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The use of biological systems such as plants, bacteria, and fungi for the synthesis of
nanomaterials has emerged to fill the gap in the development of sustainable
methods that are non-toxic, pollution-free, environmentally friendly, and
economical for synthesizing nanomaterials with potential in biomedicine,
biotechnology, environmental science, and engineering. Current research
focuses on understanding the characteristics of biogenic nanoparticles as
these will form the basis for the biosynthesis of nanoparticles with multiple
functions due to the physicochemical properties they possess. This review
briefly describes the intrinsic enzymatic mimetic activity of biogenic metallic
nanoparticles, the cytotoxic effects of nanoparticles due to their
physicochemical properties and the use of capping agents, molecules acting
as reducing and stability agents and which aid to alleviate toxicity. The review also
summarizes recent green synthetic strategies for metallic nanoparticles.

KEYWORDS

biogenic metallic nanoparticles, nanozymes, capping agents, toxicity, green synthesis

1 Introduction

Recent advances in nanotechnology have allowed researchers to develop devices with
promising potential for use in a wide variety of applications in biomedicine, biotechnology,
environmental science, and engineering (Bundschuh et al., 2018; Dan, 2020). Nanoparticles
are the basic fundamental component in nanotechnology with sizes that range from 1 to
100 nm (Alavi and Karimi, 2018; Khan et al., 2019; Speranza, 2021). These structures offer
major advantages due to their unique physicochemical properties such as their small sizes
and diverse morphologies, large surface area to volume ratio, and in the case of metallic
nanoparticles, their magnetization (Bundschuh et al., 2018). These physicochemical
properties can be exploited for a broad spectrum of applications and present possible
solutions to emerging global issues such as antimicrobial resistance, environmental
pollution, and energy and food production (Ealias and Saravanakumar, 2017).

There is thus a need for more sustainable methods of synthesizing nanoparticles that are
non-toxic, pollution free and more environmentally friendly when compared to the
conventional chemical and physical methods for nanoparticle synthesis (Alavi and
Karimi, 2018; Huynh et al., 2020; Bahrulolum et al., 2021; Ying et al., 2022). Recent
studies focused on the use of biological organisms including plants, bacteria, yeast, fungi,
lichens or algae to synthesize nanoparticles; in a method referred to as biological synthesis
(Patil and Chandrasekaran, 2020; Nguyen et al., 2021; Ying et al., 2022). Proteins, enzymes,
phenolic compounds, amines, alkaloids and pigments are some of the molecules in plants
and microorganisms that can synthesize nanoparticles due to their reduction capability
(Nadaroglu et al., 2017). The chemical and physical methods of synthesizing nanoparticles
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involve the use of reducing agents and stabilizing agents for the
reduction of metal ions and to prevent agglomeration of the
nanoparticles, however, these agents tend to be toxic to the
environment and significantly contributes to nanoparticle toxicity
which is highly unfavourable especially in the biomedical field (de
Lima et al., 2012; Qu et al., 2019; Huynh et al., 2020; Nayak et al.,
2021). In biological synthetic methods, biological organisms can
produce biomolecules that act as reducing and stabilizing agents
(Bahrulolum et al., 2021). These agents are not harmful to the
environment, and maintain the stability of the synthesized
nanoparticles thereby rendering them non-toxic (Nadaroglu
et al., 2017).

Earlier reviews have highlighted the nanozyme activity of
various types of nanoparticles (Ragg et al., 2015; Wu et al., 2019;
Wang et al., 2020b; Ge et al., 2022). Some excellent review articles
have also highlighted the biogenic strategies of metallic
nanoparticles and advances in their role for biomedical
application (Singh et al., 2021a; Nayak et al., 2021; Srivastava
et al., 2021; Nayak et al., 2022). This mini review is different in
that in provides an up to date overview of various biogenic strategies
for metallic nanoparticle production, the role of biogenic synthesis
as capping agents and up to date use of biogenic metallic
nanoparticles as nanozymes.

2 Biogenic metallic nanoparticles

Many different biological organisms have been found to have an
ability to synthesize a variety of metallic nanoparticles, with themost
recent (2018–2022) studies presented in Supplementary Table S1 in
the Supplementary Information. Although Supplementary Table S1
covers plants, bacteria, fungi and lichen as systems that can be used
for metallic nanoparticle production, it should be noted that
Bryophytes also have an inherent ability to produce metallic
nanoparticles. To the best of our knowledge, bryophytes have not
been used to produce metallic nanoparticles from 2018, and thus a
review by Srivastava et al. (2021) gives a good overview of the
bryophytes used for metallic nanoparticle production (Srivastava
et al., 2021).

Plants are promising candidates for nanoparticle synthesis
because they detox and reduce the accumulation of metals as they
alter the chemical composition of metals making them non-toxic
and thus producing nanoparticles as a by-product (Nadaroglu
et al., 2017; Zhang et al., 2020). Plant extracts such as sugars,
flavonoids, sapogenins, proteins, enzymes, tannins, phenolics,
alkaloids, steroids, and organic acids, can be obtained from plant
parts, such as leaves, stems, roots, fruit, bark, flowers, seeds and
buds (Moodley et al., 2018; Yulizar et al., 2020). The extracts act
as reducing agents which result in the production of
nanoparticles. Recently, plant extracts from Citrus sinensis,
Lawsonia inermis, Artemisia haussknechtii, Cochlospermum
gossypium and Juglans regia have been reported for their use
in nanoparticle synthesis (Alavi and Karimi, 2018; Kredy, 2018;
Srivastava et al., 2019).

Bacteria are also target candidates in nanoparticle production
because of their rapid growth, cost-effectiveness, easy culturing, and
since their growth conditions and environment can be easily
controlled and manipulated (Nadaroglu et al., 2017). The

emergence of resistance mechanisms in bacteria as a means of
overcoming the harmful effects of metals also contributes to their
ability to biosynthesize metallic nanoparticles. These mechanisms
include transitions in the redox state, the operation of efflux systems,
the buildup of metals inside the cell, intracellular precipitation, and
extracellular creation of complexes (Figure 1A) (Moodley et al.,
2021). These nanoparticles were believed to be formed through a
method involving the NADH-dependent reductase enzyme, which
goes through oxidation to create NAD+ and potentially, the lost free
electron could turn Ag+ into AgNPs (Gurunathan et al., 2009;
Sintubin et al., 2009).

Bacteria have the ability to convert heavy metal ions into
nanoparticles by reducing them (Capuzzo, 2021). These
advantages can therefore be exploited for nanoparticle synthesis.
Bacteria including Pseudomonas stutzeri, Desulfovibrio alaskensis,
Morganella psychrotolerans and Lactobacillus casei were recently
reported to synthesize a variety of nanoparticles (Xu et al., 2018;
Capeness et al., 2019).

Fungi are also ideal candidates for nanoparticle synthesis as their
growth is easy and cost effective for laboratories and also at the
industrial scale (Molnár et al., 2018). These organisms secrete a large
number of enzymes and they have a large surface area due to their
mycelia which play a vital role in rapidly forming nanoparticles as
these characteristics causes metal precursor salts to be quickly
converted to metallic nanoparticles (Khandel and Shahi, 2018; Li
et al., 2021). Fungi such as Ganoderma lucidum, Lignosus
rhinocerotis, Trichoderma longibrachiatum, and Penicillium
corylophilum were recently used for the synthesis of metallic
nanoparticles (Elamawi et al., 2018; Katas et al., 2019; Fouda
et al., 2020; Nguyen et al., 2021).

3 The intrinsic enzyme mimetic activity
of biogenic metallic nanoparticles

Nanoparticles are known to be multifunctional and among the
functions that they possess is the ability to catalyse reactions.
Initially, the catalytic activity of nanoparticles was a result of the
conjugation of catalysts or enzymes to the shell of the nanoparticles
and therefore the nanoparticles would provide magnetic properties
while the catalyst or enzyme on the surface of the nanoparticles
provided the catalytic activity (Gao et al., 2007). This drew the
interest of researchers to other possible intrinsic enzyme-like
activities that nanoparticles may possess.

Nanoparticles exhibiting enzyme-like catalytic activities,
referred to as nanozymes, act as mimic enzymes that can
replace natural enzymes because natural enzymes have
disadvantages in their catalytic functions due to the high cost
of production, the time consuming process for production,
denaturation in harsh environmental conditions and therefore
must have suitable pH and temperature, and specific substrates
(Ragg et al., 2015; Ahmed et al., 2019; Singh, 2019; Rastogi et al.,
2021). Since nanozymes are easy to produce with low cost, have
high stability, and good robustness; they are suitable candidates
for applications requiring catalytic functions and were found to
possess enzymatic activity identical to that of peroxidase,
haloperoxidase, oxidase, catalase, hydrolase, and superoxide
dismutase as summarized in Figure 1B (Ragg et al., 2015;
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Ahmed et al., 2019). To date, there are more than 300 types of
nanomaterials that have been found to possess the intrinsic
enzyme-like activity (Gao and Yan, 2016).

Ferrihydrite nanoparticles synthesized from the bacteria
Comamonas testosteroni exhibited peroxidase-like activity similar
to that of horseradish peroxidase (HRP), and these nanoparticles

FIGURE 1
Synthesis, enzyme function and toxicity of metallic nanoparticles. (A) Is a schematic representation of biosynthesis of metal nanoparticles by
microorganisms, (B) depicts the enzyme mimetic activity of biogenic nanoparticles and (C) shows the mechanisms of nanoparticle toxicity. Substrates
used are 3, 3′, 5, 5′-Tetramethylbenzidine (TMB), 3, 3′-Diaminobenzidine (DAB), o-phenylenediamine (OPD), or 3,4-dihydroxyphenylalanine (DOPA).
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were able to catalyze reactions of the peroxidase chromogenic agents
3, 3′, 5, 5′-Tetramethylbenzidine (TMB), 3, 3′-Diaminobenzidine
(DAB), and o-phenylenediamine (OPD) in the presence of H2O2

(Ahmed et al., 2019). This peroxidase-like activity displayed by the
bacteria was exploited to develop a colorimetric method for the
detection of H2O2 and glucose which was used for successfully
detecting glucose in human serum (Ahmed et al., 2019). Magnetic
nanoparticles referred to as magnetosomes, synthesized from
Magnetospirillum gryphiswaldense (magnetotactic bacteria) also
exhibit intrinsic peroxidase-like activity indicated by their ability
to catalyze TMB in vitro in the presence of H2O2 (Guo et al., 2012).
The peroxidase-like activity of magnetosomes plays a role in
reducing enhanced intracellular reactive oxygen species (ROS)
levels generated under conditions having low oxygen and high
iron concentration (Guo et al., 2012; Lin et al., 2019). ROS are
very reactive chemical molecules containing oxygen, generated in
cell organelles including the endoplasmic reticulum (ER),
peroxisomes and the mitochondria (Yu et al., 2020b). This ROS
elimination role is thought to be significant for the survival of
magnetotactic bacteria growing under similar conditions (Guo
et al., 2012; Lin et al., 2019). The peroxidase mimetic activity of
magnetosomes has been used for the detection of H2O2 and glucose
(Hu et al., 2010).

Plant extracts contain products that comprise functional groups
including phenolic acids, proteins, polyphenol, bioactive alkaloids,
terpenoids and sugars, which reduce metal ions in the synthetic
mechanism for nanoparticles (Das et al., 2022a). These functional
groups can stabilize the synthesized nanoparticles and improve their
catalytic efficiency (Das et al., 2022a). Palladium nanoparticles
synthesized using gum kondagogu, a tree gum from C.
gossypium, were used for developing a colorimetric assay for
quantifying cholesterol from human serum based on the
peroxidase-like activity exhibited by the synthesized nanoparticles
(Rastogi et al., 2021). This study showed the potential application of
the intrinsic peroxidase mimicking properties of the palladium
nanoparticles for diagnostic, detection and quantification
purposes (Rastogi et al., 2021).

Prunus nepalensis fruit extract was used for synthesizing gold
nanoparticles exhibiting peroxidase-like catalytic activity (Das et al.,
2022a). The catalytic activity of the gold nanoparticles was
confirmed by the ability to catalyze the oxidation of the substrate
TMB in the presence of H2O2 (Das et al., 2022a). It was found that
the gold nanoparticles exhibited a higher maximum reaction
velocity and affinity for TMB compared to natural horse radish
peroxidase (Das et al., 2022a). The improved catalytic efficiency of
the gold nanoparticles is said to have been a result of the functional
groups present in the fruit extract (Das et al., 2022a). This
peroxidase-like activity of the gold nanoparticles was exploited
for a potential colorimetric immuno-sensing assay for the
detection of Mycobacterium bovis, a bovine tuberculosis
transmitted from cattle to humans through the “consumption of
unpasteurized milk” (Smith et al., 2004; Das et al., 2022a). Silver
nanoparticles synthesized from Cucumis sativus and Aloe vera
extracts, with the A. vera extract used as a capping agent,
catalyzed the reduction of methyl orange dye and para-nitro-
phenol (Riaz et al., 2022). This indicated the potential of these
nanoparticles in the degradation of nitro-phenols that are found in
industrial waste.

Ferrihydrite nanoparticles from Trichoderma guizhouense
synthesized during interaction of the fungus with hematite,
whereby fungi take up minerals to form nanoparticles, also
exhibited peroxidase-like activity (Yu et al., 2020a). Fungi interact
with minerals and biomineralize them into nanoparticles, and this
interaction is known as fungus-mineral interaction. The interaction
is important in the transformation of rocks, minerals and metals, the
degradation of rhizospheric organic matter and phosphate fixation.
The generation of ROS was observed during fungal growth and
therefore, the concentration of these species must be maintained at
sub-toxic levels (Yu et al., 2020a). The peroxidase-like activity of the
synthesized ferrihydrite nanoparticles reduced the generated ROS,
lowering their toxic effects. It was suggested that the production of
the nanoparticles caused the ROS generated during fungal growth to
decrease, therefore maintaining the concentration of the ROS at sub-
toxic levels.

The enzymatic activity of biogenic nanoparticles similar to
natural enzymes presents a platform whereby they can be
exploited for developing several methods for diagnostic, detection
and biosensing applications. To date, there are numerous patent
applications and patents that have been granted for nanozyme
production and nanozyme systems which highlights the
importance of these small molecules. A list of these patents and
patent applications are listed in Table 1, together with a summary of
various applications of biogenic nanoparticles that have recently
been evaluated, highlighting the versatility of these nano molecules.

4 Toxicity of nanoparticles and the role
of capping agents

Nanoparticle toxicity presents a challenge, especially in areas
such as biomedicine, cosmetics, agriculture and the food science,
and thus there is a need for the development of nanoparticles with
low cytotoxicity. The main physicochemical properties that
determine toxicity of nanoparticles are size, shape, surface
chemistry, surface composition, surface area to volume ratio and
stability (Aillon et al., 2009; Sukhanova et al., 2018). The primary
mechanisms of toxicity of metallic nanoparticles stem from them
entering the cell via endocytosis, which places them within an acidic
lysosome resulting in oxidation and release of metal ions. The
intracellular metal ions can then exert a myriad of toxic effects as
summarised in Figure 1C (Repetto et al., 2010; Carrillo-Carrion
et al., 2014).

Fortunately, encapsulation strategies have recently been on the
radar of researchers in a bid to reduce the toxic effects of
nanoparticles as it could provide stability to the nanoparticle and
reduce its susceptibility to release metal ions.

Capping agents are molecules that play an essential role in the
growth, aggregation, and physicochemical properties of
nanoparticles by regulating their size, shape, geometry, and
surface chemistry (Javed et al., 2022; Sidhu et al., 2022). Capping
agents can firmly adsorb on the nanoparticle surface forming a
single or multilayer protective coating thus providing long term
nanoparticle stability (Javed et al., 2022). Capping agents can consist
of proteins, carbohydrates, amino acids, and lipids (Bulgarini et al.,
2021) and can prevent aggregation of nanoparticles (Sidhu et al.,
2022).
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Capping agents are found in biological organisms, and they can
act as reducing and stability agents, an advantage that is noteworthy
for biogenic nanoparticles (Guilger-Casagrande et al., 2021), (Javed
et al., 2022). In addition, capping agents from biological organisms
can be introduced to the chemical synthetic strategies and this has
become an essential strategy in lowering the cytotoxic effects of
chemically synthesized nanoparticles (Sidhu et al., 2022).

The encapsulation of nanoparticles with capping agents forms a
barrier between the inner core of the nanoparticle and the
surrounding environment, improving nanoparticle solubility,
reactivity, interactions with biomolecules, preventing aggregation
and inducing their biological functions (Weingart et al., 2013). A
study by Guilger-Casagrande et al. (2021) evaluated the effects and
functions of capping agents on the stability of silver nanoparticles
synthesized by the fungal strain Trichoderma harzianum by
comparing the stability of the nanoparticles with and without
capping agents. It was found that when capping agents were
removed from nanoparticles, the diameter of the nanoparticles

increased and it was proposed that the reason for this may be
“subsequent aggregation of the nanoparticles” (Guilger-Casagrande
et al., 2021).

Soliman et al. (2022) suggested that extracellular enzymes and
proteins from Trichoderma saturnisporum acted as capping
agents in the synthesis of silver and gold nanoparticles. Puri
and Patil (2022) confirmed the presence of phytochemicals by
screening Tinospora cordifolia extract used for synthesizing
selenium nanoparticles. Among the phytochemicals present in
the extract were phenolics and flavonoids and the hydroxyl
groups of these biomolecules were proposed to act as capping
agents (Puri and Patil, 2022). Highly stable, negatively charged,
spherically shaped and nano-sized selenium nanoparticles were
synthesized from the plant extracts and it was suggested that the
stability of the nanoparticles was due to the phytochemicals
detected in the extract (Puri and Patil, 2022). Silver
nanoparticles synthesized using yeast extract were capped by
biomolecules from the extract, and the resulting silver

TABLE 1 List of Nanozyme Patent Applications and Summary of Recent Nanoparticle applications.

Invention Inventors Application
number

Year Country References

Nanozymes, methods of making nanozymes, and methods of
using nanozymes

Cao, Y.C., Liu, C., Liu, H., Wang, Z.,
and YangS.H.

WO2011133504-A2 2011 WIPO (PCT) Cao et al. (2011)

Synthesis method of enzyme-mimic magnetic nanocatalysts,
and enzyme-mimic magnetic nanocatalysts thereby

Jang, J., Lee, S., and Lee, J KR101350722B1 2014 South Korea Jang et al. (2014)

Nanozymes, methods of making nanozymes, and methods of
using nanozymes

Cao, Y.C., and Liu, C WO2015023715A1 2015 WIPO (PCT) Cao and Liu
(2015)

Nanozymes, methods of making nanozymes, and methods of
using nanozymes

Cao, Y.C., and Liu, C US20160215279A1 2016 United States Cao and Liu
(2016)

Nanoparticle-attached enzyme cascades for accelerated
multistep biocatalysis

Medintz, I.L., Vranish, J.N., Ancona,
M., Susumu, K., and DiazS.A.

US20180171325A1 2017 United States Medintz et al.
(2017)

Stabilized polymeric nanocapsules, dispersions comprising the
nanocapsules, and methods for the treatment of bacterial

biofilms

Rotello, V.M., Landis, R.F., Gupta,
A., and LeeY.W.

WO2017040024A1 2017 United States Rotello et al.
(2017)

PD-IR nanoparticles used as peroxidase mimics Xia, X 20,170,199,179 2017 United States Xia (2017)

Nanozymes, methods of making nanozymes, and methods of
using nanozymes

Cao, Y.C., Liu, C., Liu, H., Wang, Z.,
and YangS.H.

US 10,081,542 B2 2018 United States Cao et al. (2018)

Ig E detection and allergy diagnostic method using enzyme-
mimetic nanozyme-based immunoassay

Lee, S., Lee, S., Kim, M., Shin, S., Lee,
J., and Kim, M

WO2018084340A1 2018 WIPO (PCT) Lee et al. (2018)

Enzyme-encapsulated nanoparticle platform Ortac, I., Esener, S.C., Yayla, I.G.,
and Messmer, B

US10300152B2 2019 United States Ortac et al.
(2019)

RNA silencing nanozymes Cao, Y.C., and Jiang, T 20210139873 2021 United States Cao and Jiang
(2020)

Application Function References

Antimicrobial Agents Activity against bacterial and fungal growth Dong et al. (2019), Akpinar et al. (2021), Sarwer et al. (2022),
Soliman et al. (2022)

Bioremediation Degradation of heavy metals, pesticides,
insecticides, herbicides and dyes from polluted environments

Tripathi et al. (2018), López-Miranda et al. (2019), Chaudhari et al.
(2022), Gami et al. (2022), Salama et al. (2022)

Delivery Systems Delivery of cancer targeting genes and therapeutic drugs Abolhasani Zadeh et al. (2022)

Enzyme Immobilization Immobilization of enzymes from reaction mixtures Fotiadou et al. (2021)

MRI Contrast Agents Molecular imaging, diagnosis and treatment of diseases Cai et al. (2019), Nan et al. (2021), Wei et al. (2021)
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nanoparticles exhibited shapes, sizes and surface chemistry that
exhibited good long-term stability (Shu et al., 2020).

Biogenic nanoparticles thus present a promising potential for a
variety of applications with the added advantage of low toxicity due
to their inherent capping potential, a feature that is lacking in
physicochemical synthetic strategies that are reliant on addition
of synthetic capping agents resulting in labor intensive multi-step
processes (de Lima et al., 2012).

5 Current scenarios and challenges

The emergence of nanotechnology has seen nanoparticles
having widespread application and being the molecule of choice,
resulting in them being in high demand. Although there are
numerous synthetic strategies for nanoparticle production, the
physical and chemical routes pose many challenges such as the
need for expensive equipment, capping agents and harmful
chemicals, and production of monodisperse nanoparticles with
similar morphology is not so straight forward. Green synthetic
methods, using inherent biological machinery and
phytochemicals as capping and stabilization agents, is therefore
seen as the preferred method for nanoparticle production.
However, large scale production is still seen as a challenge and
researchers are daily evaluating new strategies for scaling up. One of
the novel methods that could be explored for large scale production
of nanoparticles is investigating the role of soil microbes in
influencing plant growth and uptake of nutrients. This could
have importance in nanoparticle production as soil microbes
could directly affect how metals and nutrients are taken up by
plants before being packaged into nanoparticles (Das et al., 2022b).

6 Conclusion and future prospects

The use of biological organisms for synthesizing nanoparticles is
increasing as these organisms produce their own reducing and
stabilizing agents that are involved in reducing metal ions to
nanoparticles and also providing encapsulation. The biogenic
nanoparticles thus have the important benefit of reduced toxicity
and have immense application in a wide variety of biotechnology
and biomedical fields such as drug delivery systems, scanning
techniques, cosmetics, and assay systems. There is thus huge
potential for exploiting biogenic nanoparticles for our
advancement, however the scaling up of nanoparticle production
is still an area that requires more research. An exciting area of

research that could possibly result in an effective scaling up
mechanism could be the role of soil microbes in plant growth as
a symbiotic relationship could potentially be manipulated to allow
improved metal and nutrient uptake by the plants thereby resulting
in increased nanoparticle production.
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