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Multicomponent reactions, conducted in a domino, sequential or consecutive
fashion, have not only considerably enhanced synthetic efficiency as one-pot
methodology, but they have also become an enabling tool for interdisciplinary
research. The highly diversity-oriented nature of the synthetic concept allows
accessing huge structural and functional space. Already some decades ago this
has been recognized for life sciences, in particular, lead finding and exploration in
pharma and agricultural chemistry. The quest for novel functional materials has
also opened the field for diversity-oriented syntheses of functional π-systems, i.e.
dyes for photonic and electronic applications based on their electronic properties.
This review summarizes recent developments in MCR syntheses of functional
chromophores highlighting syntheses following either the framework forming
scaffold approach by establishing connectivity between chromophores or the
chromogenic chromophore approach by de novo formation of chromophore of
interest. Both approaches warrant rapid access tomolecular functional π-systems,
i.e. chromophores, fluorophores, and electrophores for various applications.
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1 Introduction

Chromophores have increasingly become functional organic materials (Müller, 2007).
As a consequence of their photophysical properties, such as fluorescence and aggregation-
induced emission (AIE) (Hong et al., 2009; Hong et al., 2011; Hu et al., 2014; Mei et al., 2015;
Mazumdar et al., 2016), and their electrochemical characteristics they find broad application
in organic light-emitting diodes (OLEDs) (Müllen and Scherf, 2006; Park et al., 2011; Kalyani
and Dhoble, 2012; Li, 2015), dye-sensitized solar cells (DSSCs) (Grätzel, 2001; Mishra et al.,
2009), organic photovoltaics (OPVs) (Yam, 2010; Su et al., 2012; Ameri et al., 2013), organic
field effect transistors (OFETs) (Kymissis, 2008; Torsi et al., 2013) and in bio- or
environmental analytics (Chen et al., 1998; Nilsson et al., 2002; Wagenknecht, 2008;
Kim and Park, 2009; Cairo et al., 2010), as well as in medicinal and pharmaceutical
applications (Dua et al., 2011; Arora et al., 2012; Saini et al., 2013; Kumar and Kumar
Jain, 2016; Taylor et al., 2016; Asif, 2017; Taek Han et al., 2017; Petronijevic et al., 2018;
Soleymani and Chegeni, 2019). The ongoing quest for novel, efficient syntheses of new
functional chromophores with well-defined features and thoroughly fine-tuned properties
remains a challenge. Research on diversity-oriented syntheses concepts for functional
chromophores has become highly relevant over the past one and a half decades (Müller
and D’Souza, 2008; Briehn and Bäuerle, 2002; Zhu et al., 2014; D’Souza andMüller, 2007). In
particular, multicomponent reactions (MCRs) (Weber et al., 1999; Bienaymé et al., 2000;
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Dömling and Ugi, 2000; Zhu and Bienaymé, 2006; Müller, 2016;
Riva et al., 2016) have been established as a promising tool for the
synthesis of functional π-electron systems (Levi and Müller, 2016a;
Levi and Müller, 2016b; de Moliner et al., 2017; Merkt and Müller,
2018) in recent years.

By definition MCRs proceed in a one-pot fashion, where more
than two starting components react to form a product containing
most of the deployed atoms. In sensu stricto, the process is not only
conducted in a single reaction vessel, but also without changing the
solvent, filtration or any other workup operations. Indeed, MCR
represent a reactivity-based concept (Müller, 2014), where
reactivities of functional groups can be employed in three
different ways. In a domino MCRs, all compounds are present in
the vessel from the beginning of the process. In a sequential MCR,
reactants are added in a well-defined order while the reaction
conditions maintained constant. Finally, MCRs taking advantage
of defined order of transformation of the reactants, yet, with variably
adjusting the reaction conditions from step to step are considered as
consecutive processes. All MCR have in common high levels of
functional and structural diversity with a minimum of purification
operations at the end of the one-pot processes.

MCRs are generally well suited to generate acyclic or cyclic
scaffolds that either bear chromophores as functional substituents
(scaffold approach) or can be considered de novo formed
chromophores (chromogenic approach) (Scheme 1) (Levi and
Müller, 2016b). While the former approach allows placing
multiple chromophores in close proximity with defined
configuration and conformation by the constituted scaffold, also
in an electronically non-conjugative fashion, the latter approach is
chromogenic and forms the chromophore scaffold of interest with
broad structural diversity in a one-pot fashion.

Both approaches are advantageous for advanced chromophore
research since large chromophore libraries are rapidly and
convergently generated. This allows extensive exploration of
electronic properties by electrochemical and photophysical
investigation in combination with advanced computational
chemistry. Ultimately, the evolving structure-property relationships
lead to a more comprehensive understanding and to a rational

experimentally founded design of functional chromophores, which
are highly requested for high-tech applications.

Guided by the synthetic chromogenic concept of MCR we have
structured this review, which updates our previous overview on
MCR approaches to functional chromophores (Levi and Müller,
2016b), according to the chromophore classes as defined by their
acyclic or (hetero)cyclic central structural elements. Starting from
merocyanines, we span the arc from five-to six-membered
heterocycles or (hetero)arene and azo chromophores to
complexes, discussing predominantly chromophore approaches
and some scaffold approaches for illustrating and highlighting in
a flashlight fashion most recent developments.

2 Merocyanines

Merocyanines are donor-acceptor polyenes (Mishra et al., 2000;
Kulinich and Ishchenko, 2009a; Kulinich and Ishchenko, 2009b;
Hamer, 2009). Due to the polymethine chain and the resulting
conjugated π-system, they can be classified as polymethine dyes.
According to the classical definition, the class of merocyanines
comprises the streptocyanines and their analogues, in which both
the nitrogen atom and the carbonyl group form part of a heterocyclic
system. In general, merocyanines exhibit tunable electronic properties
(Hamer, 1964; Mishra et al., 2000; Kulinich and Ishchenko, 2009b;
Arjona-Esteban et al., 2015; Lenze et al., 2015). By varying the terminal
groups, the substituents, and the polymethine chain length, functional
dyes can be prepared with applications in optoelectronic and non-
linear optical materials, optical information carriers, solar
concentrators, electroluminescent devices (Kronenberg et al., 2008;
Bürckstümmer et al., 2010; Würthner and Meerholz, 2010), and as
fluorescent probes and markers (Valinsky et al., 1978; Williamson
et al., 1983; Nandi et al., 2014). Due to their polar nature,merocyanines
are generally characterized by absorption and/or emission
solvatochromism (Brooker et al., 1951; Reichardt and Welton,
2010). Predominantly, merocyanine dyes are prepared via aldol
condensation. Only a few multicomponent synthesis routes for the
preparation of these dyes are reported (Wurthner, 1999; Wurthner
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et al., 1999). One of the first MCRs for the synthesis of merocyanine
dyes gave access to dye 1 and 2 through a formylation and
condensation sequence of thiazoles or indolines with
hydroxypyridones and a formylation reagent generated in situ from
DMF in acetic anhydride in almost quantitative yields in the sense of
the chromophore concept. Mechanistically, the DMF in acetic
anhydride first reacts with hydroxypyridones and the subsequently
formed intermediate reacts with an electron-rich methylene base or
heterocycle. In addition, benzothiazole and benzoxazole dyes 3 and 4,
respectively, were obtained in remarkable yields (39%–42%) from the
in situ generated methylene bases (Supplementary Material S1).

It should be noted that all alkyl-substituted derivatives are
characterized by a single extremely narrow absorption band in
the visible (λmax,abs = 495–533 nm). All of the obtained indoline
2, benzothiazole 3 and benzoxazole dyes 4 display red or orange
solid-state luminescence. Only a few of the thiazole dyes 1 fluoresce
in solid state. Thiazole dyes 1 absorb light in a range of 528–555 nm.
Because of their electronic peculiarity that contributions of the non-
polar and the zwitterionic resonance structures are almost identical
both in the electronic ground and excited state, these dyes find
application in color copy (Gregory, 2012).

A variety of indolone-based merocyanines with a push-pull
character on the basis of insertion-alkynylation Michael addition
sequence can be synthesized (Muschelknautz et al., 2014; D’Souza
et al., 2010; Muschelknautz et al., 2013). Recently, even a white light
emitter generated by aggregation-induced double emission (AIDE)
in combination with partial energy transfer is postulated (Denißen
et al., 2020). Indolone-based merocyanines, with a Boc group, also

exhibit interesting photophysical properties such as aggregation-
induced emission (AIE) or crystallization-induced emission
enhancement (CIEE) (Denissen et al., 2017a).

The Boc-substituted 3-arylallylidene indolones 5 can be
synthesized via a consecutive four-component approach
following the chromophore concept. The synthesis via Heck
condensation sequence is not stereoselective regarding the
allylidene double bond adjacent to the indolone, which exhibits
photoisomerization in daylight (Scheme 2A) (Wilbert and Müller,
2022).

Notably, the respective diastereomers of compound 5 share very
similar photophysical properties. In general, most of the derivatives
display exclusively solid-state emission. Among them, compounds
5a and 5b possess the highest fluorescence quantum yields reaching
18%. Furthermore, the oxindole-based merocyanines 5c and 5d are
also luminescent in solution and exhibit positive emission
solvatochromism. Additionally, 5c exhibits aggregation-induced
emission enhancement (AIEE) (Supplementary Material S2).

Using a Heck-Knoevenagel sequence, 7-donor-substituted
phenothiazinyl merocyanines 6 are prepared with yields up to
54%. The optimal reaction conditions of the three-component
reaction involving heteroaryl halides, acrolein and ethyl
cyanoacetate were developed by statistical design of experiments
and Bayesian optimization (Scheme 2B) (Stephan et al., 2022).

The phenothiazine-basedmerocyanines 6 are red-orange dyes that
reveal longest absorption bands in a range from 466 to 491 nm. Using
the Hammett plot, a correlation of the red shift of the absorption band
with increasing donor strength can be proven, which indicates an

SCHEME 1
Conceptual MCR formation of functional chromophores by scaffold and chromophore approaches (Reprinted from Levi and Müller (2016b),
Copyright (2016), with permission from The Royal Society of Chemistry).
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SCHEME 2
(A) Consecutive one pot four-component synthesis of allylidene indolone chromophores 5 by a Heck condensation sequence and selected
examples (Wilbert and Müller, 2022). (B) Consecutive three-component Heck-Knoevenagel synthesis of merocyanine esters 6 (Stephan et al., 2022). (C)
Consecutive three-component reaction to synthesize N-benzyl aroyl-S,N-keteneacetal bichromophores 7 and an insight into the compound library
sorted by the employed blue emitters (Biesen et al., 2021).
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essential charge transfer character. The fluorescence of the
chromophores is located in a range from 730 to 780 nm with
Stokes shifts of 6,500–8,200 cm−1. The carboxylic acids obtained by
saponification of merocyanine esters can be implemented in DSSC and
achieve solar cell performance with relative efficiencies up to 93%
compared to standard ruthenium dye N3.

Further comparably small merocyanines with outstanding
photophysical properties such as AIE behavior and tunable solid-
state emission are proposed by chromophores with aroyl-S,N-ketene
acetal building blocks (Biesen et al., 2020). The previous reported
systems were modified by synthesis of bichromophores. For this
purpose, blue emitters were introduced after condensing aroyl
chlorides and a N-(p-bromobenzyl) 2-methyl-benzothiazolium
salt by a Suzuki coupling of pinacolboronic esters. This three-
component one-pot procedure enabled an extraordinarily large
substance library of N-benzyl aroyl-S,N-keteneacetal
bichromophores 7 (Scheme 2C) (Biesen et al., 2021).

The synthesized fluorophores show a rainbow-like tuning of the
solid-state emission color. Depending on the substitution pattern, a
color impression from blue to orange-red can be achieved
(Supplementary Material S3).

The variation of both chromophores allows different
communication pathways between them. This can result in full
or partial energy transfer processes leading to dual emission, or
aggregation-induced switching of fluorescence. This selective
excitation of either the blue emitter or the aroyl S,N-ketene acetal
provides specific emission behavior in solution or in aggregates,
which can be exploited for application as a pH sensor or as a detector
of water content in alcoholic beverages.

The bichromophore systems could be further developed by
preparing asymmetrically bridged aroyl-S,N-ketene acetals and
aroyl-S,N-ketene acetal multichromophores 8 via multiple Suzuki
one-pot sequences starting from electron donating p-bromo
substituted benzylaroyl-S,N-ketene acetals. Phenyl and more
complex dye systems were accepted as linker systems within the
three-component Suzuki reaction. In order to synthesize the
multichromophore systems, triborylated benzene and
triphenylamine as well as tetraborylated tetraphenylethene were
used as linkers (Supplementary Material S4) (Biesen et al., 2022).

Similar to previous synthesized bichromophores, the bridged
compounds 8 exhibit AIE and ET properties. The emission behavior
in solution and in the solid state as well as starting point for the
formation of aggregates can be determined by the employed linker
molecule. The interaction of the aroyl S,N-ketene acetals and the
linker influences photophysical properties such as emission color
and intensity, fluorescence quantum yield and lifetime.
Furthermore, due to the different combination of the linker and
aroyl S,N-ketene acetal, partial and complete energy transfer
processes as well as different emission behavior upon aggregation
(AIE, AIEE and ACQ) is observed. Interestingly, the emission
properties of bichromophores 7 and multichromophores 8 can be
enhanced by encapsulation in polystyrene particles.

Just recently a Suzuki-Knoevenagel condensation sequence was
applied to synthesize merocyanines with good DSSC performance in
a one-pot fashion (Meyer and Müller, 2020). The consecutive three-
component reaction of boronic acids/esters, (hetero)aromatic
bromoaldehydes and methylene-active compounds was expanded
to a library of 60 donor-π-bridge-acceptor structures with

p-phenylene- (9), thienylene- (10), 4-octyl thienylene- (11),
carbazole- (12), or phenothiazine-bridged (13) merocyanines
(Scheme 3A) (Meyer et al., 2021).

The UV/Vis spectra of merocyanine 9–13 exhibit the longest
wavelength absorption maxima in a broad spectral range of
λmax,abs = 367–580 nm with molar extinction coefficients ε
between 21,000 and 52,000 M−1 cm−1, which accounts to a
dominant charge transfer transition from the donor to the
acceptor part. The emission maxima can be detected in a range
of 412–668 nm with Stokes shifts ranging from 1,200 to 8,000 cm−1

(0.147–0.990 eV). The energy of the hypothetical E0-0 transition
determined from the intersection of the absorption and emission
bands represents the optical band gap and lies between 2.083 and
3.197 eV. A correlation analyses by plotting the optical band gaps
E0-0 against the first oxidation potentials E1/2 of redox active
systems of consanguineous series furnishes linear correlations
and, by extension, two parameter correlations (oxidation
potential and emission maximum) with the optical band gaps.
Thus, given this planar correlation, for a number of
merocyanines optical band gaps can be predicted based on the
first oxidation potentials and emission maxima.

Consecutive three-component alkynylation addition sequences
can be performed to synthesize cyclohexene-embedded
merocyanines 14 and 15. A stronger nucleophilic amine moiety
like pyrrolidine can be employed to synthesize cyanines 16 in
excellent yields via a pseudo four-component synthesis by
carbonyl condensation of the heterocyclic amine (Scheme 3B)
(Papadopoulos et al., 2022).

Merocyanines 14 and 15 and cyanines 16 are obtained as yellow
to orange solids. The prepared merocyanine derivatives are found to
be non-luminescent in solution and in solid state, whereas the
cyanines exhibit luminescence with low quantum yield of 1%.
The absorption maxima of 16 are located at 443 and 459 nm
with absorption coefficients over 110·103 M−1cm−1 for the two
derivates. The absorption maxima of the merocyanines 14/15
and component 16 are located at 365–390 nm and 442 nm,
respectively. Due to the extension of the system, the red shift of
the absorption band can be explained.

3 Five-membered heterocycles

3.1 Oxygen heterocycles

Furans are found in many natural products (Keay and Dibble,
1996) and as a result of their biological activity, they are often
structural moieties in pharmaceuticals (Iyer and Gopalachari, 1973;
Dikshit et al., 1974; Durani et al., 1989; Dikshit et al., 1991; Nieves-
Neira et al., 1999; Mortensen et al., 2001; Chène, 2003; Issaeva et al.,
2004; Thuita et al., 2008; Wenzler et al., 2009; Barrett and Croft,
2012). The Molisch test is a colometric detection method that can be
used to detect carbohydrates that have been converted into
furfuraldehydes by thermal acid degradation. This detection is
carried out via reaction with α-naphthol and results in a violet
coloration (Molisch, 1886). But aside from their pharmacological
importance, they can also be considered as photonic chromophores
(Liu and Luh, 2002). In general, many furan heterocycles exhibit
strong fluorescence. Due to their excellent semiconducting
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properties, they are found in organic solar cells (Zheng and Huo,
2021). In addition, furan possesses strong non-linear optical
properties which makes it useful in a number of non-linear
optical applications (Kamada et al., 2000; Gündüzalp et al.,
2016). Classic synthetic routes for the production of substituted
furans rely either on cyclocondensation of dicarbonyl compounds or
on furan ring substitution (Zeni and Larock, 2004; Brown, 2005;
Duc, 2019). The preparation of 2,5-disubstituted furans is
commonly carried out via a Paal-Knorr reaction in the sense of a
cyclocondensation of 1,4-diketones (Amarnath and Amarnath,
1995), yet a consecutive multicomponent approach to

symmetrically 2,5-disubstituted furans via a Sonogashira-Glaser
addition-cyclization sequence is known (Klukas et al., 2014).

Butenolides are unsaturated lactones consisting of a
dihydrofuran-2-one group. They are important structural
building blocks in natural products (Seitz and Reiser, 2005;
Roethle and Trauner, 2008; Kitson et al., 2009; Igarashi et al.,
2011) and often possess high biological activity such as antibiotic,
anticancer and antitumor (Shiomi et al., 2005; Wu et al., 2005; Fei
et al., 2007; Liu et al., 2008; Isaka et al., 2009; Wang et al., 2009;
Kitani et al., 2011; Uchida et al., 2011; Chen et al., 2012; Csuk et al.,
2012). The coupling of a chromiummethoxycarbene complex with a

SCHEME 3
(A) Three-component Suzuki–Knoevenagel synthesis of merocyanines 9–13 as well as representative derivatives of the substance libraries. The
position of the acceptor group is indicated by Acc (Meyer et al., 2021). (B)One-pot synthesis of a triflate compound, terminal alkyne and various amines to
form cyclohexene-embedded merocyanines 14 and 15 as well as cyanines 16 (Papadopoulos et al., 2022).
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ketone or an imide lithium enolate followed by a propargylic
organomagnesium reagent lead to the synthesis of novel
hydroxy-substituted bicyclic [4.3.0]-galkylidene-2-butenolides 17
and 18 (Scheme 4A) (Suero et al., 2012). Upon modulating
substituents on the starting materials, high diversity and
complexity of the bicycles can be realized. For instance, alkyl,
aryl, heteroaryl, alkenyl and alkynyl groups are well tolerated in
the bicyclic compound 17 as a group R2 resulting from the ketone
component. The synthesis of compound 18 proceeds
enantioselectively due to the inserted chiral imide enolate auxiliary.

Both heterocycles embed the γ-(2-arylalkylidene)-2-butenolide
fluorophore and the bicycles 17 and 18 fluoresce intensively blue in
solution with large Stokes shifts.

3.2 Nitrogen heterocycles

Pyrrole is the five-membered azol and appears as a structural
core in many biologically active molecules with antibacterial
(Daidone et al., 1990), antifungal (Kaiser and Glenn, 1972), anti-
inflammatory (Battilocchio et al., 2013), antioxidant (Meshram
et al., 2010), antitumour and ionotropic properties (Jonas et al.,
1993). Besides, pyrroles naturally and non-naturally occurring
pyrroles are per se interesting as functional dyes (Jonas et al.,
1993; Fürstner et al., 1998; Fürstner, 2003; Jones and Bean, 2013;
Khajuria et al., 2016). Thus, aryl-substituted pyrrole derivatives with
pronounced AIE properties are known (Feng et al., 2010; Han et al.,
2012; Shi et al., 2012) and in addition, for instance, indenopyrrole

SCHEME 4
(A) One-pot synthesis of 6-5-bicyclic γ-alkylidene-2-butenolides 17 and 18 from ketone lithium enolates or from imide lithium enolates (Suero
et al., 2012). (B) Three-component synthesis of highly functionalized dihydroindeno[1,2-b]pyrrole fluorophores 19 (Mal et al., 2018). (C) Pseudo five-
component synthesis of tetraaryl-1,4-dihydropyrrolo-[3,2-b]pyrrole derivatives 20 (Martins et al., 2018).
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derivatives can serve as Al(III) selective OFF-ON chemosensors for
bioimaging in live human hepatocellular carcinoma cells (Mal et al.,
2018). For this purpose, the reaction of ninhydrin, primary amines
and dialkyl acetylenedicarboxylates furnishes a series of
dihydroindeno[1,2-b]pyrrole derivatives utilizing the
chromophore approach (Scheme 4B). The selected green solvent
is water and PEG-400 [polyethylene glycol (400)] acts as a phase
transfer catalyst. First, a nucleophilic enamine diester is formed
upon reaction of the amine and dialkyl acetylenedicarboxylate,
which nucleophilically attacks the carbonyl center of the
ninhydrin. After water elimination, intramolecular cyclization
and tautomerization results in the formation of indeno[1,2-b]
pyrrole derivatives 19.

Chromophores 19 exhibit a weak emission in the range of
around 485 and 515 nm. However, the fluorescence intensity
increases selectively in the presence of Al(III) ions due to CHEF
(chelation-enhanced fluorescence). Complexation ensues between
the Al(III) ions and presumably the two syn-O-atoms of the
functional alcohol groups, which can be experimentally verified
by 1HNMR as well as via calculations (Sun et al., 2012; Jo et al., 2016;
Naskar et al., 2018).

Several multicomponent syntheses of pyrroles have been
reported (Balme, 2004; Estevez et al., 2010; Estévez et al., 2014).
For instance, tetraaryl-1,4-dihydropyrrolo[3,2-b] pyrroles 20 are
formed via Mannich reaction of benzaldehydes, anilines and β-
diketone derivatives in the sense of a chromophore approach
(Scheme 4C) (Martins et al., 2018). The in situ generated Schiff
base reacts with the enol form of butane-2,3-dione. Then, the cyclic
enamine intermediate adds to another Schiff base. The
pyrrolopyrrole is finally formed cyclization and subsequent
oxidation (Janiga et al., 2013). These compounds can be classified
as heteropentalenes which consist of two fused heterocyclic five-
membered rings (Gribble and Joule, 2009) with 10 π-electrons and,
thus, elevating them for further usage in electronic devices (Biswas
et al., 2016). Chromophores 20 are promising candidates as
sensitizing dyes in optoelectronic applications. For the MCR
synthesis of compounds 20, niobium pentachloride is used as a
Lewis acid catalyst. The reaction proceeds via two competing
mechanisms, which can be controlled by the reactivity of the
selected benzaldehyde and aniline derivatives.

Most components absorb between 294 and 382 nm and emit
around 420 nm. As said, the photophysical properties suggest that
these materials can be used as sensitizing dyes in optoelectronic
devices. The modulation of the optical properties can be particularly
controlled by the substituent R1 benzaldehyde derivative. For the
electron-withdrawing substituent NO2, the absorption bands
redshifts to the region between 500 and 600 nm. In contrast, the
electron-releasing p-methyl substituent CH3 causes a blueshift of the
absorption bands.

Imidazole is a key structural motif of considerable importance
in biomolecules as represented by the essential amino acid histidine
(Grimmett et al., 1984; Luca, 2006; Bellina et al., 2007). Imidazoles
have been shown to possess antibacterial (Khabnadideh et al., 2003;
Khalafi-Nezhad et al., 2005), antifungal (Pestellini et al., 1987; Jones
et al., 1990; Silvestri et al., 2004), farnesyltransferase inhibitory
(Curtin et al., 2003; Lin et al., 2003; Tong et al., 2003), and anti-
inflammatory activity properties (Raingeaud et al., 1995; Beyaert
et al., 1996) or function as selective ligands at histamine receptors

(Ganellin et al., 1996; De Esch et al., 1999; Elz et al., 2000).
Imidazole-fused heterocycles can exhibit interesting fluorescence
properties such as excited-state intramolecular proton transfer
(ESIPT) (Heller and Williams, 1970; Goodman and Brus, 1978;
Kasha, 1986; Park et al., 2005; Skonieczny et al., 2012; Ali et al.,
2015). In addition, some non-linear optical (NLO) imidazole-based
chromophores (Stähelin et al., 1992; Bu et al., 1996; Santos et al.,
2001; Wang et al., 2002) as well as donor-acceptor chromophores
are known (Murata et al., 2007; Chang et al., 2008; Chang et al.,
2009; Kulhánek et al., 2011). The Groebke-Blackburn-Bienaymé
reaction (GBBR) represents an MCR approach to imidazoazines by
acid-catalyzed condensation of aminoazines, aldehydes and
isocyanides (Bienaymé and Bouzid, 1998; Blackburn et al., 1998;
Groebke et al., 1998). Using the concept of GBBR, heterocyclic
scaffolds with adjustable properties can be prepared.
Chromophores 21 are synthesized via a double GBBR of 2,4-
diaminopyrimidine and a variety of aldehydes and isocyanides
in moderate to good yields following the chromophore concept
(Scheme 5AI) (Ghashghaei et al., 2018). The process can also be
conducted in a sequential fashion to give unsymmetrically
substituted chromophores 23 via the intermediate GBB
monoadducts 22 (Scheme 5A II). The high selectivity is
rationalized by preferential formation of an imine from the
amino group at 2-position in the initial step of the GBB.
Likewise, various polyaminopolyazines such as 2,4-
diaminoquinazolines and 3,6-diaminopyridazines as substrates
are equally successfully transformed.

The emission maxima of selected GBBR dyes 21 and 23 are found
in a narrow range from 447 to 460 nm. By the substituent diversity on
theGBB cores, the emission can be tuned. Thus, a redshift in absorption
and emission wavelengths occurs by expanding the π-electron
conjugation with conjugated (hetero)aryl groups and their
modification. For instance, the orange bispyridinium salt 24 is
prepared by alkylation of the pyridine ring of yellow chromophore
21a (Supplementary Material S5). While compound 21a shows no
specific interaction with quadruplex DNA structures, the bispyridinium
salt 24 reveals significant strong interaction and can be potentially
applied as selective binder for the further development of new
anticancer drugs.

A further established approach for the synthesis of imidazoles is
the Debus-Radziszwski reaction (Debus, 1858; Radzisewski, 1882).
Upon reaction of ammonium acetate, salicylaldehyde, 4-chloro/
bromoaniline and benzil in acetic acid, 2-(1-(4-chlorophenyl)-4,5-
diphenyl-1H-imidazol-2-yl)phenol 25a and 2-(1-(4bromophenyl)-
4,5-diphenyl-1H-imidazol-2-yl)phenol 25b are obtained in good
yields (Scheme 5B) (Somasundaram et al., 2018).

The synthesized imidazole chromophores 25 are blue fluorescent
and show excited state proton transfer (ESIPT). In the solid state as well
as in solution, intense fluorescence is exhibited due to the four phenyl
rings on the imidazole core limiting the intermolecular interactions
between neighboring molecules.

Isoxazoles rarely occur in nature, yet, these heterocycles possess
enormous bioactive properties (Palmer and Venkatraman, 2003) and
are therefore used in therapeutics (Kumbhare et al., 2012; Joshi et al.,
2017; Pairas et al., 2017). However, their photophysical properties are
still largely unexplored (Irfan et al., 2016; de Brito et al., 2018; Sato
et al., 2020). Some one-pot methods for the formation of isoxazoles
have been reported (Merkul and Müller, 2006; Kaim et al., 2009;
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Wachenfeldt et al., 2013). Just recently, a sequentially palladium
catalyzed consecutive four-component coupling-cyclocondensation-
coupling (C3) synthesis of isoxazoles from aroyl chloride, alkyne,
hydroxylamine and boronic acids has been disclosed (Scheme 6A)
(Deden et al., 2020). Fluorescent biaryl-substituted isoxazoles 26 and
27 are obtained in the sense of a chromophore approach. Indeed,
p-bromophenyl acetylene or p-bromobenzoyl chloride can be
successfully employed in a sequential catalyzed Sonogashira-
cyclocondensation-Suzuki process.

The representatives with donor-acceptor substitution pattern
strongly fluoresce in solution (Supplementary Material S6). The
absorption spectrum of 26a, which contains the biaryl
substituent in 3-position, is hypsochromically shifted
(λmax,abs = 294 nm). Compound 26a exhibits the highest
molecular absorption coefficient (ε = 66,000M−1cm−1) and Stokes
shift (Δ~] = 10,400 cm−1) in this series of biaryl-substituted
isoxazoles. However, the quantum yield of 26a (ΦF = 0.17) is
considerably lower compared to 5-biaryl-substituted isoxazoles 27,
which range from 0.62 to 0.86. Emission maxima of compounds
26a–c are detected at 376, 411, and 554 nm, respectively. The
bathochromic shift of 27b is caused by the electron-withdrawing
cyano substituent in comparison to the trifluoromethyl substituent
of 26a. The strong bathochromic shift of compound 27c results from
the strong electron-donating dimethylamino donor.

Another interesting catalytic approach for the generation of
isoxazol-5(4H)-one is catalysis by enzymes. Polyethylene imine (PEI)
derivatives are synthetic enzymes with good catalytic activities for
various reactions (Vasylyev et al., 2006; Abu-Reziq et al., 2008;
Avenier and Hollfelder, 2009). The benefit of this catalyst system is
that it can be recycled up to 15 times without any noticeable loss of
catalyst activity. Mechanistically, the condensation reaction of
hydroxylamine and ethyl acetoacetate is followed by cyclization. The
resulting isoxazolones undergo a Knoevenagel-type condensation with
aromatic aldehydes to form isoxazol-5(4H)-ones 28 in good to excellent
yields (Scheme 6B) (Oliveira et al., 2021).

The shown derivatives 28 fluoresce in solution and they also
display positive solvatochromicity. Thus, small Stokes shifts are
observed in non-polar solvents and medium to large Stokes shifts
in polar solvents. In general, the chromophores have large molar
extinction coefficients and low fluorescence quantum yields. In
particular, the fluorescent derivative 28d represents a promising
candidate as a probe for bioimaging due to its ability to selectively
stain early endosomes in living cells.

Another push-pull chromophore, where the isoxazole scaffold acts
as the electron acceptor and the aromatic ring as the donor, is 4-
(arylmethylene)-5-oxo-4,5-dihydroisoxazole-3-carboxylic acid 29. The
reaction proceeds via a two-step one-pot reaction starting from
aromatic aldehydes, diethyl acetylenedicarboxylate and

SCHEME 5
(A) Synthesis of GBB products 21 and 23 via twofold GBBR of 2,4-diaminopyrimidine in a direct (I) and a sequential approach (II) (Ghashghaei et al.,
2018). (B) Debus-Radziszwski multicomponent reaction to form imidazole-based fluorophores 25 (Somasundaram et al., 2018).
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hydroxylamine-O-sulfonic acid (Scheme 7A) (Tasior et al., 2021). The
reaction is initiated by a Michael addition of hydroxylamine to diethyl
acetylenedicarboxylate. The formed enamine then reacts with aromatic
aldehydes and the isoxazole derivatives are obtained by elimination of
the sulfur trioxide and subsequent transesterification.

All isoxazole derivates 29 are non-emissive, probably due to
thermal relaxation caused by rotation of the methine bridge. The
absorption maxima of 29b and 29c are bathochromically shifted
(λmax,abs = 491 and 435 nm, respectively) in comparison to themaximaof
29a (λmax,abs = 400 nm) caused their stronger electron-donating character.

SCHEME 6
(A) Synthesis of biaryl-substituted isoxazoles 26 and 27 via a coupling-cyclocondensation-coupling (C3) sequence (Deden et al., 2020). (B) Enzyme-
catalyzed three-component isoxazol-5(4H)-one 28 synthesis and selected fluorophores (Oliveira et al., 2021).
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Another five-membered ring containing a nitrogen and a sulfur
atom is thiazole. The thiazole core is found in naturally occurring
compounds such as vitamin B1, penicillins and dolastatin analogues.
The latter are cytostatic drugs (Maderna et al., 2014), which can

possibly be used in the treatment of cancer (Bhat et al., 2009; Halasi
et al., 2010; Anuradha et al., 2019; Sharma et al., 2020). In general,
thiazoles show biological activity and are therefore of great interest
for medicinal chemistry (Kashyap et al., 2012; Mahmoodi and

SCHEME 7
(A) Synthesis of isoxazol-5-one 29 via a two-step one-pot reaction and the three obtained fluorophores (Tasior et al., 2021). (B)One-step synthesis
of 5-amino-4-carboxamidothiazoles 30 based on the chromophore approach and the synthesized chromophores (Tong et al., 2017).
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Ghanbari Pirbasti, 2016; Hussein and Turan, 2018). Furthermore,
organic semiconductors based on thiazole for organic electronics are
known (Lin et al., 2012a; Lin et al., 2012b). The synthesis of thiazoles
proceeds via MCR, for example via the Hantzsch reaction or via
cyclization/oxidation of a corresponding peptide precursor in a
biomimetic approach (Hantzsch, 1881; Evans et al., 1979; Boden
and Pattenden, 1994; Videnov et al., 1996). Thiazoles can also be
prepared via condensation of thiocarboxylic acids with isocyanides
(Scheme 7B I) (Tong et al., 2017). 5-Amino-4-carboxamidothiazoles
30 obtained by the triflate-catalyzed reaction display interesting
fluorescence properties as potential ESIPT chromophores.
Alternatively, thiazole-based chromophores 30 are also produced
by reacting a suspension of carboxylic acid with Lawesson’s reagent
in boiling toluene followed by addition of an isocyanide and Y(OTf)3
in a one-pot fashion (Scheme 7B II).

5-Amino-4-carboxamidothiazoles 30 (λmax,abs = 333–460 nm)
possess high extinction coefficients (ε > 104 M−1 cm−1) and fluoresce
with violet, blue, green to yellow color depending on the substitution
pattern (λmax,em = 393–558 nm). Upon UV excitation, compound
30a emits in the green region, 30b in the in violet to blue region and
30c as well as 30d in the yellow region. An aryl substituent in 2-
position with electron-withdrawing and electron-donating
antiauxochromes and auxochromes can significantly increase the
quantum yield. The quantum yield can also be increased by
expanding the conjugated system via group R1. The insertion of
a multiple bond between the thiazole ring and further arenes in
substituent R1 causes a bathochromic shift. In particular, nitro-
phenyl substituted thiazoles can be excited with visible light and
fluoresce with large Stokes shifts, high quantum yields and
pronounced solvatochromism. These dyes have potential for the
double ESIPT process.

Indoles are desirable due to their widespread medical use (Kang
et al., 2009; Kochanowska-Karamyan and Hamann, 2010; Kaushik
et al., 2013; Álvarez et al., 2013; Zhang et al., 2015a; Zhang et al., 2015b;
Parisi et al., 2015; Hu et al., 2017) and their occurrence in many natural
products (Lindquist et al., 1991; Pettit et al., 2002; Cruz-Monserrate
et al., 2003; Simon and Petrášek, 2011). For instance, indole constitutes
the core of many alkaloids, some hormones and also dyes. Among
indole dyes indigo is the most prominent representative (Amat et al.,
2011). Considering indoles photophysically, the heterocycle displays
fluorescence and strong phosphorescence (Bünau and Birks, 1970). The
absorption and emission maxima of indole derivatives in aqueous
solution lie typically at 270 and 355 nm, respectively (Bridges and
Williams, 1968). Similar absorption and emission values are found for
indolylmalonamides 31. In addition, when irradiated with long-wave
UV light (λexc = 366 nm) chromophores 31 with high molar
absorptivity fluoresce and exhibit large Stokes shifts. The synthesis
of indolylmalonamides 31 are performed via a lanthanum (III)-
catalyzed three-component amidation reaction of coumarin-3-
carboxylates, indoles and amines in the sense of the chromophore
approach (Scheme 8A) (Jennings et al., 2016). After Lewis acid-
catalyzed Michael addition indolylmalonamides 31 are obtained by
Lewis acid-catalyzed amidation.

The sequentially Pd-catalyzed three-component Masuda-
Suzuki-Sonogashira reaction combines three Pd-catalyzed
processes (borylation, arylation, and alkynylation) in a one-pot
fashion to give fluorescent 2-alkynyl-4-(7-azaindol-3-yl)
pyrimidines 32 as illustrated with N-tosyl 3-iodo-7-azaindoles,

2,4-dichloropyrimidines and terminal alkynes as starting
materials (Scheme 8B) (Drießen et al., 2021).

The UV/Vis spectra of 2-alkynyl-4-(7-azaindol-3-yl) pyrimidines 32
show absorptionmaxima at λmax,abs = 293–296 nmwithmolar extinction
coefficients ranging between 23,100 and 43,900 Lmol−1 cm−1 for aliphatic
substituents and 48,000 and 77,000 L mol−1 cm−1 for aromatic
substituents, respectively. Electron-donating substituents R2 red-
shift the absorption maxima to longer wavelengths. Most of the
compound fluoresce with emission maxima at about 447 nm with
high Stokes shifts (Δ~] = 10,300–11,900 cm–1). It should be noted that
this method provides an efficient access to alkynyl meriolins, a new
biological active class of potential apoptosis inducers.

Amine-appended spiro[indoline-3,4′-pyridines] 33, for
example, can be applied as ON-OFF chemosensors for Cu(II)
ions via a fluorescence response. These chemosensors show high
selectivity and have already been applied for imaging Cu(II) ions in
human hepatocellular liver carcinoma cells. Spiro[indoline-3,4’-
pyridine] 33 are prepared via a one-pot four-component reaction
involving dialkyl but-2-ynedioate, primary amines, isatin, and
malononitrile (Scheme 9A) (Mondal et al., 2018). The
environmental benign reaction is catalyzed by iodine and carried
out in aqueous ethanol solution. The proposed mechanism suggests
activation of the C-3 carbon of isatin by iodine. The isatin-iodine
complex reacts with malononitrile via Knoevenagel condensation.
In the presence of the iodine catalyst, the nucleophilic attack of the
primary amine occurs. Addition of dialkyl but-2-ynedioate initiates
the intramolecular Michael addition. Subsequently, chromophores
32 are formed by proton tautomerization.

The chromophores 33 display strong emission in DMSO in a range
of 458–493 nmwith large Stokes shifts (Δ~v = 5,335–11,641 cm−1). In the
presence of Cu(II) ions the fluorescence decays and the color change can
be observed by the naked eye. Chemosensor 33d with the highest
quantum yield (0.95) has successfully been used for in vitro fluorescence
cell imaging of Cu(II) ions in human hepatocellular liver carcinoma cells.

Further spiro indoles 34 can also be generated under sustainable
conditions. The three-component reaction of 1,3-indanediones,
isatins, and aromatic amines is catalyzed either by PEG-OSO3H
or by [NMP]H2PO4 to produce spiro[diindenopyridine-indoline]
triones 34 under conventional heating and ultrasonication (Scheme
9B) (Sindhu et al., 2015). The PEG-OSO3H is a polymeric acid-
surfactant based catalyst that can be recycled and reused without
significant loss of activity. Implementing of acidic ionic liquid
[NMP]H2PO4 as a catalyst, solvents are not required as it also
functions as the medium. The condensation reaction proceeds with
a variety of aromatic amines and different isatins with excellent
yields (88%–95%) following the chromophore approach.

All dyes 34 are deep red with broad absorption bands with
maxima between 264 and 274 nm and they show strong
fluorescence in methanol in a range of 282–596 nm with large
Stokes shifts (Δ~v = 11,000–13,000 cm−1).

As indoles, also oxindoles show considerable biological activity
(Silva and Pinto, 2001; Peddibhotla, 2009; Kaur et al., 2016; Saraswat
et al., 2016). Thus, fluorescent triazolylspirocyclic oxindole
derivatives 35 and 36 containing pyran and 1,2,3-triazole
moieties possess antimicrobial activity (Kerru et al., 2021). The
synthesis proceeds via an one-pot domino reaction of 1-(prop-2-
ynyl)indoline-2,3-dione, cyclic 1,3-diketones, malononitrile, and
various arylazides in diazabicycloundecene-based ionic liquids
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([DBU-H]OAc or [DBU-Bu]OH) under ultrasonic irradiation
(Scheme 10A) (Singh et al., 2014). Mechanistically, a triazole
intermediate is first formed by Cu-catalyzed alkyne-azide
cycloaddition between 1-(prop-2-ynyl)indoline-2,3-dione and
arylazide in the presence of in situ generated Cu(I). Knoevenagel
condensation with malononitrile and subsequent Michael addition
with the cyclic 1,3-dicarbonyl compound and cyclocondensation
gives rise to the target structures in excellent yields.

All dyes 35 and 36 (λmax,abs = 239–287 nm) exhibit fluorescence
in methanol in a range from 366 to 417 nm with large Stokes shifts
(Δ~v = 8,800–25,000 cm−1). In addition, compound 35a is the
strongest antibacterial agent against Staphylococcus aureus and
Bacillus subtilis in this series.

Hybridizing several biologically active moieties in a single
molecule via MCR also applies to chromophore 37, a scaffold
consisting of oxindole, pyrrole, and pyrazole (Jamwal et al., 2013;
Karrouchi et al., 2018). Oxindole bearing pyrrolo[2,3-c]pyrazole 37
is prepared by an acid-promoted sequential three-component

reaction between benzoylacetonitriles, phenylhydrazine, and 3-
phenacylideneoxindoles in the sense of the chromophore
approach (Scheme 10B) (Nazeri et al., 2020). In the first step,
phenylhydrazine reacts with benzoylacetonitrile via
cyclocondensation. This is followed by Michael addition with 3-
phenacylideneoxindoles and concluded by cyclocondensation to
give the desired products.

Absorption maxima of the violet fluorescent compounds 37 can be
detected at around 220 and 355 nm. Electron-donating groups on the
aromatic ring of the pyrrolo[2,3-c]pyrazoles display a slight redshift
causing a decrease of the absorption and photoluminescence intensity.

Isoindoles are likewise important scaffolds of natural products
and pharmaceuticals (Speck and Magauer, 2013; Kaur Bhatia, 2017;
Csende and Porkoláb, 2018). The 3-substituted isoindolinone
derivatives 38 and 39 have potential as cell sensors or drug
carriers. The reaction proceeds as a Lewis acid-catalyzed, solid-
phase MCR between chiral β-keto lactam, an aldehyde, an
isocyanide, and a dienophile mediated by microwave energy. The

SCHEME 8
(A) Three-component synthesis of indolylmalonamides 31 (Jennings et al., 2016). (B) Sequentially catalyzed consecutive three-component
Masuda–Suzuki–Sonogashira synthesis of 2-alkynyl-4-(7-azaindol-3-yl) pyrimidines 32 and selected fluorophores (Drießen et al., 2021).
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synthesis of chromophore 38 employs immobilized aldehydes on a
solid phase, whereas 39 uses immobilized dienophiles
(Supplementary Material S7) (Massarano et al., 2020).

The 3-substituted isoindolinone derivatives 38 and 39 display
significant fluorescence with large Stokes shifts (Δ~v = 3,900 nm).
For example, dye 39a shows an absorption maximum at 447 nm

SCHEME 9
(A) Amine-appended spiro[indoline-3,4′-pyridine] ON–OFF chemosensor 33 and selected derivates (Mondal et al., 2018). (B)MCR synthesis of spiro
[diindenopyridine-indoline]triones 34with different catalyst systems (PEG-OSO3H or [NMP]H2PO4) under conventional heating and ultrasonic irradiation
(Sindhu et al., 2015).
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(ε = 5,300 L mol−1 cm−1) and an emission maximum of 542 nm
(ΦF = 0.3). Low cytotoxicity, water solubility, and rapid cell
penetration of dyes 39a and 39b make them promising
candidates as molecular probes for cell sensing and cell-
penetrating transport agents.

Blue-luminescent 4-aryl-1H-benzo[f]isoindole-1,3(2H)-diones
40 are formed by consecutive pseudo three-component synthesis
of arylpropiolic acids and amines in the sense of the chromophore
concept (Scheme 11A) (Denissen et al., 2017b). Arylpropiolic acids
are in situ activated by n-propylphosphonic acid anhydride (T3P®)
to give anhydrides. Intramolecular Diels–Alder reaction followed by
aromatization forms the tricyclic anhydrides that are reacted with
amines to give a substance library of tricyclic imide target
compounds in 26% and 95% yield.

Intensive blue and greenish luminesce can by observed for
several dyes 40 in solution at low concentration (Supplementary
Material S8).

The UV/Vis spectra of the 4-aryl-1H-benzo[f]isoindole-
1,3(2H)-diones 40 display two distinct absorption maxima in a

range from 259 to 274 nm (ε ≈ 55,000 L mol−1 cm−1) and
359–379 nm (ε ≈ 3,500 L mol−1 cm−1). Electron-donating
substituents R1 shift the absorption and emission maxima to
longer wavelengths, accompanied by a significant increase in
luminescence as seen for dye 40b (Supplementary Material S8).
Suppression of luminescence can also be caused by free rotation of
the aryl substituent on the imide. Therefore, 4-aryl-1H-benzo[f]
isoindole-1,3(2H)-diones 40 also possess AIE, where the
intramolecular motion is suppressed upon aggregation. For
instance, the fluorescence quantum yield of compound 40a
thereby increases more than eightfold in the solid state compared
to emission in solution.

Another approach to access chromophores with an isoindole
core proceeds via sequential MCR of the Knoevenagel adduct of
ninhydrin and malononitrile, isocyanide, amine, and elemental
selenium. The iodide-catalyzed process very likely involves a
radical ring enlargement and furnishes luminescent benzo-
oxazino-isoindole derivates 41 under mild reaction condition
according to the chromophore concept (Scheme 11B) (Sedighian

SCHEME 10
(A) Domino reaction for synthesis of triazolyl spirocyclic oxindoles 35 and 36 in the sense of the chromophore concept and the most potent
fluorescent, antibacterial triazolyl spirocyclic oxindole 36a (Singh et al., 2014) (B) Sequential one-pot synthesis of oxindole bearing pyrrolo[2,3-c]
pyrazoles 37 (Nazeri et al., 2020).
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et al., 2021). Due to intramolecular hydrogen bonding, compounds
41 exhibits keto-enol tautomerism.

The dyes 41 are intensively luminescent. The absorption
behavior in different protic and aprotic solvents shows minor

changes in the absorption maxima (as detected at about 490 nm
for derivative 41b). In comparison, the emission spectrum displays a
clear blueshift in methanol compared to the emission maxima in
aprotic solvents. This shift might be attributed to hydrogen bonding

SCHEME 11
(A) Diversity-oriented one-pot process for the synthesis of 4-aryl-1H-benzo[f]isoindole-1,3(2H)-diones 40 (Denissen et al., 2017b). (B) Iodine
catalyzed, selenium assisted sequential multicomponent synthesis of benzo-oxazino-isoindoles 41 and selected examples (Sedighian et al., 2021).
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of dyes 41 with hydrogen bond accepting solvents, lowering the
ground state and increasing the excited state energies of the
chromophores, resulting in a hypsochromic shift (Zakerhamidi
and Sorkhabi, 2015).

Pyridoindolizine are particularly interesting to their biological
properties as also indolizines (Sharma and Kumar, 2014;
Venugopala et al., 2017). Pyrido[2,3-b]indolizine-10-carbonitriles
42 and 43 are formed by pseudo three-component reactions of N-
(cyanomethyl)pyridinium salts with enaminones or vinamidinium
perchlorates, respectively (Supplementary Material S9) (Sokolova
et al., 2019). The proposed mechanism commences with a base-
promoted dimerization of pyridinium salt. The elimination of
pyridinium hydrochloride and aromatization leads to the
formation of aminoindolizine, which condenses with 1,3-
dielectrophiles to produce pyridoindolizines 42 or 43.

Both pyridoindolizines exhibit strong green fluorescence with
maxima in a range from 448 to 490 nm and with quantum yields of
up to 0.81.

4 Six-membered heterocycles

4.1 Oxygen heterocycles

Chromenes can be regarded as benzo[b]pyrans. Depending on the
positioning of the double bond in the pyran ring, two isomers arise,
2H-chromene and 4H-chromene. Coumarins are derived from
2H-chromenes, however, by oxidation of the 2-position to the
oxidation state of an acid derivative, they are lactons. Coumarins
absorb blue-green light and have found application as laser dyes
(Winters et al., 1974; Abdel-Mottaleb et al., 1992; Yang et al., 2007), in
chemosensors (Yao et al., 2009; Jung et al., 2011), in OLEDs (Puthumana
and Damodaran, 2018), or in DSSCs (Hara et al., 2003; Wang et al., 2007;
Seo et al., 2011). In addition, 4H-chromenes and coumarins are
represented in a wide spectrum of pharmaceuticals (Montagner et al.,
2008; Smyth et al., 2009; Thakur et al., 2015; Rawat and Verma, 2016;
Ngabaza et al., 2017; Soni et al., 2019; Mishra et al., 2020). Due to their
applications in the biomedical field, their preparation by sustainable
methods for minimizing the usage and generation of toxic organic
substances has become increasingly important. Therefore, several green
methods have been reported for the synthesis of compounds with a
coumarin or chromene core (Molnar et al., 2020; da Silveira Pinto et al.,
2018; Ghosh et al., 2015; Mekheimer et al., 2010).

An interesting sustainable approach is the three-step one-pot
synthesis of α-acyloxy carboxamides 44 by Passerini reaction in
sodium phosphate buffer solution as a medium. The three steps of
the sequence starting from salicylic alcohol derivatives include a
Trametes versicolor laccase catalyzed aerobical oxidation, aldol
condensation and 6-O-glucose ester promoted Passerini MCR. By
modification of alcohols, aldehydes, or isocyanides, α-acyloxy
carboxamides containing a coumarin scaffold 44 are obtained in
variable yields (Scheme 12A) (Paprocki et al., 2020). The synthesis
can also be started with the third step employing coumarin-3-
carboxylic acids as starting materials in the terminal Passerini
reaction.

The obtained fluorescent α-acyloxy carboxamides 44
(λmax,em = 415 nm) are well-suited as probes for enzyme
activity profiling.

Another approach to produce coumarin-based dyes proceeds
via condensation of 3-acetyl coumarin with acetyl chloride, an
aromatic aldehyde, and acetonitrile to obtain blue light emitting
fluorescent dyes named ‘Beta Fluors’ 45 (Supplementary Material
S10) (Soumya et al., 2014). Phenyl boronic acid acts as a green
catalyst for this reaction.

All chromophores 45 absorb with longest wavelength
maxima between exhibit 303–346 nm and emit blue light from
λmax,em = 382–436 nm with large Stokes shifts.

The three-component reaction of 3-acetyl-7-(diethylamino)-
2Hchromen-2-one, 4-chlorobenzaldehyde, ethyl cyanoacetate
provides D-π-A based coumarin-pyridone conjugate (CPC) 46
with a yield of 87% (Supplementary Material S11) (Manjunatha
et al., 2022).

The absorption and emission spectra of the prepared CPC 46 are
located in the range of 451–460 nm and 532–549 nm, respectively.
Apart from the large Stokes shift, the molecule exhibits positive
solvatochromic behavior. The peak at 490–510 nm in the
solvatochromic absorption spectrum can be attributed to
intramolecular charge transfer (ICT) from the donor (coumarin
building block) to the acceptor (pyridone building block). Due to its
special photophysical and electrochemical properties, this could be
utilized as a fluorescent labeling agent not only for the visualization
of latent fingerprints on various surfaces, but also as a detection of
nitrite (NO2) via cyclic voltammetry (CV) and
chronoamperometry (CA).

Via a Biginelli multicomponent reaction
coumarin–dihydropyrimidinone dyads 47 starting from coumarin
β-ketoester derivatives, various aldehydes and (thio)urea can be
formed with yields ranging from 21% to 99% (Scheme 12B) (Vitório
et al., 2015).

The synthesized chromophores 47 exhibit blue fluorescent
properties, which can be slightly affected by the electronic
properties of the aryl residue on the dihydropyrimidinone
moiety, although there is no direct conjugation with the
coumarin core. Based on the internal charge transfer process,
the 3,4-dihydropyrimidin-2(1H)-one/thione, are promising
candidates for novel chemical and biological probes in
addition as useful pH indicators. As a selective Hg2+

chemosensor, chromenone-pyrazoles derivatives 48a and 48b
can be applied, which are formed via a solvent-free one-pot
sequence of salicylaldehyde derivative, 4-hydroxy-6-methyl-
2H-pyran-2-one and hydrazine formed using SrFe12O19 as a
catalyst. Through an one-pot multicomponent reaction using
SrFe12O19 chromenone-pyrazole derivatives can be synthesized
(Supplementary Material S12) (Ziarani et al., 2022).

The fluorescence properties of the prepared chromenone-pyrazole
derivatives 48 are strongly determined by the residue on the pyrazole
group. Thus, only the prepared non-aromatic introduced residues reveal
fluorescence properties. The fluorescence emission of 48a and 48b in
ethanol are at λex = 348 nm and λex = 300 nm, respectively.

Also, via simple work-up which even does not require
purification via column chromatography, donor–acceptor type
hydrazinyl thiazolyl coumarins (HTCs) 49 can be obtained
(Scheme 12C). HTCs exhibits antioxidant, antimicrobial, and
antibacterial activities (Kalluraya et al., 2001; Arshad et al., 2011;
Osman et al., 2012; KhanYusufzai et al., 2017). Only a few MCRs to
form HTCs are reported to date (Ibrar et al., 2016; Sujatha and
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Vedula, 2018). The water-mediated three-component reaction is
catalyzed by a reusable, solid acid catalyst (montmorillonite (MMT)
K10 clay) (Godugu et al., 2020). The wide variation of aromatic/
hetero-aromatic aldehydes and aromatic ketones allows establishing
a considerable substance library with excellent yields.

Most HTC derivatives 49 display bright fluorescence in
chloroform (λmax,em = 409–511 nm) with large Stokes shifts.
Electron-donating groups in para/meta positions of the aromatic

ring stemming from aldehydes/ketones result in bathochromic
shifts. Furthermore, the electrochemical properties indicate that
these compounds can be used as hole transporting materials.

The dyes 50 are chromophores that also contain coumarin and
thiazole moieties and can be produced by an efficient microwave-
induced, uncatalyzed one-pot reaction following the chromophore
concept (Scheme 12D) (Shaikh et al., 2018). Components 50 also
possess anticancer activity.

SCHEME 12
(A) Three-step one-pot synthesis of α-acyloxy carboxamides 44 (Paprocki et al., 2020). (B) Biginelli reaction to synthesize 3,4-dihydropyrimidin-
2(1H)-one/thiones 47 in the sense of the scaffold concept (Vitório et al., 2015). (C)MMT K10 clay catalyzed three-component synthesis of diversified HTC
derivatives 49 (Godugu et al., 2020). (D) Microwave-induced synthesis of coumarin-3-yl-thiazol-3-yl-1,2,4-triazolin-3-ones 50 (Shaikh et al., 2018).
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Fluorescence of compounds 50 is detected in the visible blue to
green region. The chromophores 50 exhibit a bathochromic shift for
both emission and absorption maxima with increasing solvent
polarity. In non-protic solvents, the emission maxima is
redshifted due to an intermolecular charge transfer process (ICT).

Further access to coumarin-based chromophores can be
achieved by Ugi reaction of aromatic aldehydes, diamines,
coumarin-3-carboxylic acid, and alkyl isocyanides producing
coumarin-3-carboxamides containing lipophilic spacers 51 in the
sense of the scaffold approach (Supplementary Material S13)
(Balalaie et al., 2012). The Ugi 4CR adducts exhibit bright
fluorescence at 544 nm in chloroform.

Chromenopyridinones derivatives are also bioactive (Fayed
et al., 2021) and find application in the treatment of bronchial
asthma (Ukawa et al., 1985) and they show anticancer activities
(Bizarro et al., 2018). Furthermore, these heterocycles can be applied
for the construction of chemosensors (Kozhevnikov et al., 2003).
The one-pot three-component condensation of 4-
hydroxycoumarins with ammonium acetate and 3-
formylchromones gives highly substituted chromenopyridinone
derivatives 51 in an environmentally benign solid-state melt
reaction catalyzed by L-proline (Supplementary Material S14)
(Paul and Lee, 2016). Mechanistically, the process can be
rationalized by L-proline catalyzed Knoevenagel condensation of
4-hydroxycoumarin and 3-formylchromones via an iminium ion
intermediate, followed by cyclocondensation with NH4OAc. The
product 50 is thus obtained by a ring opening-ring closing sequence.
The process follows the chromophore concept and produces the
dyes in high yields (75%–93%).

Dye 52a strongly emits in the range of 450–550 nm and the
highest fluorescence intensity was detected in MeOH and the lowest
in non-polar solvents. The methyl group in the 6-position of the
coumarin ring accounts for the strong emission of component 52a.
In addition, electron-donating components as R1 and R2 groups are
instrumental for ICT.

Further approaches to sustainable syntheses of
chromenopyridine fluorophores following the chromophore
concept are one-pot condensation sequences with salicylaldehyde
derivatives, various malononitriles and selected O- or
N-nucleophiles (Supplementary Material S15) (Zonouzi et al.,
2013). This process can be applied to produce chromenopyridine
derivatives such as dialkylamino-5H-chromeno[2,3-d]pyrimidin-2-
yl-phenols 53, dialkylamino-5H-chromeno[2,3-d]pyrimidin-2-yl-
phenols 54 and 4-alkoxy-5H-chromeno[2,3-d]pyrimidines 55.

All dye 53–55 show blue to green fluorescence with broad
maxima upon excitation at 290 nm. Furthermore, the structures
of the derivates 53a and 54a exhibit interesting, exchangeable,
intramolecular H-bonding, which open an access to new phenol
containing pharmacophores.

Compounds consisting of a phenazine and chromene core have
found application in medicinal chemistry (Laursen and Nielsen,
2004). Blue emission is also observed from regioisomeric benzo[a]
chromeno-phenazines 56 and 55 (Harichandran et al., 2018). The
condensation of 1,2-phenylenediamine, 2-hydroxynaphthalene-1,4-
dione, 2-hydroxy benzaldehydes, and 1,3-diketones catalyzed by
IRA-400 Cl exclusively produces products 56, whereas amberlite IR
120 H+ resin as a catalyst leads to a mixture of 56 and 57
(Supplementary Material S16). Advantageously, anion and cation

exchange amberlite resins are both reusable. The intermediates are
formed by the Knoevenagel condensation of phenylenediamine and
2-hydroxynaphthalene-1,4-dione, 2-hydroxy benzaldehydes and
1,3-diketones. The sequence finally concludes by Michael
addition and condensation in the sense of the chromophore
approach.

The absorption spectra of dyes 56 and 57 are characterized
by two to three distinct maxima, with the longest wavelength
absorptions in a range from 414 to 422 nm. The emission
maxima of the chromophores 56 and 57 can be detected at
wavelengths ranging from 462 to 498 nm and 450–468 nm,
respectively. Most dyes 56 give fluorescence quantum yields
ranging from less than 0.01 up to 0.10, as also the
chromphores 57 reveal quantum yields of around or less than
0.1. The compounds 56a and 57a have shown to be suitable for
the detection of Fe(III) and Cu(II) ions and can thus be used as
chemical sensors.

An approach to increase sustainability of common reactions is
the use of solvent-free syntheses to reduce organic solvents. As
mentioned before, the multicomponent synthesis of fluorescent
4H-chromene derivatives 58 can be mediated by amberlite IRA-
400 Cl resin, which functions both as the solvent and the reusable
catalyst (Supplementary Material S17) (Harichandran et al., 2017).
2-Hydroxybenzaldehydes, 1,3-diketones, and nucleophiles (Nu)
react involving by Knoevenagel condensation and subsequent
Michael addition in excellent yields.

The UV/Vis spectra of the 4H-chromen dyes 58 display
absorption maxima ranging from 252 to 394 nm and emission
maxima in a range from 405 to 462 nm, blue fluorescence.
Chromophore 58b has been found to be the best fluorophore in
the series. Compounds 58a and 58b are the only derivatives
containing an electron donating amino group at the R1 position.
These chromophores exhibit smaller Stokes shifts and higher
fluorescence quantum yield (Δ~] ≈ 6,400 cm−1, ΦF = 0.03–0.09)
than the other congeners.

Furo[3,2-g]chromen-7-one, better known as psoralen, is a
tricyclic donor-acceptor heterocycle consisting of an electron-rich
furan and electron-poor α-pyrone fused to a central benzene core.
Starting from bromo-triflato-functionalized psoralen donors
and acceptors can be specifically coupled by sequentially Pd-
catalyzed consecutive Suzuki-Suzuki and Sonogashira-
Sonogashira multicomponent reactions to give donor-
acceptor psoralens 59 and 60, i.e. orthogonally oriented
cruciform structures (Scheme 13) (Geenen et al., 2020).
Cross-shaped molecules allow access to functional
chromophores with interesting properties resulting from
significant changes in the orientation of the transition dipole
vector (Zucchero et al., 2010; Le et al., 2015; Xu et al., 2018).

Depending on the selection of the donor and acceptor
components, the photophysical properties of the 8-donor-5-
acceptor-substituted psoralens 59 and 60 can be fine-tuned. The
optical properties of the donor-acceptor psoralens are characterized
by large Stokes shifts, partially high fluorescence quantum yield in
solution, and strong solid-state fluorescence. Of particular interest
are observed solvatochromism, acidochromism, and aggregation-
induced emission (Supplementary Material S18). In addition, the
pronounced charge transfer character of the longest wavelength
absorption band is confirmed experimentally and computationally.
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Fluorescence of xanthene-containing chromophores 61 can also
be observed in natural products (Bhowmik and Ganguly, 2005). Due
to their photophysical properties, they are mainly applied in dyes
and can function for instance as pH-sensitive fluorescent materials
for visualization of biomolecules (Knight and Stephens, 1989; Shabir
et al., 2018). In addition, these compounds have various biologically
active properties, such as anticancer, antibacterial and antioxidant
(Kidwai et al., 2005; Giri et al., 2010; Raschip et al., 2020). The
antioxidant activity of 14-aryl-14H-dibenzo[a,i]xanthene-8,13-
diones 61 containing a hydroxy group at R2 or R3 was tested
using the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay
(Khurana et al., 2012). The electron-donating groups on the
aldehyde (R1), as dyes 61b and 61c, enhance this antioxidant
characteristics. Possess antioxidant features. 14-Aryl-14H-dibenzo
[a,i]xanthene-8,13-diones 61 can be prepared via condensation of

aldehydes, 2-hydroxynaphthalene-1,4-diones, and 2-naphthol/2,7-
dihydroxynaphthalenes/2,6-dihydroxynaphthalenes catalyzed
either by H2SO4 or ionic liquid 1-butyl-3-methylimidazolium
hydrogen sulfate ([bmim]HSO4) (Scheme 14A). For xanthenes in
general, many green approaches have been reported to involve
environmentally benign catalysts such as ionic liquids (Burange
et al., 2021). Another advantage of the domino MCR following the
chromophore approach is the simple purification by crystallization
in ethanol. The synthesized compounds 61 exhibit absorption bands
with maxima in the range from 333 to 355 nm with extinction
coefficients between 10,800 and 27,500 L mol−1 cm−1.

Fluoresceins can also be categorized as xanthene dyes. These are
characterized by interesting photophysical properties such as high
molar absorptivity, high fluorescence quantum yields, and high
photostability. Typically, fluoresceins absorb in the range from

SCHEME 13
Consecutive three-component Suzuki−Suzuki and Sonogashira−Sonogashira synthesis of 8-donor-5-acceptor-substituted psoralens 59 and 60 in
the sense of the scaffold concept and selected derivates (Geenen et al., 2020).
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400 to 700 nm (Sjöback et al., 1995; Song et al., 1998). Depending
on the pH value, fluorescein is present as an anion, cation, or in its
neutral form, which influences the photophysical properties
(Martin and Lindqvist, 1975; Diehl and Markuszewski, 1989).
This pH dependency can be exploited for the application as an
indicator (Kim et al., 2011). The UV/Vis spectra of the fluorescein
derivatives 62 were measured in NaOH so that the fluorescein
derivatives are present in the dianionic form (pH > 8) (Sacoman
Torquato da Silva et al., 2017). The dianionic form shows
longest wavelength absorption and emission maxima and
highest fluorescence quantum yields due to its conjugated
system. The absorption (λmax,abs = 476–512 nm) and

emission (λmax,em = 515–525 nm) of dyes 62 lie in the typical
range of fluorescein and high fluorescence quantum yields are
realized (ΦF = 0.60–0.93). Derivatives containing halogens
show a bathochromic shift in emission and absorption
behavior as well as a decrease in fluorescence intensity. The
fluorescein dye derivatives can be formed by a pseudo three-
component reaction of phenol and phthalic anhydride derivatives
in the sense of the chromophore approach (Scheme 14B). This MCR
can be catalyzed by the electrophilic NbCl5. The reaction proceeds in
two steps via twofold Friedel-Crafts reaction and subsequent carbonyl
addition. In addition, the interesting photophysical of fluoresceins 62
make them suitable for application in DSSC.

SCHEME 14
(A) Domino synthesis of 14-aryl-14H-dibenzo[a,i]xanthene-8,13-diones 61 and selected fluorophores (Khurana et al., 2012). (B)One-pot synthesis
of fluoresceins 62 using NbCl5 as a catalyst (Sacoman Torquato da Silva et al., 2017).
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4.2 Nitrogen heterocycles

Pyridine (azine) is found in many bioactive natural products,
such as vitamin B6 (Hill et al., 1996) or nicotinamide adenine
dinucleotide, which is a pivotal coenzyme in the metabolism
(Noctor et al., 2006). Furthermore, pyridine is an important
synthetic building block for pharmaceuticals (Chang et al., 2005;
Reddy et al., 2006; Altaf et al., 2015; Nagham Mahmood Aljamali,
2021). Pyridine is an excellent moiety for the assembly of fluorescent
compounds due to its strong electron withdrawing properties, good
rigid structure, and strong coordination ability (Xie et al., 2021).
Numerous chemosensors with a pyridine core are reported (Hirano
et al., 2000; Jiang and Guo, 2004; Machado et al., 2014; Ma et al.,
2017). For instance, a fluorescent chemosensors can be used for the
detection of Fe(III) and Hg(II) ions based on an ON-OFF
mechanism. The fluorescent 2-amino-6-methyl-4-phenyl-
nicotinonitrile 63 is synthesized via multicomponent
condensation following the chromophore concept
(Supplementary Material S19) (Koner et al., 2012).

The coordination of Fe(III) ions and 2-aminopyridine-based
compound 63 results in an increase of the absorption intensity of
both bands λmax,abs = 246 and 335 nm. In contrast, Hg(II) ions
lead to a decrease in absorption intensity with a slight
bathochromic shift. In the presence of Fe(III) and Hg(II) ions,
the fluorescence spectrum shows quenching of emission intensity
by 81% and 55%, respectively. Quenching is very likely caused by
the paramagnetic nature of the Fe(III) ions and by the heavy metal
ion effect for Hg(II). Due to the small spectral shift upon emission
decrease, photo-induced electron transfer (PET) is a plausible
mechanism. It is noteworthy that selective quenching occurs only
for Fe(III) and Hg(II) ions, which makes the chromophore a
suitable chemosensor for these two metal ions. Iron is involved in
many biological processes and its selective detection can be a
valuable tool for biological studies (Sigel and Sigel, 1998; Que
et al., 2008).

The Groebke-Blackburn-Bienaymé (GBB) three-component
reaction of heterocyclic amidines, aldehydes, and isocyanides
furnishes α,β-substituted imidazo[1,2-a]pyridines 64 (Scheme
15A) (Burchak et al., 2011), an important source of bioimaging
probes due to their pharmacophore. Imidazo[1,2-a]pyridines have
been shown to possess antiviral (Gueiffier et al., 1998), antiulcer
(Starrett et al., 1989), antipsychotic (Marcinkowska et al., 2016), and
antidiabetic activities (Kercher et al., 2007).

In general, the absorption band of imidazo[1,2-a]pyridine is
located near 280 nm and an efficient fluorescence band is observed
at 370 nm (Stasyuk et al., 2012). The emission properties of the dyes
64 are mainly affected by the amidine and aldehyde building blocks.
Thus, the products starting from methyl 2-aminoisonicotinate,
methyl 2-aminoisonicotinate, pyrimidin-2-amine, and pyrazin-2-
amine fluoresce intensively in solution. All the mentioned imidazo
[1,2-a]pyridines exhibit intrinsic fluorescence with a broad range of
colors and they are also promising for use in chemosensors. The
fluorescence mainly depends on the electron-donating effect and the
degree of conjugation of aldehyde moiety (Supplementary
Material S20).

The GBB synthesis of imidazo[1,2-a]pyridines 65 proceeds
under mild conditions and short reaction times giving good
yields after simple non-aqueous workup (Supplementary Material

S21) (Khan et al., 2012a; Khan et al., 2012b). In this variant of the
three-component condensation, bromodimethylsulfonium bromide
(BDMS) serves as the catalyst. Thereby, even sterically demanding
amidines can be transformed with good yields. The released water
from condensation reacts with BDMS to liberate HBr which
protonates the imine. Mechanistically, the key step of the
formation of imidazo[1,2-a]pyridines 65 is a [4 + 1]
cycloaddition followed an aromatizing 1,3-H shift.

Absorption maxima of the fluorescent compounds 65 can be
detected at around 250 and around 335 nm. A chlorine substituent
at C2-position of the imidazo[1,2-a]pyridine results in a slight
redshift of the absorption maxima. A 2,4-methoxy substituent on
the aromatic ring shifts the emission maximum to a longer
wavelength (λmax,em = 470 nm).

To synthesize tosylmethyl isocyanide (TOSMIC) fused imidazo[1,2-
a]pyridine 66, the GBB reaction is carried out with 2-amino pyridine,
TOSMIC and a wide variation of aldehydes in the sense of the
chromophore concept (SupplementaryMaterial S22) (Shukla et al., 2022).

The obtained imidazo[1,2-a]pyridine derivatives 66 display a
blue color under the UV lamp. Based on the aldehyde component,
the fluorescence properties can be modified.

The pseudo three-component reaction of mucobromic acid and
two molecules of a series of 2-substituted benzimidazoles provides
benzo[4,5]imidazo[1,2-a]pyridine derivates 67 in moderate to good
yields. Mechanistically, a nucleophilic substitution of
benzimidazoles with mucobromic acid occurs in the presence of
the base potassium carbonate. After decarboxylation, Michael
addition of another benzimidazole is performed. With the aid of
the base, a dehydrohalogenation reaction proceeds and the desired
product is obtained by cyclization (Supplementary Material S23)
(Yang et al., 2022). Via Michael addition, other NH-containing
heterocyclic nucleophiles can also be introduced to the system.

The introduced heterocyclic rings in C1 position of benzo[4,5]
imidazo[1,2-a]pyridine 67 lead to the cancellation of the coplanarity
of the whole molecule and hinder the strong intermolecular π-π
interaction and the tight π-π stacking between the neighboring
molecules. These electrostatic interactions are able to constrain
intramolecular motion in the solid state, causing an enhancement
of fluorescence in the aggregation state. 67a could be used to detect
picric acid, a nitroaromatic explosive.

Pyrazole[3,4-b]thieno[2,3-e]pyridines 68 contain pyrazoles and
thienyl moieties fused to a central pyridine core and can be accessed
by Hantzsch dihydropyridine synthesis followed by a solvent-free
oxidative aromatization with H2O2 (Scheme 15B) (Yao et al., 2014).
The aromatic substituent of the aldehyde can be electron-
withdrawing or electron-releasing and it influences the emission
behavior. The dyes 68 feature a blue to green fluorescent donor-π-
conjugated acceptor system with emission maxima in a range from
430 to 505 nm.

Pyrene moieties can be placed to pyridines by the chromogenic
one-pot pseudo four-component pyridine synthesis starting from 1-
acetylpyrene, arylaldehydes, and ammonium acetate in acetic acid to
form 4-aryl-2,6-di (pyren-1-yl)pyridines 69 in good yields ranging
from 65% to 86% (Supplementary Material S24) (Asaadi et al.,
2019).

The dyes fluoresce in a range of 434–464 nm with quantum
yields of 0.10–0.17. The fluorescence is increased by electron-
donating groups (69c) due to the conjugation of the system,
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SCHEME 15
(A) Groebke-Blackburn-Bienaymé synthesis of fluorescent α,β-substituted imidazo[1,2-a]pyridines 64 via the chromophore approach (Burchak
et al., 2011). (B) Solvent-free MCR synthesis of pyrazole[3,4-b]thieno[2,3-e]pyridine derivatives 68 in the sense of the chromophore approach and
selected fluorophores (Yao et al., 2014). (C) Pseudo four-component synthesis of functionalized 2-amino pyridine dyes 70 and selected derivates (Khan
et al., 2012b).
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where electron-withdrawing groups (69d) diminish the
fluorescence.

Highly substituted pyridines can be formed via potassium
hydroxide catalyzed pseudo four-component reaction of
aldehydes, malononitrile and nucleophiles, such as thiols,
alcohols or amines in the sense of the chromophore concept
(Scheme 15C) (Khan et al., 2012b). Mechanistically, one molecule
of malononitrile reacts via a Knoevenagel condensation with
aldehyde and the other malononitrile undergoes a Michael
addition with the previously formed electrophile followed by a
concomitant nucleophilic addition to the cyano-substituent of the
adduct. The functionalized 2-amino pyridines 70 are formed via
cyclization and oxidative aromatization.

The UV/Vis spectra of 2-amino-3,5-dicarbonitrile-6-thio-pyridines
70 display absorption maxima in a range from 329 to 356 nm and
emission maxima in a range from 386 to 451 nm. The highest quantum
yield in comparison to other thio-pyridine derivatives (ΦF= 0.00–0.05) is
detected for compound 70a (ΦF = 0.18), which possesses a strongly
electron-donating group at the C4 aryl substituent of the pyridine ring.
The amino and oxo pyridine derivatives exhibit quantum yields of
0.27–0.57 and 0.10 to 0.14, respectively. The chromophores are potential
candidates as new fluorescent probes or luminescence materials.
Furthermore, it was reported that when sterically hindered aldehydes
are used not the expected thio-pyridine derivatives but the
corresponding 1,4-dihydropyridines (DHPs) were obtained.

Pyridine is the oxidation (dehydrogenation) product of 1,4-
dihydropyridine (1,4-DHP), which also occurs in coenzymes
nicotinamide adenine dinucleotide (NADH) and nicotinamide
adenine dinucleotide phosphate (NADPH). Synthetic derivatives
of 1,4-DHP are ubiquitous and cover a wide spectrum of biological
activities, including vasodilators (Schachinger et al., 2001; Safak and
Simsek, 2006), antibacterials (Huang et al., 2009; Sellamuthu et al.,
2017) and antioxidatives. As a drug, DHP is used as a calcium
channel blocker in the treatment of hypertension (Young, 1984;
Edraki et al., 2009; Poondra et al., 2013). 1,4-DHPs, which are
available by Hantzsch synthesis, are also used as dyads in
photoinduced electron-transfer systems (Fasani et al., 2006;
Jimenez et al., 2009; Al-Awadi et al., 2012).

1,4-Dihydropyridines 71 and 72 are formed via catalyst-free
MCR of amine hydrochloride salts or ammonium chloride,
aldehydes, and acetals (Scheme 16A) (Sueki et al., 2014).
Ammonium chloride and 3,3-diethoxypropionate activated by
protons react to give an imine intermediate that tautomerizes to
the enamine. This enamine intermediate forms with an aldehyde
upon elimination of ethanol an α,β-unsaturated imine.
Subsequently, the enamine intermediate reacts with the α,β-
unsaturated imine via Michael anellation to form
tetrahydropyridine. Upon elimination of ammonia 1,4-DHP is
generated. Based on the two approaches A and B, a wide range
of various 3,4,5-trisubstituted 1,4-DHPs with ethoxycarbonyl
groups at the 3- and 5-positions 71 can be formed (Scheme 16A
I). Further modification can be achieved by changing the
ethoxycarbonylgroups to other electron-withdrawing groups
(EWGs) and the corresponding 3,4,5-substituted 1,4-DHPs 71
are obtained in moderate to good yields in the sense of the
chromophore concept (Scheme 16A II).

The MCR products 71 and 72 exhibit fluorescence in the range
from 403 to 542 nm and quantum yields up to 0.94. 1,4-DHPs with

extended π-conjugation exhibit emission maxima at longer
wavelengths. Photophysical properties such as the fluorescence
wavelength and the quantum yield can be varied by modifying
the substituents of the 1,4-DHPs.

A green approach to 1,4-DHPs is presented by the one-pot
five-component synthesis of 1,2,3-triazole-linked pentasubstituted
1,4-DHPs 73 under ultrasonic irradiation at room temperature or
under MW irradiation with PEG-400 as a medium (Supplementary
Material S25) (Singh et al., 2013). PEG-400 is an inexpensive,
biologically compatible, non-toxic and recyclable solvent. Initially,
a CuAAC occurs between aryl azide and the propargylated
benzaldehyde derivative, forming a 1,2,3-triazole derivative.
Subsequently, the disubstituted 1,2,3-triazole-linked DHPs are
produced by the Hantzsch condensation involving Knoevenagel
condensation and Michael addition.

All chromophores 73 display three distinct absorption maxima
in the UV/Vis spectra, the first around λmax,abs = 230 nm, the second
around 255 nm, and the third around 365 nm. Also, the 1,2,3-
triazole-linked pentasubstituted 1,4-DHPs show strong
fluorescence in solution with emission maxima between 439 and
451 nm. It is worth noting that the substituent on the phenyl ring has
only a minor influence on the fluorescence properties. Moreover, the
compounds 73 are proven to possess antibacterial, antifungal and
antioxidant properties.

The In/SiO2 catalyzed Hantzsch reaction of various substituted
aryl aldehydes provides access to blue-green fluorescent 1,4-DHPs
74 (Scheme 16B) (Affeldt et al., 2012)

The UV/Vis spectra of 74 exhibit the absorption maxima at
around 350 nm. The emission maxima can be detected in a range of
402–516 nm with large Stokes shifts ranging from 4,200 to
11,000 cm−1. In particular, for derivatives 74a the largest Stokes
shift is measured, due to intramolecular charge transfer mechanism
in the excited state from the dimethylaniline to the dihydropyridine
chromophores.

Similarly, hydroxyphenylbenzoxazole, a heterocycle with
interesting photopyhsical properties such as large Stokes shift,
ESIPT or dual fluorescence emission, can be introduced as an
aldehyde component in the Hantzsch reaction (Rodembusch
et al., 2007; Grando et al., 2009). The addition of 5,5-
dimethylcyclohexane-1,3-dione and/or ethyl acetoacetate provide
1,4-DHPs 75–77 (SupplementaryMaterial S26) (Affeldt et al., 2014).

The three synthesized 1,4-DHPS 75, 76 and 77 display
absorption in the UV region and emission in the blue-green
region. The photophysical study reveals that the
hydroxyphenylbenzoxazole and DHP fluorophores in the
hydroxyphenylbenzoxazole-DHP structure behave independently
after excitation. In addition, ESIPT emission can be observed.

The pseudo four-component reaction for the synthesis of
polyfunctionalized derivatives of 1,4-DHP and 1,8-
dioxodecahydroacridines can be efficiently catalyzed by two Preyssler
heteropolyacids, H14[NaP5W29MoO110] (HPA1) and H14

[NaP5W30O110] (HPA2), under solvent-free conditions (Baradaran-
Sirjani et al., 2018). The reaction is catalyzed by both
polyoxometalate anions and cations. The cations activate the
carbonyl groups in aromatic aldehydes and dimedones due to their
Lewis acidic nature and the anions abstract the α-proton of the
dimedone furnishing 1,8-dioxodecahydroacridines 78 in excellent
yields based on the chromophore concept (Scheme 16C).
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The emission spectra of 78c recorded in different solvents and at
different temperatures exhibit a maximum at around 520 nm under
all conditions.

Based on a pseudo five-component reaction of cyclopentanone,
two molecules of aromatic aldehyde, N-pyridinium substituted
ortho-hydroxyaryl methyl ketone and ammonium acetate 2-

SCHEME 16
(A) Catalyst-free pseudo four-component synthesis of 3,4,5-substituted 1,4-dihydropyridines 71 and 72 and selected fluorophores (Sueki et al.,
2014). (B) Synthesis of photoactiv Hantzsch 1,4-DHPs 74 as well as one selected derivate 74a (Affeldt et al., 2012). (C) Pseudo four-component synthesis
of 1,8-dioxodecahydroacridines 78 with the green catalysts HPA1 or HPA2 (Baradaran-Sirjani et al., 2018).
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(ortho-hydroxyaryl)cyclopenta[b]pyridines 79 and 80 are
synthesized with yields ranging from 19% to 87%
(Supplementary Material S27) (Batalin et al., 2021). For the
aromatic aldehyde either benzaldehyde or up to 3 methoxy
groups with various substitution patterns on the aromatic ring
were furnished, which influenced the yields and the amount of
pyridium salt added. The reaction proceeds via a modified Kröhnke
reaction (Yan et al., 2007), in which the first step is an aldol
condensation between the cyclopentanone and the aromatic
aldehyde in the presence of ammonium acetate. The resulting
E-cross conjugated dienone undergoes a Michael reaction with
the pyridime salt and forms the intermediate illustrated in the
Supplementary Material S27, which after elimination of the
pyridinium cation forms the unsaturated 1,5-diketone. In the
final step, the nucleophilic addition of ammonia leads to the
compounds 79 or 80.

The derivatives exhibit interesting fluorescence properties such
as excited-state intramolecular proton transfer (ESIPT) in solution.
Excitation maxima are measured at 374 nm and emission maxima at
434 nm under neutral conditions. In acidic conditions, excitation
maxima and emission maxima for compounds 79 and 80 are found
at 332–476 nm and 484–606 nm, respectively. An increase in acid
concentration results in either an increase in fluorescence intensity
or quenching of fluorescence in the case of newly formed
fluorophores in solution, according to the specific derivative. In
the crystalline state, double emission due to ESIPT was observed
with fluorescence maxima of the enolimine tautomers ranging from
414 to 426 nm. The fluorescence maxima of the keto amine
tautomers are within the region of 594–624 nm with high Stokes
shifts.

Pyrimidine derivatives display biological and pharmacological
characteristics, including antitumor (Atwal et al., 1989; El-Subbagh
et al., 2000), antibacterial (Cieplik et al., 2011; Selvam et al., 2015)
and anticancer (Joshi et al., 2016; Mangal and Jangid, 2016)
properties. Pyrimidine nucleosides as well as alkaloids and
antibiotics have been isolated from natural sources (Lagoja,
2005). Access to different pyrimidine derivatives is possible for
example via Biginelli MCR of aldehydes, urea and methylene
active compounds under dielectric heating (Dabiri et al., 2007;
Tu et al., 2009). In addition, some chromophores with a
pyrimidine core show interesting photophysical properties. C6

unsubstituted tetrahydropyrimidines 81 exhibit aggregation-
induced emission enhancement (AIEE) and size-independent
emission (SIE) characteristics (Zhu et al., 2013). They emit blue
or green fluorescence in aggregates (λmax,em = 399–491 nm) with
fluorescence quantum yields of up to 0.93. For derivatives with
aromatic substituents in the R2 and R4 position, a strong emission in
aggregates can be observed compared to substituents with alkyl
groups. The derivative 81a shows SIE characteristics since
emission maximum of suspension particles, powder, film and
crystals are identical at and appear at 434 and 484 nm,
respectively. The synthesis is performed under mild
conditions and catalyzed by the organocatalyst urea. The
five-component reaction allows the construction of a
substance library in which all starting materials except
aldehyde are varied giving yields between 21% and 63% in
the sense of the chromophore approach (Scheme 17A). The
reaction contains four elementary steps starting with an

aminovinylation, followed by aza-ene-type reaction,
nucleophilic addition, and cyclization.

Recently, via Biginelli reaction 3,4-dihydropyrimidin-2-(1H)-
one derivatives 82 with excellent yields are formed. The reaction of
Lawson, various aromatic aldehydes and urea is catalyzed using zinc
acetate (Scheme 17B) (Patel et al., 2022).

The 3,4-dihydropyrimidin-2-(1H)-ones derivative 82 display
well-defined color regions such as red, orange and yellow with
good intensity. The UV-visible absorption spectra in DMF exhibit
absorption maxima in the region from 399 to 493 nm.

Further dihyropyrimidines derivatives can also be prepared via
the Biginelli reaction. By employing fluorescent β-ketoamides,
hybrid fluorescent 3,4-dihydropyrimidine-2-(thi)ones 83 can be
obtained (Supplementary Material S28) (de Souza et al., 2020).

The synthesized dihydropyrimidines derivatives 83 exhibit
fluorescence in solution with large Stokes shifts, due to a proton
transfer process. Moreover, fluorophores reveal double fluorescence
emission. The emission at short wavelengths is attributed to the excited
enol forms and at longer wavelengths to the tautomeric species, which can
be associated with the intramolecular excited state proton transfer process
(ESIPT). Further studies confirm a cytotoxic activity of the compounds
and their potential application as fluorescence probes.

Pyrimidines can also be employed as metal ion sensors. For
example, an acetonitrile solution of 2-arylthieno[2,3-d]pyrimidyl-4-
amine 84d changes color from colorless to yellow at higher
concentrations of Pd(II) ions, which is visible to the naked eye.
The absorption spectrum reveals a decrease of the three bands of the
dye (λmax,abs = 221, 244 and 332 nm) on expense of a new band with
an isosbestic point at 362 nm in presence Pd(II) ions. The synthesis
of 2-arylthieno[2,3-d]pyrimidin-4-amines 84 proceeds via a
modified Gewald reaction (Gewald et al., 1966) with four
components, where the additional component exploits the
reactivity of the two neighboring functional groups of the
classical three-component product. The starting materials are
various α-methylene bearing ketones, malononitrile, aryl or
heteroarylnitrile derivatives and elemental sulfur, which form
functionalized products in good to excellent yields in the sense of
the chromophore approach (Scheme 17C) (Abaee et al., 2017).

Another chemosensor but for the detection of Cu(II) ions are
furo[2,3-d]pyrimidines-2,4[1H,3H]-diones 85. The chromophores
consist of fused furopyrimidine and are generated via
multicomponent strategy with a chromophore approach
(Supplementary Material S29) (Kumar et al., 2017). The MW
assisted three-component reaction of 1,3-dimethylbarbituric acid,
benzaldehyde and respective isocyanides corresponding isocyanides
proceeds viaKnoevenagel condensation, [4 + 1] cycloaddition, and a
1,3-H shift to form two furopyrimidinones in excellent yields.

The furo[2,3-d]pyrimidines-2,4[1H,3H]-diones 85 display dual
channel sensing of Cu(II) ions in solution and in the membrane
phase. The electroanalytic study exhibits an ion selective electrode
response toward Cu(II) ion in membrane phase. In the presence of
Cu(II) ions, the absorption maximum decreases at the longest
wavelength of the four absorption maxima (λmax,abs = 210, 271,
325 and 375 nm) and results in a decolorization of the initially
yellow solution. The emission spectra are not affected by Cu(II) ions.
The proposed complex based on the 1H NMR study shows that the
furan oxygen atom and the alkylamino NH group are directly
involved in the coordination of Cu(II) ions (Supplementary
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Material S30). The coordination can be cleaved by sequestering
agents such as EDTA. The chemical sensor is recoverable and
efficiently reused several times.

Another MCR to synthesize pyrimidine chromophores is the
three-component reaction of 5-amino-1H-pyrazole-4-carbonitrile,
p-substituted benzoylacetonitriles and triethylorthoesters

SCHEME 17
(A) Five-component reaction of tetrahydropyrimidines 81 and selective dyes with quantum yields above 0.50 (Zhu et al., 2013). (B) Synthesis of
disperse dyes with a dihydropyrimidinone scaffold 82 via one-pot multicomponent reaction (Patel et al., 2022). (C) Modified Gewald synthesis of 2-
arylthieno[2,3-d]pyrimidin-4-amines 84 and selected examples (Abaee et al., 2017).
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(Supplementary Material S31) (Ghotekar et al., 2009). The
cyclocondensation forms pyrazolo[1,5-a]pyrimidines 86 and 87
via two methods in good yields in the sense of the chromophore
concept. If the reaction proceeds in toluene with triethylamine as a
catalyst 7-(4-aryl) pyrazolo[1,5-a]pyrimidine-3,6-dicarbonitriles 86
are obtained, whereas catalysis with HCl in ethanol furnishes 7-
amino-6-(4-aroyl)pyrazolo[1,5-a]pyrimidine-3-carbonitriles 87.

All pyrazolo[1,5-a]pyrimidines display intense fluorescence.
The compounds 86 show absorption maxima between 267 and
296 nm and emission maxima between 304 and 332 nm. The amino
group at the C7-position of compound 87 enhances the optical
properties (λmax,abs = 336–360 nm, λmax,em = 393–414 nm) in
comparison to the aryl group of compounds 86. If dimedone is
replaced by benzoylacetonitriles in the synthesis, pyrazolo[1,5-a]
quinazolines can be prepared through cyclocondensation in
refluxing toluene.

Quinoxaline can be considered as a benzo[b]fused pyrazine,
which leads to a strongly electron-deficient π-system, enabling its
application in chromophores for DSSCs (Chang et al., 2011; Pei
et al., 2012; Wu and Zhu, 2013). A variety of quinoxaline derivatives
show inherent fluorescence with significant solvatochromic shifts in
the emission bands (Woody et al., 2011; Schaffroth et al., 2013).
Quinoxaline derivatives can be accessed via various MCRs, which
can proceed in a domino to sequential or consecutive manner. The
activation-alkynylation-cyclocondensation (AACC) and
glyoxylation-alkynylation-cyclocondensation (GACC) sequences
provide a simple and elegant way to synthesize various
quinoxalines via MCR (Gers-Panther et al., 2017; Merkt et al.,
2018; Biesen and Müller, 2021).

Moreover, the condensation of aromatic aldehyde and
substituted 2-hydroxyacetophenone or 2-aminoacetophenone and
malononitrile gives rise to 5-amino-2-aryl-3H-chromeno[4,3,2-d,e]
[1,6]naphthyridine-4-carbonitriles 88 and 5-amino-2-aryl-
3H-quinolino[4,3,2-d,e][1,6]naphthyridine-4-carbonitriles 89 in
the sense of a pseudo five-component MCR (Scheme 18A) (Wu
et al., 2010). The process proceeds in aqueous medium and is
catalyzed by silica gel, an easily available, inexpensive, and non-
toxic substance. First, a chalcone is formed by aldol condensation of
the aldehyde and the 2-hydroxyacetophenone, which then reacts
with malononitrile. Subsequent cyclization and condensation with
another malononitrile take place to give the desired products upon
aromatization.

The tetracycles 88 and 89 show strong fluorescence in EtOH
upon irradiation with UV light (λexc = 360 nm), also with high
fluorescence quantum yields. Moreover, emissions in the visible,
allow applications as fluorescent probes, OLEDs, or luminescent
materials. In fact, naphthyridine derivatives have already been used
as luminescent materials for molecular recognition due to their
planar rigid structure (Peng et al., 2005; Lu et al., 2006).

Nitroquinolines 90 can be produced by reacting p-nitroaniline,
benzaldehydes and phenyl acetylene in presence of the Lewis acid
niobium pentachloride under mild conditions (Supplementary
Material S32) (dos Santos et al., 2017).

The optical properties of the compounds 90 can be altered by
substituents on the benzaldehyde. The two absorption bands appear
in a range of 250–280 nm and 325–393 nm, ascribed to the π-π*-
transition and n-π*-transition. Electron-donating substituents cause
a bathochromic shift in the absorption spectra. The nitroquinolines

can be reduced with hydrazine monohydrate in the presence of 10%
Pd/C to give aminoquinolines, which exhibit high quantum yields
up to 0.83.

If ketones are used instead of aldehydes in the three-component
reaction in the sense of the scaffold approach, access to substance
libraries of highly conjugated, fluorescent
spirofluorenonaphthoquinolines 91 are formed (Scheme 18B)
(Meerakrishna et al., 2016). Using aryl alkynes with electron-
donating groups in the copper-catalyzed reaction of ketones,
alkynes, and amines (KA2 coupling) lead to higher yields due to
the increased nucleophilicity of the copper acetylide.
Mechanistically, the reaction proceeds by Cu(I)-catalyzed
nucleophilic addition of phenylacetylide to 9-fluorenone to give a
propargyl alcohol, which reacts with aminoanthraquinone forming
an amino allene that undergoes intramolecular arylation and
subsequent aromatization. Structurally different
spirofluorenophenalenoquinoline derivatives 92 are obtained by
using 1-aminopyrene as the amino component in an analogous
reaction.

The absorption spectra of chromophores 91 are generally
characterized by an absorption maximum between 537 and
614 nm, whereas dye 92 shows two absorption maxima 391 and
412 nm. The compounds 91 exhibit orange-red fluorescence, while
pyrenospirofluoreno-naphthoquinoline 92 shows emission in the
deep blue region with the highest Stokes shifts (Δ~] = 3,738 cm−1).
The emissions of 91 are accompanied with low quantum yields
presumably caused by the ketone bridge (Usta et al., 2009; Jacques
et al., 2014).

The isatin-based spiro compounds 93 are formed via
Knoevenagel condensation between isatins and malononitrile,
followed by a Michael-type addition of meta-phenylenediamine,
subsequent intramolecular cyclization and tautomerization
(Supplementary Material S33) (Kundu et al., 2013).

All isatin-based spiro compounds 93 show similar absorption
and emission spectra. A red shift of the emission maxima can be
observed by increasing the solvent polarity and fluorescence
quantum yields and lifetimes are also affected by the polarity of
the solvent. The solvatochromism is characteristic for quinolines
(Mataga and Tsuno, 1957; Atkinson and Speakman, 1971).
Furthermore, the isatin-based spiro compounds 93 can be used
as an ON-OFF switch chemosensor for Cu(II) ions.

A three-component reaction of 4-hydroxycoumarin, aldehydes
and primary amines produces a huge substance library of quinoline
chromophores 94 (Scheme 19A) (Ataee-Kachouei et al., 2019). The
synthesis of chromeno[4,3-b]quinolin-6-ones and their symmetrical
and unsymmetrical dyes 95–98 is catalyzed by naturally occurring
halloysite nanotube (HNT) with the general formula of
(Al2(OH)4Si2O5·2 H2O) (Rawtani and Agrawal, 2012). The
solvent-free conditions, excellent yields, short reaction times
and the low-cost, environmentally friendly and reusable
catalyst characterize this reaction procedure as a green
approach. The fluorophores 94–98 fluoresce blue and green
and emission maxima can be detected in a range from 400 to
535 nm.

Coumarin-fused dihydroquinolines 99 are available in excellent
yields (82%–94%) in the sense of the chromophore approach from
4-hydroxycoumarin, aldehydes and aromatic amines with bismuth
triflate as a catalyst in water under microwave irradiation
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(Supplementary Material S34) (Khan et al., 2014). Mechanistically,
Schiff base formation followed by condensation with 4-
hydroxycoumarin generates the intermediate that reacts by
carbonyl condensation with the aromatic amine followed by 6 π-
electrocyclization and isomerization to furnish the dyes 99. Some of
the dyes 99 are highly fluorescent and exhibit high quantum yields of
up to 0.65.

The catalyst-free three-component reaction of various α,β-
unsaturated aldehydes, 2-hydroxy-1,4-naphthoquinone and
several 5-aminopyrazoles afford pentacyclic pyran-fused
pyrazolobenzo[h]quinoline derivatives 100, which incorporate
four bioactive components such as pyran, pyridine, pyrazole and
α-naphthol (Supplementary Material S35) (Yadav et al., 2022). It is
suggested that the α,β-unsaturated aldehyde reacts with 2-hydroxy-

SCHEME 18
(A) Silica gel-catalyzed one-pot syntheses of 5-amino-2-aryl-3H-chromeno[4,3,2-de][1,6]naphthyridine-4-carbonitriles 88 and 5-amino-2-aryl-
3H-quinolino[4,3,2-de][1,6]naphthyridine-4-carbonitriles 89 (Wu et al., 2010). (B) Synthesis of spirofluorenonaphthoquinolines 91 and 92 through MCR
of 9-fluorenones, aryl alkynes, and aminoanthraquinones 1-aminopyrene (Meerakrishna et al., 2016).
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1,4-naphthoquinone via a Knoevenagel reaction. This is followed by
the C-nucleophilic attack of 5-aminopyrazole via the C4 position.
The two subsequent cyclizations yield the desired product 100.

Nearly all of the synthesized derivatives fluoresce strongly under
UV light. The quantum yields are in the range of 0.24–0.42 with Stokes
shift of about 200 nm. The emission maxima are found at 490–514 nm.

SCHEME 19
(A) Green one-pot three-component synthesis of chromeno[4,3-b]quinolin-6-ones 94–98 (Ataee-Kachouei et al., 2019). (B) Three-component
synthesis of hexahydroquinolin-5-ones 101 (Oskuie et al., 2020).
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The Zn/MCM-41-catalyzed (ZnNO3-impregnated MCM-41)
unsymmetrical Hantzsch three-component condensation of
various aryl aldehydes, dimedone and methyl-3-aminocrotonate
proceeds under mild conditions and gives rise to the formation
of hexahydroquinolin-5-ones 101 (Scheme 19B) (Oskuie et al.,
2020).

The absorption maxima of the hexahydroquinolin-5-ones 101
can be detected at around 365 nm and emission at around 450 nm.
The compounds 101 exhibit high Stokes shifts ranging from 4,800 to
5,800 cm−1 and moderate quantum yields up to 0.28. In addition,
some of the synthesized hexahydroquinolines show anticancer
activities.

The benzoanellated quinolinones 102 can be synthesized via
one-pot reaction of 6-methoxy-1,2,3,4-tetrahydro-naphthalin-1-
one, trimethoxybenzaldehyde, ethyl cyanoacetate and ammonium
acetate under microwave irradiation (Supplementary Material S36)
(Khan and Asiri, 2015; Zayed and Kumar, 2017). The 2-oxo-
quinoline-3-carbonitrile derivative 102b also shows antibacterial
properties.

The intramolecular charge transfer band in the absorption
spectrum and emission solvatochromicity of the donor-acceptor
quinoline dyes 102 account for polar excited states. The quinoline-
based chromophores 102a and 102b achieve quantum yields of up to
0.40 and 0.59, respectively.

The sequential three-component synthesis of
homophthalonitrile, o-hydroxybenzaldehyde, and a nucleophile
gives rise to chromenoisoquinolines (Festa et al., 2017). If (aza)
indole acts as the nucleophile, 12-(1H-indol-3-yl)12H-chromeno
[2,3-c]isoquinolin-5-amines 103 are obtained in the sense of the
chromophore approach (Supplementary Material S37) (Festa et al.,
2019).

The UV/Vis spectra of indol-3-yl substituted dyes 103 show
similar absorption and emission maxima at around 354 and
415 nm, respectively. The highest fluorescence quantum yields
(ΦF = 0.42–0.70) are obtained in polar and protic solvents. In
addition, the compounds 103 undergo reversible fluorescence
quenching under acidic conditions. These optical properties
result from the localized electron density of the frontier
orbitals on the isoquinolinamine moiety and the equal energy
gaps of the associated frontier molecular orbitals.

Phenothiazines are electron-rich heterocyclic organic π-systems
and, thus, they are interesting donors in dyes. As a consequence of
their substitution pattern they tunable with respect to reversible
oxidation potentials and luminescence (Sun et al., 2005; Sasaki et al.,
2007; Miura et al., 2010). In general, donor-acceptor systems are
utilized in molecular electronics and photonics (Armstrong et al.,
2001; Lai et al., 2001; Richter, 2004; Dini, 2005; Kulkarni et al., 2005),
in OLEDs (Kraft et al., 1998; Mitschke and Bäuerle, 2000; Kulkarni
et al., 2004; Walker et al., 2011), as well as in photovoltaic devices
(Hoppe and Sariciftci, 2004; Walker et al., 2011; Lin et al., 2012b).
Remarkably, N-substituted phenothiazines are used for the
construction of AIE compounds (Zhang et al., 2015b; Okazaki
et al., 2017; Chen et al., 2019; Gong et al., 2019; Ekbote et al.,
2020) resulting from their non-planar “butterfly” shaped
conformation, which is folded along the S,N axis (Bell et al.,
1968; Klein et al., 1985). Access to phenothaizines in the sense of
anMCR can be achieved, for example, via an Ugi reaction (Bay et al.,
2013; Bay et al., 2014; Bay and Müller, 2014).

Just recently, 3,10-diaryl phenothiazines 104 were generated via
a sequentially Pd-catalyzed three-component arylation-amination
sequence in a one-pot fashion (Scheme 20A) (Mayer et al., 2020;
Mayer and Müller, 2021). The consecutive Suzuki arylation-
Buchwald-Hartwig amination sequence was applied to obtain
25 different examples of 3,10-diarylphenothiazines 104 in
moderate to very good yields by varying arylboronic acids or
esters as well as the aryl bromides with electron-donating and
electron-withdrawing substituents in the para-position.

The electron properties of the 3,10-diaryl 10H-phenothiazines
derivatives 104 can be fine-tuned by varying electronic substituents
on the phenothiazine that extend the π-electron conjugation and the
fundamental conformational change from intra- to extra-
configuration. Using an elaborated structure-property relationship
3D diagram based on the correlation between the first oxidation
potential (E0/+1

0 ) and the Hammett parameters σ+p (R
1) and σp (R2), a

prediction or tailoring of the oxidation potential is possible. The
modification of the electronic substituents allows to tune the
emission color over the entire spectral range from blue to red.

Placing the heterocycle 1,3,5-triazine instead of the aryl radical in 3-
position, also a considerable color spectrum can be covered by
modulating the acceptor strength of the triazine moiety in the solid
state under excitation under UV light (λexc = 365 nm). The triazine
building blocks have immense importance due to their extraordinary
biological activities, especially in chemical medicine (Verma et al.,
2020). Synthetically, after brominelithium exchange of the starting
component 3-bromo-N-anisyl-phenothiazine with BuLi and
introduction of the trichloro-1,3,5-triazine core by subsequent
double nucleophilic substitution, the phenothiazine-triazine
chromophores 105 can be obtained (Scheme 20B) (Kloeters et al., 2022).

In general, compounds 105 show high fluorescence quantum
yields in solution and in the solid state. By tuning the substitution
pattern on the triazine, photophysical properties such as
thermally activated delayed fluorescence (TADF) and white
light emission can occure. Thus, solvatochromism studies of
electron-deficient substituted triazine chromophores reveal
strong charge transfer character and a small singlet-triplet
energy gap, hence these derivatives in particular 105a identify
as TADF candidates. While the electron rich triazine dyes show a
reversible shift of the spectral emission upon protonation.
Furthermore, a white light emission can be observed for
derivatives 105d (Supplementary Material S38).

The phenothiazine moiety has also been implemented in linear
(Sailer et al., 2008) or cyclic (Memminger et al., 2008) oligomer
topologies as well as diphenothiazinyl dumbbells linked by
heterocycles (Franz et al., 2009; Hauck et al., 2010; Jahnke et al.,
2014). The synthesis of symmetrical thienyl-bridged
oligophenothiazine dumbbells 106 is feasible via a consecutive
pseudo five-component Sonogashira-Glaser cyclization sequence
(Scheme 20C) (Urselmann et al., 2016).

The absorption spectra of compounds 106 exhibit four absorption
bands. Three appear at shorter wavelengths, which can be assigned to
the phenothiazinyl units, and the longest wavelength maximum can be
attributed to the central 2,5-di (hetero)aryl-substituted thiophene
moiety. The molar decadic extinction coefficient increases with the
number of phenothiazinyl units. The thienyl-bridged
oligophenothiazines 106 emit in a wavelength range from 506 to
521 nm with large Stokes shifts between 4,800 and 5,600 cm−1,
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which are characteristic for oligophenothiazines (Sailer et al., 2008).
Fluorescence quantum yields of chromophores 106 range from 0.15 to
0.18. A cathodic shift of oxidation potentials is observed for the series
with increasing number of phenothiazinyl electrophore units. A
consistently reversible oxidation range can be demonstrated for
compound 106c. Molecular modelling reveals lowest energy
conformers that exhibit a sigmoidal and helical structure. TD-DFT
calculations and even semiempirical ZINDO (Zerner’s intermediate

neglect of differential overlap) calculations confirm the trends of the
absorption bands with the longest wavelengths. Thus, the charge
transfer can be largely assigned between the electrophore moieties
from the neighboring phenothiazinyl moieties to the central
thienyl unit.

Diacceptor substituted phenothiazine 107 can be accessed via
a lithium formylation-Knoevenagel condensation (LiForK)
sequence (May and Müller, 2020). The consecutive pseudo

SCHEME 20
(A) Sequentially Pd-catalyzed arylation-amination consecutive three-component synthesis of 3,10-diaryl 10H-phenothiazines 104 (TRZ = 2,4-
diphenyl-1,3,5-triazine) (Mayer et al., 2020; Mayer and Müller, 2021). (B) One-pot sequence to synthesize disubstituted phenothiazine-triazine dyes 105
(Kloeters et al., 2022). (C) Pseudo five-component Sonogashira–Glaser cyclization synthesis of thienyl-bridged oligophenothiazines 106 (Urselmann
et al., 2016). (D) One-pot LiForK synthesis of a 3,7-diacceptor substituted phenothiazine 107 (May and Müller, 2020).
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five-component reaction initiated by bromine-lithium exchange
forms an acceptor-donor-acceptor conjugate (Scheme 20D)
(May and Müller, 2020).

Via the same reaction sequence, the heterocyclic topologically
analoguous 2,6-diacceptor-substituted dithieno[1,4]thiazines 108
and 109 can also be prepared (Supplementary Material S39).
Further syn- and anti-anti dithieno[1,4]thiazine isomers with
diacceptor (110a and 111a) and bisdonor (110b and 111b)
substitution pattern can be synthesized via the pseudo three-
component reaction of N-phenyl dithieno[1,4]thiazine and 4-
bromobenzonitrile or 4-iodoanisole via dilithiation-lithium-zinc
exchange-Negishi coupling in yields ranging from 20% to 83%.

The interactions between the substituents in the dithieno
[1,4]thiazines (108 and 109) is stronger than in the
corresponding phenothiazine 107 since dithieno[1,4]thiazines
are generally higher polarizable. Dithieno[1,4]thiazines 108 and
109 are characterized by cathodically shifted oxidation
potentials and red-shifted, more intense absorption bands
compared to the corresponding phenothiazines 107. The
analysis of the structure-property relationships points out
that the photophysical and electrochemical properties as well
as the electronic structure are significantly determined by the
thiophene anellation mode of the products 108 and 109. Thus,
strong acceptors in syn-syn-dithieno[1,4]thiazines 108 and 110a
possess a rather folded structure as well as weak fluorescence
(ΦF = 0.01). In contrast, equally substituted anti-anti isomers
109 and 111a show an almost planar ground state geometry and
very intense near-infrared fluorescence (ΦF = 0.52). In principle
these red light or NIR emitters can be promising for potential
application in biomedical imaging (Hong et al., 2017) or OLED-
devices (Qu et al., 2006).

5 (Hetero)Arene

Exciplexes (excited complexes) as well as excimers (excited
dimers) are emitting charge transfer complexes, which are
formed by excitation of one of the constituent chromophores,
which collides with a second chromophore that is in the
electronic ground state (Balzani, 2001; Balzani and Venturi,
2003). The Ugi four-component reaction provides an access to
unimolecular exciplex emitting dyads 112 consisting of an N,N-
dimethylaniline moiety as a donor and anthracene, naphthalene or
pyrene as acceptor chromophores in the sense of the scaffold
approach (Scheme 21A) (Ochs et al., 2019).

The chromophores of the donor-acceptor dyads 112 are
electronically decoupled in the ground state and electronically
coupled in the excited state. This results in exciplex emissions
due to the polar nature of the excited state. The formation of the
exciplex depends on partial electron transfer with matching
redox potentials and on spatial proximity of the donor and
acceptor units. Furthermore, the N,N-dimethylaniline-acceptor
chromophores 112 are capable of photoinduced intramolecular
electron transfer (PIET) and exhibit emission solvatochromism
with red-shifted emission upon increasing solvent polarity
(Supplementary Material S40). Based on TD-DFT
calculations, the qualitative assignment of the experimental
absorption and emission bands is possible.

1,4-Diarylbuta-1,3-diene derivatives are applied in liquid
crystals, illuminants, and non-linear optical materials (Bartkowiak
et al., 2001; Davis et al., 2003; Davis et al., 2004; Denmark and
Tymonko, 2005; Abraham et al., 2006; Davis et al., 2008; Das et al.,
2010). In addition, some MCRs are known for the synthesis of these
chromophores (Zhang and Larock, 2003; Shibata et al., 2005;
Horiguchi et al., 2008). A palladium-catalyzed three-component
reaction of aryl iodides, diarylacetylenes, and cinnamic acids
furnishes 1,4-diarylbuta-1,3-dienes 113 in the sense of the
chromophore concept (Supplementary Material S41) (Yamashita
et al., 2011). The sequence is initiated by oxidative addition of
aryliodide with in situ generated Pd (0) species followed by alkyne
insertion and ligand exchange with cinnamic acid giving a
vinylpalladium carboxylate intermediate. Subsequent
decarboxylation and reductive elimination give the products. 1,4-
Diarylbuta-1,3-dienes 113 show solid state emission with maxima in
a range from 440 to 540 nm.

Structurally diverse benzo[b]phospholes 114 are synthesized via
facile regiocontrolled one-pot sequential coupling of an arylzinc reagent,
an alkyne, dichlorophenylphosphane (or phosphorus trichloride and a
Grignard reagent), and an oxidant (hydrogen peroxide or sulfur)
(Scheme 21B) (Wu et al., 2014). For this MCR two common
approaches with similar initiation steps can be applied. Cobalt-
catalyzed migratory arylzincation forms the intermediate that reacts
after transmetalation to an organic copper species with PhPCl2 followed
by oxidation with hydrogen peroxide or sulfur powder. Alternatively, the
formation of the benzo[b]phosphole oxides or benzo[b]phosphole
sulfides 114 proceeds by reaction of the copper species with PCl3,
followed by addition of Grignard reagents and final oxidation.

Most benzo[b]phosphole derivatives 114, especially benzo
[b]phosphole oxides, are fluorescent in solution. Electron-
donating amino groups as substituents in the R1 position led
to a significant redshift. In general, the longest wavelength
absorption maxima appear between 317 and 394 nm. The
emission maxima are located between 385 and 484 nm with
fluorescence quantum yields of up to 0.93. In general, benzo[b]
phospholes possess interesting optoelectronic properties and
find application in organic electronic devices (Tsuji et al.,
2009; Tsuji et al., 2010).

6 Azo chromophores

Azo dyes have a long history among synthetic dyes and are used in a
wide range of applications, including in cosmetic, textile and paper
industries (Şener et al., 2006; Benkhaya et al., 2017; Benkhaya et al.,
2020). Azo dyes are characterized by one ormore azo bridges as integral
chromophore. The common preparation method of azo dyes is the
diazotization of an aromatic primary amine followed by coupling with
one or more electron-rich π-nucleophiles (Gürses et al., 2016). Due to
the great importance and application of this dye class, several green
syntheses of this class of compounds have been explored (Safari and
Zarnegar, 2015; Nikpassand and Pirdelzendeh, 2016; Nikpassand et al.,
2018; Nikpassand, 2020). For instance, the microwave assisted three-
component reaction of arylazopyrazoles, benzaldehydes and dimedone
proceed via Mannich cyclization and condensation to form
pyrazoloquinazolinone azo dyes 115 (Supplementary Material S42)
(Elgemeie et al., 2015). The absorption maxima of azo dyes 115 appear
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between 380 and 498 nm. In the presence of a nitro aryl substituent on
the azo part, a bathochromic shift of the absorption maxima can be
observed.

Azo pyrimido[4,5-b]quinoline derivatives 116 are prepared via an
unsymmetrical Hantzsch synthesis with dimedone or 1,3-
cyclohexadione, azo aldehydes, and 6-amino-1,3-dimethyluracil in the

presence of choline chloride/oxalic acid (ChCl/Oxa) as a green solvent
and recyclable substance catalyst (Scheme 22A) (Gholami et al., 2020).
The UV/Vis spectra exhibit two absorption bands. The longest
wavelength absorptions are found between 352 and 362 nm.

An energy efficient four-component synthesis starting from
ethyl acetoacetate, hydrazine hydrate, azo salicylaldehydes,

SCHEME 21
(A) One-pot Ugi 4CR synthesis of donor-acceptor dyads 112 and selected examples (Ochs et al., 2019). (B) One-pot synthesis of functionalized
benzo[b]phosphole derivatives 114 and selected fluorophores (Wu et al., 2014).
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and malononitrile forms in the presence of meglumine
(N-methyl-D-glucamine) as an organocatalyst fluorescent 2-
amino-4-pyrazolyl-6-aryldiazenyl-4H-chromene-3-
carbonitriles 117 in good to excellent yields (Scheme 22B)
(Korade et al., 2021)

Absorption maxima of the dyes are found in the range of
290–294 nm and can be ascribed to the n–π* transitions. In
contrast to many azo compounds the dyes 117 fluoresce with
large Stokes shifts (Δ~] ≈ 17,100 cm−1) and emission maxima lie
in a narrow range between 582 and 586 nm.

SCHEME 22
(A) Hantzsch synthesis of pyrimido[4,5-b]quinolines 116 and the four obtained derivates (Gholami et al., 2020). (B) Meglumine catalyzed one-pot
synthesis of fluorescent 2-amino-4-pyrazolyl-6-aryldiazenyl-4H-chromene-3-carbonitriles 117 and selected derivates (Korade et al., 2021).
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7 Miscellaneous

7.1 Metalcomplex dyes

Organoboron complexes have been known for quite some time
(Michaelis, 1894; Michaelis and Richter, 1901), but only in the 21st
century their fluorescent properties were recognized as favorable for
application in OLEDs (Entwistle and Marder, 2002; Entwistle and
Marder, 2004; Jäkle, 2010; Rao and Wang, 2011). For example,

boron Schiff bases have indeed been employed in OLEDs
(Vidyasagar et al., 2019) and as non-linear optical chromophores
(Reyes et al., 2002; Lamère et al., 2006; Muñoz et al., 2008; Jiménez-
Pérez et al., 2015a; Jiménez-Pérez et al., 2015b). In addition, they are
used in bioimaging (António et al., 2019; Ibarra-Rodríguez et al.,
2019; Russo et al., 2020).

Recently, a multicomponent synthesis of two boron Schiff bases
118a and 118b through the condensation reaction of 2-
hydroxynaphthaldehyde with the corresponding amines and in

SCHEME 23
(A) One-pot synthesis of boron Schiff base dyes 118 (Corona-Lopez et al., 2021). (B) Derivatization of an isonitrile functionalized BODIPY dye via
various MCR to synthesize compounds 121–124 (Vazquez-Romero et al., 2013).
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situ generated diphenylborinic acid has been reported (Scheme 23A)
(Corona-Lopez et al., 2021).

The longest wavelength absorption maxima can be detected
between 396 and 404 nm. The emission maxima lie between 474 and
525 nm with large Stokes shifts, but low quantum yields. In addition,
boron complexes 118a and 118b can be classified as semiconductors
based on the determined optical band gaps Eg between 2.57 and
2.78 eV for the n-π* electronic transitions of the substituent groups.

Further tetracoordinated boron atoms bearing Schiff bases 119
can be synthesized via a three-component condensation reaction
starting from damnacanthal as a biogenic component in a
remarkably rapid manner (Supplementary Material S43) (Garcia-
Lopez et al., 2022).

The organoboron esters 119 are fluorescent and exhibit emission
maxima at around 400 nm. Notably, the oscillator strength of the
electronic transition can be influenced by the position of the
substituent. Thus, the derivative with the nitro group substituent
in 4-position displays a larger extinction coefficient. Similar to the
organoboron complexes 118, the chromophores 119 also show low
quantum yields around 0.01 and can also be classified as
semiconductors due to the optical band gaps (Eg ≈ 252 eV). As a
result of the damnacanthal utilized as the starting material, 119
possess biological activity and in particular 119b showed
cytotoxicity activity against MDA-MB-231 breast cancer cells.

A fast and efficient approach to chromophores applicable also in
biological fields such as boron hydrazone dyes 120, can be achieved
by microwave-assisted domino multicomponent condensation
reaction of diverse aryl aldehydes, benzoylhydrazide, or 4-
nitrobenzoylhidrazine, and diphenyl boronic acid (Supplementary
Material S44) (Molina-Paredes et al., 2019).

The UV/Vis spectra of boron complexes 120 exhibit either one
or two absorption maxima and longest wavelength absorption
bands can be detected in a range from 368 to 448 nm with molar
extinction coefficients ε between 13,000 and 55,000 M−1 cm−1. The
emission maxima appear between 420 and 520 nm with moderate
Stokes shifts (Δ~] = 2,980–3,400 cm−1) for most complexes, except
for dye 120c (Δ~] = 7,330 cm−1). Although the organoboron dyes
have low fluorescence quantum yields, they can be used to stain silk
fibroin. Therefore, they can be employed in the development of
scaffolds for tissue engineering due to their confirmed non-
toxicity.

Further organoboron complexes have low cytotoxicity are
employed in the medical diagnostics, especially as pH indicators
and cell markers (Baruah et al., 2006; Yang et al., 2013; Liu et al.,
2015; Yang et al., 2016). In particular, 4,4-difluoro-4-bora-3a,4a-
diaza-s-indacene (BODIPY) scaffold, which exhibits excellent
photophysical properties, are commonly encountered in
fluorescent probes (Loudet and Burgess, 2007; Ulrich et al., 2008;
Boens et al., 2012; Kolemen and Akkaya, 2018). Emission and
absorption typically below 600 nm as well as small Stokes shifts
and high quantum yields are characteristic of fluorophores
containing a BODIPY core (Gürses et al., 2016). Using a series of
multicomponent reactions starting from isonitrile functionalized
BODIPY dye allows for derivatization of this framework (Scheme
23B) (Vazquez-Romero et al., 2013). The isonitrile-BODIPY
scaffold was previously synthesized starting from BODIPY aniline
and subsequently functionalized by Groebcke-Bienaymé-Blackburn
(121), Passerini (122), and Ugi reaction (123 and 124).

The emission and absorption of the fluorescent BODIPY dyes
123 lie in the typical range of BODIPY fluorophores and exhibit
quantum yields of up to 0.61. The dyes 121 can be utilized as a
fluorescent probe for in vivo imaging of phagocytosing
macrophages.

Moreover, by varying the functional group of the BODIPY dye
further substance libraries of BODIPY complexes can be obtained by
MCR. The Passerini reaction of formyl-containing BODIPY
derivatives with benzoic acid and t-butyl isocyanide yields highly
substituted BODIPY dyes 125 and 126 (Supplementary Material
S45) (Ramirez-Ornelas et al., 2016). The formyl-containing
BODIPY complex are prepared via Liebeskind−Srogl cross-
coupling or Vilsmeier reaction starting from Biellmann BODIPYs
(Goud et al., 2006).

The photophysical properties of the BODIPY dyes are not
affected by the ligations to the para position of the 8-phenyl
group or to 2-position directly on the BODIPY core, but rather
are influenced by the free motion of the 8-aryl. For example,
boronic complexes containing an unhindered 8-phenyl (125a
and 126a) show a low fluorescence response, due to free
rotational motion of the ring. In contrast, high quantum
yields (ΦF = 0.82) are detected for aryls with methylation at
the ortho positions (126b), as mesityl groups prevent the aryl
from rotating freely due to a higher rotational barrier. In
addition, these complexes can be used to stain blood cells
with very intense and stable signals at a very low
exposure time.

Luminescence in metal complexes typically results from metal-
to-ligand charge transfer in the excited state (Fredericks et al., 1979;
Striplin and Crosby, 1994). Therefore, their photophysical
properties are characterized by high Stokes shifts and long
luminescence lifetimes, which are especially essential in the
bioanalytical field (Ma et al., 2014; Albada and Metzler-Nolte,
2016). For instance, organotin compounds derived from Schiff
base complexes can be applied as analytical luminescent
chemosensors for the identification of metals (Vinayak and
Nayek, 2019). In addition, since these complexes are capable of
staining silk fibroin, they can potentially be used as scaffolds for
tissue engineering (Lara-Ceron et al., 2017). Organotin complexes
with n-butyl (127) and phenyl residues (128) can be prepared by
microwave-assisted three-component condensation reaction of 2-
hydroxy-1-naphthaldehyde, L-amino acids, and diorganotin oxides
(Scheme 24A). Intrinsically fluorescent amino acids, such as
tryptophan, tyrosine, and phenylalanine can be thereby
implemented.

The UV/Vis and fluorescence spectra of compounds 127 and
128 display similar maxima. Two absorption maxima are observed
at 420 nm, which can be assigned to n-π* transitions of the
carboxylate and imine groups, and at 335 nm, which can be
assigned to the π-π* intraligand charge transfer within the
naphthyl segment. The absorption maximum of the π-π*
transition also differs from the free ligands (λmax,abs = 303 nm).
The bathochromic shift of the bands for the tin complexes can be
attributed to azomethine-N→Sn coordination. The emission can be
detected at a maximum of 465 nm fluorescence quantum yields
ranging from 0.08 to 0.21.

By replacing the amine with just one primary amine group by a
component with three reactive moieties, such as benzene-1,3,5-
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tricarbohydrazide, organotin compounds with a C3-symmetric
Schiff base 129 with excellent yields can be generated (Scheme
24B) (Canton-Diaz et al., 2021).

The photophysical properties of the two organotin
complexes with three central tin atoms are similar to those
with one central tin atom in which [N-(2-oxido-1-
naphthaldehyde)-4-hydroxybenzyhydrazidate] was employed
(Jiménez-Pérez et al., 2015b). However, the extinction
coefficient of 129a exhibits a larger value (ε = 68,400 M−1

cm−1) and thus a larger oscillator strength. Theoretical
calculations attribute the S0→S1 excitation to natural
transition orbitals. The tin atoms do not interact
electronically, as both organotin complexes show quantum

yields in chloroform of approximately 0.52, with lifetimes of
about 3 ns. Both complexes show green emission in solution.

Sn(IV)-porphyrins have an affinity for oxygen donor ligands
(Arnold and Blok, 2004). Therefore, these complexes are suitable for
the construction of axially coordination bound multiporphyrin
arrays (Redman et al., 2001; Prodi et al., 2002; Scandola et al.,
2006; Shetti et al., 2012). In a one-step procedure meso-pyridyl
Sn(IV)-porphyrin, meso-hydroxyphenyl-21,23-dithiaporphyrin,
and Ru(II)-porphyrin react to give Sn(IV)-porphyrin-based
oligomers 130 with yields ranging from 60% to 70%
(Supplementary Material S46) (Dvivedi et al., 2014). Here, the
Ru(II)-porphyrins are coordinated as peripheral ligands to the
meso-pyridyl group(s) of the Sn(IV)-porphyrin.

SCHEME 24
(A) One-pot condensation reaction to synthesized pentacoordinate and chiral organotin compounds 127 and 128 derived from amino acid based
Schiff bases (Lara-Ceron et al., 2017). (B) Microwave-assisted pseudo seven-component condensation reaction to synthesize two fluorescent
pentacoordinated organotin complexes 129 derived from Schiff bases with three central tin atoms (Canton-Diaz et al., 2021).
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The similar overlapping absorption bands of all three
constituent monomers with slight shifts in their absorption
maxima and the weak interaction of the porphyrin units in the
oligomers observable in the electrochemical study indicate that the

various porphyrin units of compound 130 act as decoupled
supramolecular arrays. However, the steady state fluorescence
study shows emission quenching in presence of the Ru(II)-
porphyrin units, presumably caused by strong spin-orbit coupling.

SCHEME 25
(A) One-pot catalyst-free Ugi 4CR for the synthesis carboxamide-modified-metallophthalocyanines 131 and 132 (Afshari et al., 2019). (B) One-pot
synthesis of fluorophore decorated macrocyclic peptides 133 (Rotstein et al., 2011).
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7.2 Peptoidic dyes

Phthalocyanines are structurally related to porphyrins. This
macrocyclic chromophore can be employed in Ugi 4CR in a
scaffold approach to access sidechain modified
metallophthalocyanines 131 and 132 (Scheme 25A) (Afshari
et al., 2019). The electrochemical and optical properties as well as
the solubility of phthalocyanines can be adjusted by rational tuning
of the metal center as well as modification and functionalization of
substrates. In the case of dye 131, where cobalt, copper, iron, nickel,
and zinc ions are implemented as metal centers, the phthalocyanine
acts as the carboxylic acid component in the Ugi reaction. For the
synthesis of the cobalt complex 132, tetra-amino cobalt (II)
phthalocyanine acts as the starting material, underling the
substrate diversity of the synthetic route.

The phthalocyanines containing carboxamide moieties 131 and
132 are characterized by high stability, diminished aggregation and
increased of monomerization, resulting in good solubilty of the
metallophthalocyanines in common solvents, especially in water.

Peptides perform a wide range of physiological functions in the
human organism and possess biochemical properties that are
valuable for drug development (Sánchez and Vázquez, 2017).
Therefore, synthetic peptides have found numerous applications
in the cellular arena and tagging them with fluorophores makes
them suitable fluorescent imaging agents and activity-based probes
(Blum et al., 2005; Loving and Imperiali, 2009; Sainlos et al., 2009;
Baumes et al., 2010; Kwan et al., 2011). However, peptides have
limited stability against proteolysis in vivo (Henninot et al., 2018; Lee
et al., 2019). Cyclic peptides possess higher in vivo proteolytic
stability and better cellular permeability (Matsuzaki et al., 1997;
Gudmundsson et al., 1999; Fletcher et al., 2008). A possible synthetic
route to fluorophore decorated macrocyclic peptides 133 is offered
by the multicomponent reaction of peptides, aziridine aldehydes and
isocyanides bearing a solvatochromic fluorophore (Scheme 25B)
(Rotstein et al., 2011). The fluorescent peptide macrocycles 133 are
fluorescent and their maximum emission incorporated di- and
tripeptides lies in the range from 495 to 500 nm.

8 Conclusion and outlook

MCRs are a valuable tool for synthesizing functional organic
chromophores with unique photophysical and electrochemical
features. Two strategies, the scaffold and the chromophore
concepts, have to provide the targeted structures, where
chromophores are either ligated to a scaffold (which also can
constitute a new chromophore) or where the chromophore,
mostly linear and cyclic conjugated systems, is formed in a
chromogenic fashion. Besides aiming for new chromophores,
arrays of established chromophores, or providing systems for
establishing systematic structure property relationships, in recent
years diversity-oriented syntheses relying on green approaches
involving environmentally friendly solvents, catalysts and
purification processes have become increasingly important and
intellectually challenging in the field of MCRs. Tailormade
functional π-systems accessed by MCR not only provide
fluorophores with AIE effects for extensive application
possibilities as luminescent materials in optoelectronics (OLED,

OFET, DSSC, OPV), but also reach by analytics applications
beyond to life science and biomedical engineering. Furthermore,
newly explored effects, such as AIE (aggregation-induced emission)
or TADF (thermally activated delayed fluorescence), demand
suitable tunable chromophores. Therefore, existing and still
undiscovered MCRs will also provide synthetic solutions for
tackling new actual and future scientific problems in
chromophore research, which has become an evergreen in
chemical sciences.
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