excitation from VB to CB. For Cu-RP, the s-orbital
dominates the EF, which only limitedly compensates for low
electron transfer density near the VBM. Overall, the PDOS
results have revealed that the single-atom TM anchored in RP,
especially Co- and Ni-, brings great improvements in both
separations and transportations of photo-generated charge
carriers during photocatalysis.

3.2 Band structure alignment analysis

The electron-transition capacity of valence electrons is decided
by the energy gap between EF and vacuum level. (Zhou et al., 2022).
Thus, the work function has been treated as a key descriptor for
electron transition and charge flow in heterojunction structure, and
it can be obtained from the calculated electrostatic potential. (Qin
et al., 2020; Ruan et al., 2022). As discussed above, besides the
bandgap values, the relative position of the bandgap with a reference
to standard hydrogen electrode potential is also critical to predict
photocatalytic activity. For the construction of the band alignment
diagram (Figure 3), the electrostatic potential for each TM-RP type
studied in this work has been calculated to indicate the distance
between the Fermi level and vacuum level (Supplementary Figures
2A–E). The thermodynamic driving force for photocatalysis is
mainly affected by the relative potential position of CBM and
VBM of the semiconductor as well as the redox potential of the
corresponding reversible reaction. (Li et al., 2016). More negative
CBM means stronger reduction reaction tendency, while more
positive VBM potential signifies stronger oxidation reaction
driving force. Therefore, besides a bandgap value of more than
1.23 eV, the band edges (both VBM and CBM) of the photocatalyst
candidates need to cover both the standard potentials of OER and
HER to guarantee the high performances of water-splitting.
(Mortazavi et al., 2021).

In the acidic condition (pH = 0 in aqueous solution), the CBM of
pristine RP and TM-anchored RP are all located above the reduction
level of H2/H

+, exhibiting a high hydrogen evolution tendency
(Supplementary Figure S3). However, based on the energy gap
between CBM and H2/H

+ level, the TMs-RP all exhibit a
relatively weaker hydrogen evolution tendency than the pristine
RP surface except Ni-RP. According to the large gap value from Ni-
RP CBM to the H2/H

+ level, we propose that the anchoring Ni atom
offers a stronger driving force for the hydrogen evolution reaction.
Meanwhile, the VBM positions of pristine RP and TM-RP (except
Cu-RP) are located above O2/H2O level, theoretically indicating the
weak capability for oxygen evolution. Previous works have revealed
the slight mismatching of bandgaps and work functions between
theoretical calculations and experimental data. (Wang et al., 2009;
Wang et al., 2012a). By considering the calculated SHE as a
reference, the pristine RP and Cu-RP are also able to achieve
oxygen evolution in the acidic condition.

Since standard redox potentials of H2O are sensitive to
pH variation, the photocatalytic driving force for HER and OER
can be well tuned by the pH manipulation based on the following
Nernst equations: (Shojaei et al., 2020; Mortazavi et al., 2021):

EHER H+/H2( ) � −4.44 eV + pH × 0.059 eV (2)
EOER O2/H2O( ) � −5.67 eV + pH × 0.059 eV (3)

FIGURE 3
Band structure alignments in the scale of Vacuum (left) and SHE
(right) for pristine-RP (001), Fe-RP, Co-RP, Ni-RP, and Cu-RP, with
reference to the redox pairs of H+/H2 and O2/H2O. Red dashed lines
indicate pH = 0, blue dashed lines represent pH = 7, and black
dashed lines stand for pH = 14.
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The pH variation also impacts the band positions, which has been
verified in experiments that the slope of ECB (−0.033 eV/pH) does not
follow the Nernstian dependence on pH (−0.059 eV/pH). (Simon et al.,
2014). The slope of Nernstian dependence on pH for H2O redox
potentials is steeper. However, in this work, the pH value influences on
the corresponding band positions are not included. In our work, the
model is built in a vacuum environment with the mainly related
elements (H2O, H, or OH) adsorbed on the catalytic surface in
HER. The corresponding band positions are stationary with redox
potentials of H2O in different pH values to reveal the reaction tendency
for HER and OER. (Zhang et al., 2021; Yang et al., 2018; Makaremi
et al., 2018; da Silva et al., 2019; Shahid et al., 2020). In the neutral
condition (pH = 7), the H2/H

+ level and O2/H2O level move up to a
more negative position (with reference to SHE) at−0.41 eV and 0.82 eV,
respectively (Supplementary Figure S4). Accordingly, for the pristine RP
and TMs-RP photocatalysts, the driving force for HER declines while
the tendency forOER increases. RP andCu-RP still cover both potential
levels of HER and OER, indicating their photocatalytic activity towards
the full water splitting under neutral conditions. In addition, in the
highly alkaline environment (pH = 14), pristine RP and TMs-RP nearly
lose their HER capability in terms of thermodynamics (Supplementary
Figure S5). Thus, we can predict that in the design of photocatalytic
heterojunction, Ni-RP is a possible candidate to serve as an efficient
HER photocatalyst in wide pH environments.

3.3 Water adsorption comparison

Besides thermodynamic driving force, many other factors such
as microstructures at the micro or nanoscale, adsorption energy,
surface/interface morphological properties, and coupling effects
with cocatalyst components also have significant influence on
photocatalytic performance. (Li et al., 2015). For a better
explanation of the reaction mechanism and the prediction of the
catalytic activity of a potential photocatalyst, the adsorption of
reactants and the reaction energy should also be included. The
complex charge-carrier dynamics as well as surface-reaction
interactions should be fully investigated since they can largely
affect the apparent quantum efficiency in multi-stage
heterogeneous photocatalytic reactions. (Li et al., 2016).

The H2O adsorption energy has a great influence on interfacial
charge transfer, and decides the aggregation extent of H2O
molecules near the catalytic active sites, which further triggers
the concentration effect and results in more H* generated from
water splitting. (Wang F. et al., 2020). The adsorption strength of
H2O molecules is greatly affected by the structural stability of single
atoms anchored catalytic surface. In particular, the interactions
between the anchored SA-TMs and supporting P atoms have
been investigated regarding the iso-surface of charge density
difference (Supplementary Figure S6) and the Mulliken charge
(Supplementary Table S1). The RP stabilized SA-atoms have an
obvious electron exchange with coordinated P atoms. Notably, we
discover that the Fe atoms (0.27 e) have a stronger interaction with
surrounding P atoms than those of Co-RP (0.24 e) and Ni-RP
(0.18 e) counterparts. The stable anchoring site on the RP surface
of SA-Cu is different from the other three TMs-RP, which is not in
the center of the hexatomic ring formed by P atoms. SA-Cu shows a
relatively larger average net charge loss of 0.30 e. The electron flow

between the stabilized SA-TM atoms and supporting atoms
indicates the modification of electronic structures on the RP
surface, which verifies the feasibility of doping TMs for
photocatalytic activity modulation.

From the charge density difference diagram in Figures 4A–E,
H2O molecules have a much stronger interaction with TMs-RP
when compared to pristine RP surfaces. We can see the electron loss
in active metals SA sites and adsorbed O atoms (from adsorbed
H2O). Then, the electrons aggregate between TM and H2O with the
formation of an obvious adsorption bond. According to the
calculated H2O adsorption energy values in Figure 4F, H2O
adsorption processes in pristine-RP and TMs-RP are all
exothermic, indicating spontaneous adsorption trends. By the
loading of TMs SA atoms on the RP surface, the water
adsorption capacity has been improved remarkably. Among the
four TM-based SACs, Fe-RP (−0.61 eV), Co-RP (−0.67 eV), and Ni-
RP (−0.60 eV) exhibit better H2O affinity than Cu-RP (−0.45 eV). If
the H2O adsorption is too strong, the over-adsorption induces
poison effects on the catalytic surface. (Sravan Kumar et al.,
2020). Overall, the adsorption energies of Fe-, Co-, Ni-, and Cu-
RP are not too negative, indicating less possibility for catalyst
poisoning effect during the photocatalysis.

3.4 Reaction energy change of H2
generation

Besides the water adsorption comparisons, H adsorption is
another determinant factor in HER, where both too negative and
too positive values are not beneficial for the HER. Based on the
adsorption sites, the calculations for H-adsorption reaction energy
change are classified into two different types (Figure 5). One
considers that H atoms are adsorbed on the SA-metal atoms
(Figure 5A), and the other one demonstrates the adsorption of H
atoms on the coordinated P atoms to the SA-metal atom (Figure 5B).
To guarantee satisfactory computational accuracy, consistent
calculation parameters have been set for all the models. For the
situations that H atoms adsorbed on SA-metal atoms (H-TMs), the
4 TM SA (Fe-, Co-, Ni-, and Cu-) anchored RP catalysts all have
much smaller energy barriers (0.06 eV, −0.25 eV, 0.30 eV,
and −0.29 eV, respectively) than that of pristine RP (1.49 eV). As
for H adsorbed on coordinated P atoms (H-P-TMs), it can be
discovered that the energy barriers of H-P-TMs are slightly larger
than those in H-TMs, 0.33 eV (Fe-RP), 0.35 eV (Co-RP), 0.89 eV
(Ni-RP), 0.67 eV (Cu-RP, P1 site), 0.89 eV (Cu-RP, P2 site), and
1.27 eV (Cu-RP, P3 site) respectively, but their calculated ΔEH values
are still much less than that of pristine-RP. To sum up, under an
acidic environment, the H* is mainly from H+ in the solution, where
the adsorption energy of H* on the catalyst surface is the main
influence factor for HER. Based on the calculated ΔEH, in both
situations, H adsorbed on TM atoms (Fe-RP < Co-RP < Cu-RP <
Ni-RP < RP) or on coordinated P atoms (Fe-RP < Co-RP < H-P1-
Cu < Ni-RP = H-P2-Cu < H-P3-Cu < RP), SA TMs-RP have much
lower energy barriers than pristine-RP for HER. It is worth noting
that in the acidic condition, Fe-RP exhibits the lowest energy HER
barrier in both H-adsorption sites discussed above.

For the photocatalytic mechanism in neutral and alkaline
environments, H* is mainly from water dissociation. The energy
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FIGURE 4
The charge density difference for the net flowof charge between active P/TM atom andO atom in H2O for (A) RP (001), (B) Fe-RP, (C)Co-RP, (D)Ni-
RP and (E) Cu-RP. The blue color and red color mean the gain and loss of electrons, respectively. (F) The comparison of water adsorption energy.

FIGURE 5
The activation barrier for H adsorption on RP (001) and single atom TM anchored RP surface: (A) H adsorbed on transition metal atoms. (B) H
adsorbed on coordinated P atoms.
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barrier for the dissociation of H2O molecules and the desorption of
OH− are important influence factors in reaction energy changes. As
shown in Figures 6A–F, the energy change for the whole reaction
towards H2 generation is compared. For all the catalysts, the water
dissociation step requires the largest energy costs as the rate-
determining step. We have considered two different situations for
water dissociation to compare the reaction energy barriers. For the
adsorption of OH and H on TM atoms and neighboring P atoms,
respectively, the Co-RP and Ni-RP show an energy barrier of 0.90 eV
and 1.20 eV, respectively. Different from other TMs-RP types, the
anchored single-atom Cu is not symmetrically located in the
hexatomic ring of supporting P atoms, which leads to three
possible P sites for water dissociations with a water dissociation
energy of 1.50 eV, 1.10 eV, and 1.75 eV, respectively (Figure 6E).
For water dissociation, Co-RP, Ni-RP, and Cu-RP exhibit higher
energy barriers than that of pristine RP (0.79 eV). Notably, Fe-RP
shows the smallest energy barrier (0.66 eV) during water dissociation
process among all the candidate catalysts. After H2O dissociation, if the
OH is adsorbed on coordinated P atoms and H is adsorbed on TM

atoms, the activation energy barriers needed are relatively higher than
the former path discussed above, indicating a lower HER efficiency.
While the following desorption of OH− becomes much easier on the
TMs-RP surface, which requires much lower energy barriers
(<0.28 eV) or even becomes spontaneous. In comparison, the
pristine RP exhibits a much higher energy cost for the OH−

desorption, which leads to the poisoning effect of active sites and
lowers the overall photocatalysis performances. Moreover, only Cu-RP
and Co-RP (H adsorbed on Co atoms) show endothermic trends for
the direct H2 formation step while other TMs-RP all show the
exothermic trend.

For TMs-RP, the energy barriers for OH* desorption are
relatively small. In neutral and alkaline environments, since the
H* is mainly from the dissociation products (H* and OH*) of
adsorbed H2O* molecules, the water adsorption energy and
dissociation energy are the two main influencing factors for HER.
The water adsorption energy follows the order of Co-RP < Fe-RP <
Ni-RP < Cu-RP < RP, while the water dissociation energy, which is
the largest energy barrier, follows the order of Fe-RP < RP < Co-

FIGURE 6
The reaction energy change of hydrogen generation on (A) RP (001), (B) Fe-RP, (C) Co-RP, (D) Ni-RP, and (E–F) Cu-RP surface. The black dashed
lines labeled reaction paths indicate the OH adsorbed on TM atoms and H adsorbed on neighboring P atoms while the red dashed lines labeled paths
demonstrate OH adsorbed on coordinated P atoms and H adsorbed on TM atoms during the water dissociation process.
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RP < Cu-RP < Ni-RP. Less H2O molecules tend to be gathered
around the active catalytic sites on pristine RP surface because its
adsorption energy is only −0.04 eV. Thus, although pristine-RP has
a relatively small energy barrier for water dissociation, its HER
activity will be limited due to the inadequate gathering of reactant
H2O molecules on the catalytic surface. The adsorption energies of
water molecules on Fe-RP, Co-RP, and Ni-RP are much lower than
that of pristine-RP and Cu-RP, leading to more efficient
accumulation of H2O molecules on these three catalyst surfaces,
which will benefit the following water dissociation process. Further
taking the order of water dissociation energy into consideration, the
activation barriers of Ni-RP and Cu-RP are relatively larger. Overall,
in neutral and alkaline conditions, the Fe-RP and Co-RP can
potentially offer superior HER performance.

Combining the band alignment and reaction energy, we have
proposed photocatalyst candidates for different environments. For
the acidic solution, Fe-RP, Co-RP, and Cu-RP are the most
promising candidates. For the neutral environments, Fe-RP
delivers better performances than other TMs-RP, indicating novel
selections to achieve even superior performances than the reported
Ni-RP catalysts. (Wang et al., 2022; Jia et al., 2023). In a weak
alkaline environment, only Ni-RP is possible to satisfy the
requirement of band alignments. As we further consider the
electronic structure analysis, the much larger bandgap of RP and
Cu-RP significantly lowers the charge separation and transfer
process after light excitation, which largely affects their
photocatalysis performances. Therefore, we propose that Fe-RP
and Co-RP are promising candidates for photocatalysis of H2

generation.

4 Conclusion

In this work, we have conducted comprehensive investigations on
photocatalytic activity regarding the electronic properties, adsorption
properties, and reaction energy change for four kinds of SACs by
anchoring TM (Fe, Co, Ni, and Cu) single atoms on RP. With the
introduction of the single-atom TM anchored on the surface, the
sunlight absorptionwindow is extended from red light to a higher NIR
region, which potentially improves the utilization rate of solar energy.
The electronic structures indicate that Co-RP and Ni-RP show highly
catalytic active 3d orbitals to benefit the electron transfer during
photocatalysis. Considering the band alignments of photocatalysts,
Ni-RP indicates its superiority in supporting HER capability over a
wide pH range. Under the acidic environment, Cu-RP, Fe-RP, and
Co-RP demonstrate the most preferred proton binding to promote H2

generation. For the neutral and alkaline solution, all TMs-RP catalysts
exhibit much stronger H2O adsorption than pristine RP, which
promotes the following dissociation to supply sufficient proton. In
particular, Fe-RP and Co-RP has shown the lowest energy barriers for
H2 generation. Overall, we notice that there is no TMs-RP that has
superiority in all pH environments, where different TMs have their
specific merits. Based on the comprehensive investigations of different
parameters, we think that the TMs-RP possesses great potential and
flexibility to achieve efficient H2 generation in different environments.
This work has supplied important theoretical references and opened
great opportunities for experimental researchers to further optimize
the photocatalytic activity in advanced and novel SACs.
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