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Poly (vinyl chloride) (PVC) is commonly used to manufacture biomedical devices
and hospital components, but it does not present antimicrobial activity enough to
prevent biofouling. With the emergence of newmicroorganisms and viruses, such
as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that was
responsible for the global pandemic caused by Coronavirus Disease 2019
(COVID-19), it is evident the importance of the development of self-
disinfectant PVC for hospital environments and medical clinics where infected
people remain for a long time. In this contribution, PVC nanocomposites with
silver nanoparticles (AgNPs) were prepared in the molten state. AgNPs are well-
known as antimicrobial agents suitable for designing antimicrobial polymer
nanocomposites. Adding 0.1 to 0.5 wt% AgNPs significantly reduced Young’s
modulus and ultimate tensile strength of PVC due to the emergence of
microstructural defects in the PVC/AgNP nanocomposites, but the impact
strength did not change significantly. Furthermore, nanocomposites have a
higher yellowness index (YI) and lower optical bandgap values than PVC. The
PVC/AgNP nanocomposites present virucidal activity against SARS-CoV-2
(B.1.1.28 strain) within 48 h when the AgNP content is at least 0.3 wt%, suitable
formanufacturing furniture and hospital equipment with self-disinfectant capacity
to avoid secondary routes of COVID-19 contagion.
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1 Introduction

Poly (vinyl chloride) (PVC) has been used in the medical field for over three decades,
widely applied in medical applications today because it is impervious to germs, easily
cleaned, and allows sterilization and disposable applications that reduce healthcare
infections (Zhao and Courtney, 2009; Wypych, 2016). In addition to applications in the
biomedical sector, PVC has been used in bottles, cables, domestic appliances, pipes, food
contact films, among others (Schiller, 2015). The reasons for the extensive technological
applications of PVC, including healthcare and packaging industry, is also due to the unique
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combination of properties, just to name a few, flexibility,
transparency, chemical stability, biocompatibility and resilience,
ease of processing, accessibility (cost and marketing), and
recyclability.

Stabilizers and processing additives are indispensable to prevent
the degradation of PVC during its thermal processing to guarantee
the confection of biomedical devices and structural parts with
suitable mechanical performance. Pristine PVC can present
bacteriostatic activity against some bacteria (Zhao and Courtney,
2009; Schiller, 2015). However, stabilized and plasticized PVC does
not present enough antimicrobial properties to impede biofilm
formation since phthalate ester plasticizers, crazing, and other
surface defects from UV exposure make additive PVC more
susceptible to biofouling (Mark, 2004). Then, it is necessary to
apply biocide additives in PVC formulations because it is vulnerable
to biofilm formation due to the growth of multilayer bacterial
colonies covered by an extracellular matrix composed mainly of
polysaccharides (Ferreira et al., 2015).

Although controversies and doubts about the effects occasioned
by stabilizers and processing additives on human health along with
short and long-term exposure times, PVC has been considered an
excellent material with biocompatibility, chemical stability, and
sterilization resistance combined with economic advances that
make this polymer one of the main materials used in the
manufacture of products of extreme importance in medicine,
such as flexible blood containers, urine ostomy bags, flexible
tubes, inhalation masks, oxygen masks, and personal protective
equipment (Zhong et al., 2013; Lewandowski and Skórczewska,
2022).

Since 2019, the Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2) and its variants have caused a system collapse and
brought about health systems and health crises in several countries
(Tao et al., 2021). SARS-CoV-2 and variants are highly contagious
viruses transmitted between humans mainly through respiratory
droplets via aerosol (Howard et al., 2020; Li et al., 2020). It has been
alarmed that SARS-CoV-2 can maintain its potential for contagion
even after 24 h on the surface of polymeric materials (van
Doremalen et al., 2020). Therefore, PVC with self-disinfecting
capacity is relevant to produce structural components and
products, such as handrails and wall guards, to prevent critical
epidemiological issues in hospital environments and medical clinics
(Balagna et al., 2020; Hasan et al., 2020).

The main procedures to confer auto-disinfectant properties to
PVC are surface modification and mixing inorganic materials with
intrinsic bactericidal and fungicidal properties (Behboudi et al.,
2018). The blending with cationic polymers and functionalization
with cationic groups (cationization) are other viable technological
approaches to add bactericidal properties to PVC (Palencia et al.,
2019). The incorporation of antimicrobial agents in the polymer
matrix may bring some advantages over other methods, such as the
possibility of using conventional polymer processing equipment
(extruders, injectors, among others) and longer time extension of the
antimicrobial activity over time. However, the development of
composites by this route generally requires high amounts of
antimicrobial agents to achieve a bactericidal effect and not just a
bacteriostatic activity. The development of polymer nanocomposites
by using antimicrobial agents in the nanoscale can be an alternative
way to avoid this problem. In concern of COVID-19 spreading, such

technological approaches to develop self-sanitizing PVC are suitable
to avoid the secondary routes of COVID-19 contagion, mainly in
hospitals and healthcare clinics that involve touching a
contaminated surface and then contamination with dirty hands
as extensively reviewed in the literature (Marquès and Domingo,
2021; Correia et al., 2022).

Silver (Ag), copper (Cu), TiO2, ZnO, Cu2O, and CuO are the
main inorganic antimicrobial agents applied for the development of
antimicrobial materials (Sedighi et al., 2014; Gold et al., 2018;
Vodnar et al., 2020). They act mainly by generating reactive
oxygen species (ROS) and releasing metal ions that cause
irreversible damage to biological components present in the viral
structure and bacterial and fungal cells (Tan et al., 2019; Zhou et al.,
2020). Several authors have shown the outstanding antimicrobial
activity of silver nanoparticles (AgNPs) or silver-based nanoparticles
over the other antimicrobial agents in polymeric nanocomposites
(Pongnop et al., 2011; Narayanan and Han, 2017; Oliani et al., 2017;
Shah et al., 2018; Kraśniewska et al., 2020; Morais et al., 2020; Rahimi
et al., 2020), including against SARS-CoV-2 (Assis et al., 2021). A
few studies have shown the auto-disinfectant ability of PVC/AgNP
nanocomposites (Zampino et al., 2011; Azlin-Hasim et al., 2016; El-
Sayed et al., 2016; Braga et al., 2018), but their antiviral capability
against SARS-CoV-2 has not been investigated. Furthermore, it is
important to mention that most of these works were not carried out
by mixing PVC and AgNP in the molten state (Azlin-Hasim et al.,
2016; El-Sayed et al., 2016; Braga et al., 2018). Generally, PVC/AgNP
nanocomposites are prepared by solvent methods (typically casting
and AgNP synthesis in the presence of dissolved PVC) that are not
suitable for obtaining large products on an industrial scale. This
contribution aims to fill this gap in the literature. Moreover, we
evaluated the thermal stability, and mechanical properties of the
PVC/AgNP nanocomposites.

2 Materials and methods

2.1 Materials

A rigid PVC compound in the form of pellets was supplied by
Karina Plásticos (Brazil). AgNP liquid suspension (NpAg-925ETG)
was purchased from TechNano Solutions (TNS, Brazil). HNO3

(65%), AgNO3 (99%), KSCN (>99%), Zn(NO3)2·6H2O (96%–
103%), Cu(NO3)2·3H2O (98%–102%), and Fe(NO3)3·9H2O
(≥99.95%) were purchased from Synth (Brazil). All reagents were
used as purchased without prior purification.

2.2 Methods

2.2.1 Preparation of the PVC/AgNP
nanocomposites

The PVC and PVC/AgNP nanocomposites were prepared
through melt processing in an internal mixer (Model 50EHT 3Z,
Brabender GmBh&Co. KG, Germany) at 160°C and a rotor speed of
60 rpm. First, PVC (50 g) was plasticized for 2 min, and then the
AgNP suspension was added (0.5, 1, and 2 mL). The PVC samples
were mixed for 8–10 min, using a fill factor of 80%. The
nanocomposites were named PVC/XAgNP, where X corresponds
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to the AgNP content (0, 0.1, 0.3, and 0.5 wt%). The AgNP
concentrations were estimated from the metal content
measurements using Inductively Coupled Plasma Atomic
Emission Optical Spectroscopy (ICP-OES).

Samples for impact testing were injected at 180 °C (test specimen
dimensions according to ASTM D256 in a microinjection molder
(Model 12cc, XPlore Instruments BV, The Netherlands), with mold
temperature at 40 °C and 9 bar of pressure. The tensile samples were
pressed in a hydraulic press (model SL 11, Solab Científica, Brazil)
using a mold at 190°C, a residence time of 3 min, followed by 6 tons
of pressure for 5 min. Then, the films (thickness = 1 mm) were
wedge-cut in the specimen shapes following ASTM D1708.

2.3 Characterization

2.3.1 AgNP suspension
2.3.1.1 Dynamic light scattering (DLS)

The AgNP hydrodynamic diameter was characterized by
dynamic light scattering (DLS), with a stable 90° scattering angle,
using a Zetasizer Nano-ZS (Malvern Panalytical Ltd., Malvern, UK).
The AgNP liquid suspension (50 μL) was diluted in distilled water
(2 mL) before the DLS measurements.

2.3.1.2 Zeta potential (ζ)
The Zeta potential (ζ) was calculated with the Smoluchowski

model using electrophoretic mobility measurements of the
nanoparticles obtained by Zetasizer Nano-ZS (Malvern
Instruments, UK). The reading time to measure the Zeta
potential data was 10 s, and the measurements were performed
in duplicate.

2.3.1.3 Energy-dispersive X-ray spectroscopy (EDS)
EDS spectra were obtained using a JEOL compact scanning

electron microscope (JSM-6010LA) using the secondary electron
detector (SEI). The AgNP suspension (~20 μL) was previously
deposited on carbon tape and then dried on a heating plate
(300°C) in the ambient atmosphere.

2.3.1.4 Fourier-transform infrared absorption spectroscopy
(FTIR)

Fourier-transform infrared absorption spectroscopy (FTIR)
measurements were performed on a Thermo IS5 Nicolet
spectrometer, using an attenuated total reflectance (ATR)
accessory (ZnSe crystal). Spectral data acquisition was conducted
in the range of 600–4,000 cm-1, using 32 scans and a spectral
resolution of 2 cm-1. Before FTIR measurements, the AgNP
suspension was previously deposited (2 drops) on KBr pellets
and dried at 100 °C for 30 min in a vacuum oven (Vacuoterm).

2.3.1.5 Ultraviolet-visible absorption spectroscopy (UV-Vis
spectroscopy)

UV-Vis spectroscopy measurements were performed using a
UV-Vis spectrophotometer (Varian Cary, Model 50). The AgNP
suspension was diluted in distilled water, and then the UV-Vis
spectrum was collected.

2.3.1.6 Inductively Coupled Plasma Atomic Emission
Optical Spectroscopy (ICP-OES)

The silver, zinc, and copper content in the AgNP suspension was
quantitatively estimated by ICP-OES analysis. The measurements
were performed in an equipment ICP-OES Axial View, model
710 Series (Varian). The instrumental conditions are detailed in
(Supplementary Table S1). The calibration curve was prepared from
AgNO3, Cu(NO3)2, and Zn(NO3)2 aqueous solutions (HNO3-3%).

2.3.2 PVC/AgNP nanocomposites
2.3.2.1 Scanning electron microscopy (SEM)

The samples with PVC were coated with a 20 nm thick gold
layer, using Leica EM ACE 200 Sputter Coater (Leica Microsystems,
Wetzlar, Germany). Micrographs were taken in a microscope FEI
Quanta 250 (Thermo Fisher Scientific, Hillsboro, Oregon,
United States), using an accelerating voltage of 10 kV, a spot size
of 4 nm, and a magnification of 5,000x.

2.3.2.2 UV-Vis diffusive reflectance spectroscopy
The diffuse reflectance (Rd) spectra were collected in a UV-Vis

spectrophotometer (Model Evolution 220, ThermoFisher,
United States). Spectralon diffuse reflectance material based on
polytetrafluoroethylene (PTFE) was applied as a white reflection
pattern (reflection = 100%). These measurements were made in the
range of 200–1000 nm with a spectral resolution of 1 nm. The
yellowness index (YI) was calculated from the reflectance
measurements by Eq. 1.

YI � R + G( )
B2

(1)

where R, G, and B are reflectance intensity at 680, 530, and 470 nm,
respectively.

The optical bandgaps (Eg) of the PVC samples were estimated
from Rd data (in %) using Tauc’s plots [hν F (Rd)]

1/n versus hν and
extrapolating the linear region in the radiation energy axis (hν). h is
Planck’s constant, ν is the frequency of electromagnetic radiation, n
depends on the nature of the electronic transition (n is equal to two
for indirect transition and to ½ for direct transition), and F (Rd) is
the Kubelka-Munk function is determined given by Eq. 2 (Li et al.,
2012; Shebi and Lisa, 2019).

F Rd( ) � 100 − Rd( )2
2Rd

(2)

2.3.2.3 Fourier-transform infrared absorption spectroscopy
(FTIR)

Fourier-transform infrared spectroscopy (FTIR) with attenuated
total reflectance (ATR) diamond accessory was performed on
Spectrum Two equipment (PerkinElmer Inc., Massachusetts,
United States). The spectra were collected with 4 cm−1 spectral
resolution, 64 scans, from 4,000 to 500 cm−1. The PVC
degradation was evaluated by the carbonyl (IC=O), polyene (IC=C),
and hydroxyl (IOH) indexes using Eq. 3, according to the literature
(Yousif et al., 2016).

I � Agroup

A1328
(3)
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where A1328 is the infrared absorbance reference peak at 1328 cm-1

associated with the scissoring and bending of CH2 groups. Agroup is
the infrared absorption at 1722 (carbonyl group), 1602 (polyene),
and 3,500 cm-1 (hydroxyl group) connected with chemical groups
generated by the PVC degradation reactions.

2.3.2.4 Thermogravimetric analysis (TGA)
The thermal stability of the polymeric samples was evaluated by

a TGA thermal analyzer (Mettler Toledo, United States) using
alumina pans. The samples were heated from 50°C to 600°C
(heating rate = 10°C min-1) under N2 atmosphere (50 mL min-1).

2.3.2.5 X-ray photoelectron spectroscopy (XPS)
The XPS high-resolution spectra were collected using K-alpha +

equipment (ThermoFisher Scientific Inc., Massachusetts,
United States) with monochromatic radiation A1Kα at room
temperature (pass energy = 50 keV; energy step = 0.1 eV). The
samples were plasma etched to perform XPS depth-profile of silver
and carbon elements (ion energy = 2000 eV; raster size = 2.00 mm;
depth-profile etch time = 5 s). The etched depths of the PVC samples
were estimated by the etching rate of Ta2O5 standard (0.29 nm s-1).
The XPS spectra peak-fittings were performed in CasaXPS version
2.3.25, using U 2 Tougaard background approximation and finite
Lorentzian asymmetric (LF) lineshape (with relative sensitivity
factors = 1). XPS spectra were calibrated to give C-C/C-H
binding energy (C1s region) of 284.8 eV (Baibarac et al., 2021).

2.3.2.6 Mechanical properties
Uniaxial tensile tests were performed in a Universal Testing

Machine from Instron, using a load cell of 50 kN and a test speed of
1.5 mmmin−1, according to ASTM D1708 (micro tensile). Notched
Izod impact strength was measured at room temperature (25°C) by
an Izod Impact Tester (Shanta Engineering, India) with a hammer
pendulum of 2.71 J, following method A in ASTM 256D. All
mechanical data were determined using 2-6 specimens.

2.3.2.7 Antiviral assays
Surface antiviral tests were carried out in triplicate according to

the ISO 21702:2019 standard. Films were cut into 5 cm2 squares, in
laminar flow with sterile scissors, decontaminated with 70% ethanol,
packed in surgical grade paper, sterilized for 20 min at 121°C in
saturated steam under a pressure of 110 kPa (autoclave), and then
dried in an oven at 51°C for 4 h.

Briefly, the Vero E6 cell line (ATCC–CRL1586) was cultured
using Eagle’s Minimal Essential Medium (EMEM) (Sigma-Aldrich)
containing 10% fetal bovine serum and 1% penicillin/streptomycin
(Gibco®) incubated with 5% CO2 at 37°C. After culturing, the cells
were transferred to a 96-well plate containing 1 × 10⁵ cells/well and
incubated until reaching 80%–90% confluence. The virus inoculum
used was SARS-CoV-2 (B.1.1.28 strain) 2.5 × 10⁶ TCID50/mL
titrated according to TCID50 (50% Tissue Culture Infectious
Doses) method. For sample contamination, the tests were carried
out in a BSL-3, in a biological safety cabinet Class II B2. 100 μL of the
virus inoculum were added to the center of the samples, spread with
a sterile disposable loop, and incubated at room temperature (direct
contact times = 30, 60, and 120 min). The material was recovered
with a sterile swab and added to a Falcon tube with 0.9 mL of EMEM
medium, being vortexed for 1 min 150 μL of eluate aliquots were

plated on previously 80%–90% confluent VeroE6 1 × 104 cells/well
in triplicate, in a 96-well plate, incubated at 37°C in an oven with 5%
CO2. After 48 h of incubation, the antiviral activity was evaluated
through the cytopathic effect and cell viability by the MTT (3-[4,5-
dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide)
colorimetric assay to assess cellular viability. The results are
expressed in percentage of viral inactivation (Table 1) through
cell viability compared to cell controls in the presence or absence
of the virus.

2.3.2.8 Statistical analysis
One-way analysis of variance (ANOVA one-way) and Tukey’s

and Dunn’s tests were applied to statistically evaluate the significant
differences between the properties of the samples measured, using
the GraphPad Prism 7.04 and a 95% confidence level.

3 Results and discussion

3.1 AgNP suspension

3.1.1 Chemical composition
The AgNP liquid suspension has C (Kα = 0.277 keV) and O

(Kα = 0.525 keV) predominantly in its composition, and a trace
concentration level of Ag (Lα = 2.984 keV) was identified in the EDS
spectrum (Supplementary Figure S1). Sodium (Kα = 1.041 keV) also
appears in the AgNP suspension. Amadio and collaborators
(Amadio et al., 2018) also identified sodium in this commercial
AgNP suspension. According to the results of ICP-OES, the silver
and zinc contents in the AgNP suspension are 130 ± 13 mg and
0.02 ± 0.01 mg per milliliter of AgNP suspension, respectively.
Copper, another chemical element in the composition of
antimicrobial agents commonly used as additives in polymers,
was not identified in the antimicrobial suspension by ICP-OES.

The UV-Vis absorption band (Figure 1A) in the 350–500 nm
range (absorption maximum at 430 nm) is due to the AgNP surface
plasmon resonance (Rehan et al., 2015; Eya’ane Meva et al., 2016).
According to the literature (Poisson, 2021), this AgNP suspension is
composed not just of silver (Ag) but also of ethylene glycol
(C2H6O2), poly (vinyl pyrrolidone) (PVP), and water. Ethylene
glycol and PVP act as stabilizing agents for AgNPs through a
surface-coating stabilization process (Safo et al., 2019).

The FTIR spectrum of the AgNP suspension in Figure 1B
presents infrared absorption bands at 860, 885, 1035, 1077, 1215,
1370, 1655, 1733, 2850, 2925, and 3,350 cm-1. The absorption signal
at 885 cm-1 is related to CH2 wagging vibrations, and at 1215 cm

-1 is
due to the elongation of C-C bonds (aliphatic carbon) from aliphatic
moieties in ethylene glycol (Saikia et al., 2017; Guo et al., 2018). The
signal at 3,330 cm-1 may be associated with -OH groups from
ethylene glycol and water. The absorption bands at 1279 cm-1 are
related to the vibration of C-N groups on the PVP polymer chains
(Safo et al., 2019). The FTIR signal at 1733 cm-1 indicates the
presence of C=O groups of the ketone group in the pyrrolidone
ring of the PVP polymer chains. The signal at 1655 cm-1 can be
attributed to the vibrations of -OH groups and, also, to the C=O
stretching from PVP. This FTIR signal is shifted due to the presence
of ethylene glycol and silver in the suspension (Safo et al., 2019). The
infrared signals in the FTIR spectrum located at 2925 and 2850 cm-1
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are associated with vibrations of CH groups by asymmetric and
symmetric stretching (PVP and ethylene glycol), respectively.
Infrared absorption signals at 552 cm-1 due to stretching of Ag-O
groups of AgNPs stabilized with PVP or ethylene glycol were not
detected because it is outside the range of the spectrum analyzed by
the ATR-FTIR equipment (Assis et al., 2021).

3.1.2 AgNP particle size
As identified in Figure 2, the suspension presents particles with a

trimodal hydrodynamic diameter distribution: less than 10 nm;
between 50 and 500 nm; and greater than 1.1 µm ζ value for the
AgNP suspension equals −4.7 ± 13.2 mV, indicating that the
microparticles detected by DLS are associated with the
aggregation of AgNPs in the suspension, which is visually
yellowish and transparent. The agglomeration occurs because
AgNPs have low electrostatic charges at their surfaces that are
insufficient to effectively promote the repulsion between
nanoparticles (Shebi and Lisa, 2019). The yellow coloration is
similar to the coloration of AgNP suspensions synthesized by
different methods reported in different studies in the literature
(Rodríguez-León et al., 2013; Kavuličová et al., 2018).

3.2 PVC/AgNP nanocomposites

3.2.1 Scanning electron microscopy (SEM)
Figure 3 presents SEM images for PVC and the PVC/AgNP

nanocomposites. According to the supplier, the PVC presents well-
dispersed microparticles of calcium carbonate (CaCO3) and

TABLE 1 Nomenclature for the antiviral activitya assays.

Log reduction Reduction factor Inactivation percentage (%) Activity

1 10 90 Not virucidal

2 100 99 Not virucidal

3 1,000 99.9 Not virucidal

4 10,000 99.99 Virucidal

5 100,000 99.999 Virucidal

6 1,000,000 99.9999 Virucidal

aAntiviral activity: difference in the logarithm of virus infectivity titer found in an antiviral-treated product and an untreated product after inoculation and contact with the virus.

FIGURE 1
(A) UV-Vis spectrum and (B) FTIR spectrum of the AgNP
suspension.

FIGURE 2
Hydrodynamic diameter distribution of the AgNP suspension.
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titanium dioxide (TiO2). CaCO3 is an inorganic material widely
applied in the polymer industry as a filler to reduce the cost of
products based on commodity thermoplastics (Rocha et al., 2018; da
Silva et al., 2021a). TiO2 is extensively utilized in the polymer
industry as a white pigment and UV-blocking additive to hamper
polymer degradation occasioned by UV exposition (da Silva et al.,
2018). Still, TiO2 also displays photocatalytic properties suitable for
self-cleaning coatings on several materials. The usage of solid
particles also contributes to diminishing the plasticizer diffusion
and migration to the PVC surface and external environment, which
leads to substantial changes in the mechanical performance of PVC,

in the case of plasticized products (Xiong et al., 2016). Microcavities
and interfacial voids are identified at the cryofractured internal
surface of the PVC sample due to low adhesion between the filler and
polymeric matrix. Moreover, CaCO3 microparticles are visible at the
external surface of PVC, which can cause excessive surface
roughness of the PVC parts (Figure 3).

The addition of AgNP suspension to the PVC leads to the
formation of several microvoids at the external surface, as can be
seen on the SEM images of the PVC/0.3AgNP and PVC/0.5AgNP
nanocomposites (Figure 3). It occurs due to the evaporation of
volatile compounds in the AgNP suspension, which is caused by
heating during the thermal processing of the PVC samples. AgNP
suspension also seems to increase the number of microvoids at the
cryofractured internal surface of the PVC/1AgNP nanocomposite,
suggesting a more significant detachment of the CaCO3 particles
from the PVCmatrix that is justified by the poor interfacial adhesion
between the phases (da Silva et al., 2018). Even knowing the size of
the AgNP and AgNP aggregates in the antimicrobial silver
suspension by DLS, it is impossible to identify them in the SEM
images due to the low concentration of AgNP.

The SEM images in Figure 3 also show that the fracture of the
PVC matrix changes from brittle to ductile due to the increase in
AgNP content. This result may be associated with the small organic
molecules in this silver suspension that increase the polymer chain
mobility in the composite even with the presence of a micrometric
filler, acting as a plasticizing agent and enabling more plastic
deformation in the PVC matrix.

3.2.2 UV-vis diffusive reflectance spectroscopy
The diffuse reflectance (Rd) spectra of the PVC and the

nanocomposite samples are shown in Figure 4. PVC and all
nanocomposites present an anomalous light dispersion at 490 nm
due to an abrupt and concomitant increase in the absorptivity and
refractive index of the PVC system. This phenomenon is called the
Eststrahlen effect, which is associated with a predominant Fresnel
reflectance over the Kubeika-Munk reflectance at this specific

FIGURE 3
SEM images of the PVC and PVC/XAgNP nanocomposites, where
X corresponds to the AgNP content (wt%). Images were obtained from
the cryofractured internal surfaces (left) and external surfaces (right) of
the test specimens. Different defects are highlighted in circles:
cavities (red), particles at the exterior surface (blue), and interfacial
voids (yellow).

FIGURE 4
Diffuse reflectance (Rd) spectra of the PVC and PVC/XAgNP
nanocomposites (X corresponds to the AgNP content in wt%).
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wavelength (Blitz, 1998; Tao et al., 2015). The PVC system displays
an absorption signal at 920 nm in the near-infrared (NIR)
wavelength region, in which its signal intensity is reduced as the
AgNP content rises in PVC. The reason for this spectral
phenomenon at 920 nm is out of our awareness, but it can be
connected to the lamp change at 350 nm of the UV-Vis equipment
(from deuterium to halogen lamp) during themeasurements. The Rd

intensity also decreases with the increase of the AgNP concentration
in the PVC.

It is reported that PVC exhibits absorption maxima at 280 and
245 nm in the UV region due to π–π* electronic transitions in the
polymer backbones (Abdel-Fattah et al., 2019). However, the PVC
used in this work presents a sharp absorption profile after 450 nm,
and the Rd intensities are minimal at 350 nm. This UV-visible
absorption profile is similar to CaCO3/TiO2 hybrid particles,
which are utilized commercially as an alternative white pigment
to work around the higher price of TiO2 pigment (more expensive
than CaCO3) and the scarcity of titanium resources (Sun et al.,
2018).

According to Figure 4, the addition of AgNPs in the PVC leads
to a broadening of the Rd intensity for higher wavelengths (redshift)
occasioned by an enhancement of the absorption coefficient in the
visible wavelength. The low bandgaps of the inorganic components
in the PVC/AgNP nanocomposites are responsible for these results
since they have optical bandgaps (Eg) inferior to that of PVC. It is
well known that silver and other noble metals reduce the optical
bandgap of semiconducting metallic oxides, improving their UV-
visible light absorption due to the introduction of lower energetic
levels in the electron energy band structure of the semiconductor
(Abbad et al., 2020). Moreover, the absorption of visible radiation by
the AgNP plasmon resonance states with low-energetic levels must
contribute to the absorption broadening in the UV-visible
electromagnetic region, including the reduction of the direct (Ed

g)
and indirect (Ei

g) optical bandgaps of the PVC and PVC/AgNP
nanocomposites obtained from Tauc’s plot and Kubelka-Munk
transformation here (Supplementary Figure 2S).

Ed
g and Ei

g values are detailed in Table 2. The optical bandgaps
are close to those experimentally observed for TiO2 that displays
bandgap around 3.2 and 2.9 eV for anatase and rutile phases,

respectively (Ivanova et al., 2016; Munir et al., 2019). The anatase
phase has an indirect bandgap, while the rutile presents direct
electronic transitions (Ramos Jr et al., 2017). Abdel-Fattah et al.
(2019) reported the direct and indirect optical bandgaps of PVC film
around 4.2–4.3 eV, which are values higher than those
experimentally observed in our PVC system. According to
Ghadam et al. (Ghadam and Idrees, 2013), calcite (CaCO3) is an
indirect bandgap semiconductor with Ei

g very close to 5.8 eV. Then,
all this information from the literature indicates that the bandgap
data of the PVC in Table 2 are relative to TiO2. Also, increasing
AgNP in the PVC nanocomposites slightly reduces the Ed

g and E
i
g of

this oxide, as expected and explained previously (Abbad et al., 2020;
Gogoi et al., 2020). Antagonistically, the yellowness index (YI) of the
PVC enhances as the AgNP content increases in the PVC/AgNP
nanocomposites due to the characteristic yellow color of the AgNP
suspension. The YI values calculated here are coherent with the
yellowish coloring aspect of the PVC samples visually observable in
Table 2.

3.2.3 Fourier-transform infrared absorption
spectroscopy (FTIR)

Figure 5 presents the FTIR spectra of the PVC samples. There
are infrared absorption signals associated with molecular vibrations
of distinct chemical functional groups from PVC (Coltro et al., 2013;
Park et al., 2018): C-Cl (stretching, 610 and 695 cm-1), CH2

(asymmetrical stretching, 2851 cm-1), C-C (stretching, 1100 cm-1),
CH-Cl (out-of-plane angular deformation, 1253 cm-1), CH2–Cl
(angular deformation, 1425 cm-1).

The FTIR signal at 870 cm-1 is associated with the C-COO bond,
confirming the presence of calcium carbonate (CaCO3) as indicated
by SEM images. Moreover, there are infrared absorption signals
from carbonyl (1722 cm-1) and polyene (1602 cm-1) groups due to
PVC thermooxidative degradation (Yousif et al., 2016). PVC
degrades mainly by dehydrochlorination, releasing HCl with the
generation of polyenes. However, chloroketones and aliphatic
ketones also can be formed by alternative degradation reaction
mechanisms of this polymer with oxygen gas in the atmosphere
(Yousif et al., 2016; Yu et al., 2016). Also, the polyenes can suffer

TABLE 2 The visual aspect, yellowness index (YI), direct (Ed
g) and indirect (Ei

g)
optical bandgaps of the PVC and PVC/XAgNP nanocomposites (X corresponds
to the AgNP content in wt%).

Sample Visual aspect YI (%) Edg (eV) Eig (eV)

PVC 4.4 3.1 3.0

PVC/0.1AgNP 16.8 2.6 2.2

PVC/0.3AgNP 23.0 2.5 1.8

PVC/0.5AgNP 28.6 2.5 1.5

FIGURE 5
FTIR spectra from the PVC and PVC/XAgNP nanocomposites (X
corresponds to the AgNP content in wt%).
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crosslinking reactions via Diels–Alder condensation, generating
C=C bonds in cyclic compounds (Morikawa, 2014). As shown in
Figures 6A, B, the carbonyl (IC=O) and polyene (IC=C) indexes have
no significant differences, indicating that the addition of the AgNP
suspension did not intensify the PVC degradation during
thermomechanical mixing.

PVC photooxidation reactions due to UV irradiation lead to
polymer chain scissions with increasing hydroxyl groups in the
polymer (3,500 cm-1) (Yousif and Hasan, 2015). However, the
hydroxyl index (IOH) from the PVC (Figure 6C) was significantly
enhanced by adding 0.5 wt% of AgNP, which is expected by the
presence of OH groups from components in the silver suspension
(PVP and ethylene glycol).

3.2.4 X-ray photoelectron spectroscopy (XPS)
The XPS spectra of binding energies for carbon bonds (C1s XPS

region) in PVC samples are shown in Figure 7. Four C1s fitting peaks
are identified in PVC at 284.8 eV (C–C/C–H), 286.3 eV (C–Cl),
284 eV (C=C), and 288.1 eV (C-O) (Wang et al., 2015; Fu et al.,
2019; Baibarac et al., 2021). The PVC nanocomposites present
another XPS peak at 287.5 eV from C-N bonds, shifting the XPS
signal from C-O bonds to 289–290 eV. The C-N bonds are
associated with stabilizer compounds in the AgNP suspension,
such as poly (vinyl pyrrolidone) (PVP). The presence of C=C
bonds at the surface of the PVC samples corroborates the FTIR
and UV-Vis data that indicate PVC degradation.

The Ag3d XPS spectra (Figure 8) confirm the presence of Ag
(0) (metallic silver) in the PVC nanocomposites due to the
presence of XPS signal peaks at 372.2 (Ag3d3/2) and 365.5 eV
(Ag3d5/2) (Sharma et al., 2018). The low intensity of Ag (0) signal
can be associated with the attenuation of electrons caused by the
capping effects of the AgNPs by PVP and ethylene glycol
(Binaymotlagh et al., 2022).

The XPS depth-profile results in Supplementary Figure S3
indicate that the PVC sample undergoes a more pronounced
dehydrochlorination degradative process at the surface than the
PVC nanocomposites, since the C-Cl peak area increases while the
C=C peak area reduces along the sample depth. The silver
suspension seems to ease the localized thermooxidative
degradation at the PVC surface due to the local heating during
the molding. Moreover, the XPS depth-profile data suggest that
silver nanoparticles are distributed within the PVC/AgNP
nanocomposites, which is essential to their antimicrobial
performance in applications where the surface is subject to
constant wear to maintain the AgNP content at the PVC
nanocomposites consistently higher than the minimum
antimicrobial concentration.

3.2.5 Mechanical properties
Young’s modulus (E) and ultimate tensile strength (σmax) from

uniaxial tensile tests of the PVC and PVC/AgNP nanocomposites
are shown in Figure 9. PVC had a tensile strength of 45.1 ± 4.9 MPa
and a tensile modulus of 2.1 ± 0.3 GPa. The PVC and all composites
were tested at the same ASTM standard and strain rates, enabling a
direct comparison of the uniaxial tensile measurements. For this

FIGURE 6
(A) Carbonyl (IC=O), (B) polyene (IC=C), and (C) hydroxyl (IOH)
indexes from FTIR spectra of the PVC and PVC/XAgNP
nanocomposites (X corresponds to the AgNP content). Statistical
analyses are for each sample group, using Tukey’s multiple
comparison tests. ns = data are not significantly different
(p-value >0.05).
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purpose, we applied Tukey’s multiple comparison test as ANOVA
one-way method where the results are considered significantly
different if the p-value is lower than 0.05 using a 95% confidence
level. The PVC nanocomposites present Young’s moduli equal to
1.7 ± 0.1, 1.6 ± 0.1, and 1.4 ± 0.1 GPa when added 0.1, 0.3, and 0.5 wt
% of AgNP in the PVC, respectively. According to ANOVA, Young’s
moduli of the PVC/AgNP nanocomposites are identical. However,
they are significantly lower than the E value of the PVC, probably
due to the local plasticizing effect of the AgNP suspension on the
PVC observed in the SEM images via lubricant or gel swelling
mechanisms (Daniels, 2009; Quesada-Pérez et al., 2011; Langlois
and Deville, 2014). Consequently, the immobilization of the polymer
matrix due to inorganic particle stiffness does not contribute
significantly to the enhancement of Young’s modulus of the PVC
(Watt et al., 2020).

The ultimate tensile strengths of the PVC/AgNP
nanocomposites are also statistically equal, independently of the
AgNP content, as shown in Figure 9B. However, the σmax data from
the PVC is slightly superior to those from PVC/0.3AgNP and PVC/
0.5AgNP nanocomposites (around 32–41 MPa), confirming the
hypothesis that the AgNP suspension reduces the adhesion
between the PVC matrix with the inorganic microparticles as

suggested by SEM analysis. This reduction in the interfacial
adhesion leads to a poor stress transfer between these phases,
causing a decrease of σmax for the composite.

The toughness of the PVC samples was evaluated by Izod impact
tests, and the results are shown in Figure 10. There is no significant
difference in impact strength for PVC with the increase of the AgNP
concentration, despite the increase of cavities on the PVC surface
caused by the insertion of AgNPs. This result is important, as the
antimicrobial grade PVCmust have similar toughness to the original
commercial PVC compounds used to produce parts for hospital
environments. The impact strength results are 100 ± 9 (PVC), 103 ±
14 (PVC/0.1AgNP), 99 ± 16 (PVC/0.3AgNP), and 113 ± 24 J m-1

(PVC/0.5AgNP). In another way, the decrease in strength and
toughness of PVC/AgNP nanocomposites due to the presence of
microstructural defects caused by AgNPs was reported by Merchan
et al. (2010). Braga et al. (2019) observed a similar reduction of
mechanical strength of the PVC films (prepared by solvent casting
method) caused by AgNP aggregation. According to them, the silver
nanoparticles at concentrations of 2 – 8 wt% generated a less
cohesive internal structure, affecting mechanical strength and also
decreasing the elongation at the break of the PVC (Braga et al.,
2019).

FIGURE 7
C1s XPS high-resolution spectra from the PVC and PVC/XAgNP nanocomposites (X corresponds to the AgNP content in wt%).
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FIGURE 8
Ag3d XPS high-resolution spectra from the PVC and PVC/XAgNP nanocomposites (X corresponds to the AgNP concentration).

FIGURE 9
(A) Young’s modulus and (B) ultimate tensile strength of the PVC and PVC/XAgNP nanocomposites, where X corresponds to the AgNP content. The
data represent mean ± standard deviation (SD) (n = 3–6). Statistical analyses are for each sample group, using Tukey’s multiple comparison tests. The
p-value is considered significant at <0.05 (95% confidence level). ***p < 0.001, **p < 0.01, and *p < 0.05 indicate mean data significantly different.
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3.2.6 Thermogravimetric analysis (TGA)
Figure 11 presents the thermal decomposition profiles of the

polymeric samples. PVC thermally decomposes via two distinct
stages. From 250°C to 350 °C, the major mass loss (50 wt%) occurs
due to the PVC dehydrochlorination with the formation of polyene
sequences along the PVC polymer backbone (Kayyarapu et al.,
2016). The second stage, from 420°C to 550 °C, involves the mass
loss of around 20 wt% associated with the decomposition of the
polyene sequences, generating carbonaceous residues (Cruz et al.,
2021) that remain along with the inorganic particles (identified
by SEM).

All PVC samples have similar onset thermal decomposition
temperatures (Tonset), varying from 276°C to 289 °C, as detailed in
Table 3. From the DTG curves, the temperatures at the maximum

thermal decomposition rate (Tmax) of each stage were
determined. There is a slight rising on the Tmax average values
from the PVC’s first thermal decomposition step due to the
increase in the AgNP content. The silver nanoparticles may
hamper the loss of volatiles generated by the PVC
dehydrochlorination reactions during its heating. Tmax is
associated with the PVC second thermal decomposition step
and is not affected by the AgNP content. Shimoga et al. (2019)
observed the opposite effect of AgNP concentration on Tonset for
the first thermal decomposition step in AgNP/PVC films obtained
by casting. They attributed the low thermal stability of AgNP/
PVC films to the solvent molecules trapped between the polymer
chains that caused thermal decomposition of PVC at
temperatures below 200°C (Shimoga et al., 2019). Furthermore,
adding 0.5 wt% of AgNPs provided the highest total weight loss
for the nanocomposites at 600°C, which is justified by the higher
amount of low-mass organic compounds in the AgNP suspension
that are thermally decomposed in the PVC matrix above 400 °C.
Braga et al. (2019) also observed that the dehydrochlorination
onset temperature of AgNP/PVC films decreases with the
enhancement of AgNP concentration, but it causes a reduction
of the total weight loss since the content of inorganic materials
increases in the PVC matrix.

FIGURE 10
Izod impact strength of the PVC and PVC/XAgNP
nanocomposites, where X corresponds to the AgNP content (wt%).
The data represent mean ± SD (n = 5). Statistical analyses are for each
sample group, using Tukey’s multiple comparison tests. ns = data
are not significantly different (p-value >0.05).

FIGURE 11
TGA thermograms (A) and the DTG curves (B) from the PVC and PVC/XAgNP nanocomposites, where X corresponds to the AgNP content (wt%).

TABLE 3 Tonset and Tmax temperatures from TGA and DTGmeasurements of the
PVC samples.

Sample Tonset (°C) T max (°C)

PVC 281 ± 5 302 ± 75

460 ± 78

PVC/0.1AgNP 282 ± 5 307 ± 75

460 ± 78

PVC/0.3AgNP 283 ± 5 311 ± 75

460 ± 78

PVC/0.5AgNP 284 ± 5 311 ± 75

460 ± 78
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3.2.7 Antiviral assays
The assay was performed at different contact times, with 30, 60, and

120min (Supplementary Figure S4a). The percentage of viral inactivation
observed through cell viability increases with longer contact times. PVC/
0.3AgNPandPVC/0.5AgNP samples present virucidal activity compared
to cell controls with significant differences against the SARS-CoV-
2 positive control, according to Dunn’s tests (Table 4; Supplementary
Figure S4a). Therefore, to achieve an inactivation percentage of 99.99% in
48 h, the PVC must contain at least 0.3 wt% of AgNPs. The antiviral
activities from these nanocomposites were evidenced by the decrease in
the cytopathic effects caused by the virus that reduced the percentage of
viable cells. There are few published works on the antiviral activity of
polymermatrix nanocomposites against SARS-CoV-2 variants. Lam et al.
(2022) reported that polyurethane/AgNP nanocomposites could reduce
the amount of SARS-CoV-2 beta (B.1.351) virions by 67%within 24 h of
direct contact antiviral assays. According to TCID50 reduction assays,
Assis et al. (2022) observed that SARS-CoV-2 antiviral activity of
propylene (PP) composites with 0.3 wt% of Ag2XO4 (X = W, Mo,
and Cr).

The time-dependent virucidal effect of the samples is directly
associated with increased contact time due to the longer exposure
time of virions to AgNPs, Ag+ ions, and ROS that cause irreversible
damage to viral particles (da Silva et al., 2021b). Jeremiah et al.
(2020) also observed time-dependent virucidal effects of AgNP
suspensions against SARS-CoV-2 virions.

4 Conclusion

In this work, PVC/AgNP nanocomposites were successfully
prepared via melt mixing, which is a suitable route for the large-
scale production of polymeric products with large sizes and complex
geometries. SEM images evidence the formation of surface defects
on the PVC due to the addition of AgNPs, leading to changes in
Young’s modulus and ultimate tensile mainly when the AgNP
content is higher than 0.1 wt%. The toughness of the PVC/AgNP
nanocomposites is similar to the PVC. TGA and FTIR data indicate
that the AgNPs do not lead to significant degradation of the PVC
matrix bulk. According to the XPS high-resolution depth-profile
measurements, the AgNP suspension prevented located
dehydrochlorination degradation of the PVC matrix at the
surface of the PVC/AgNP nanocomposites.

UV-Vis spectroscopy evidences an increase in the PVC’s
yellowness index (YI) due to the increased AgNP content,
causing visual changes inherent to the compounds with yellow
color in the AgNP suspension. The cytopathic effect and cell
viability assays proved that the nanocomposites present virucidal

activity against SARS-CoV-2 within 48 min if the AgNP content is at
least 0.3 wt%. The antiviral nanocomposites seem adequate for
application on plastic objects to reduce the transmission of
COVID-19, mainly in environments with high biological risks of
exposure to transmitting viral diseases through contact with
contaminated surfaces, such as hospitals and medical clinics.
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