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Fentanyl was successfully determined in the current effort based on hexagonal

NiO nanodisks (HG-NiO-NDs) fabricated by the hydrothermal protocol. The

synergism of HG-NiO-NDs with multiwall carbon nanotubes (MWCNTs), large

specific surface area, and active material enabled the electrochemical sensor to

show potent electrochemical behavior. Admirable performance was found for

the fentanyl measurement by the MWCNT and HG-NiO-ND-modified pencil

graphite electrode (MWCNT/HG-NiO-ND/PGE). The correlation of oxidation

currents with the pH value, concentration, and sweep rate of supporting

electrolytes was determined for the optimization of conditions to detect

fentanyl. The surfaces of modified and unmodified electrodes were

characterized as well. The diffusion-control processes were confirmed on

the basis of anodic peak findings. The results also revealed a two-electron

transfer process. The linear range was obtained to be 0.01–800.0 μM for the

fentanyl concentrations on the developed electrode, with the sensitivity of

0.1044 μA/mM/cm2. The limit of detection (S/N = 3) was 6.7 nM. The results

indicated the ability of the modified electrode to fabricate non-enzymatic

fentanyl sensor applications.
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1 Introduction

N-(1-Phenyl-4-piperidyl) propionanilide citrate, also called as fentanyl citrate, which

is a strong man-made narcotic analgesic, is widely prescribed for analgesia and anesthesia

in the intensive care unit and operating room. The effect of 100 μg of fentanyl is estimated

to be equivalent to about 10 mg of morphine. Chronic pain can be relieved to some extent

with transdermal fentanyl patches (Ebrahimzadeh et al., 2008). Fentanyl is metabolized in

the liver after easy passage through plasma and the central nervous system (CNS) (Saffer
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et al., 2015). The serious complications have been reported for

fentanyl, such as serotonin syndrome, respiratory distress, coma,

addiction, gastrointestinal conditions, and hypotension.

Therefore, it is critical to diagnose this substance as more

medically dangerous than heroin (Sohouli et al., 2020). The

conventional methods such as radioimmunoassay, surface-

enhanced Raman spectroscopy (SERS), and other

chromatographic techniques have already been employed to

determine fentanyl in biological matrices such as blood and

urine (Stiller et al., 1990; Saraji and Boroujeni, 2011; Haddad

et al., 2018). Among these, special attention has been paid toward

the electrochemical method for the fentanyl determination

because of sensitivity, selectivity, low cost, rapidity, and safety

(Foroughi et al., 2015; Foroughi and Ranjbar, 2017; Jahani, 2018;

Maaref et al., 2018; Farvardin et al., 2020; Foroughi et al., 2021a;

Moarefdoust et al., 2021; Santana et al., 2021; Dalkiran and Brett,

2022; Foroughi and Jahani, 2022; Jahani et al., 2022). It is very

important to choose the right platform in the electrochemical

method, for example, the pencil graphite electrode (PGE) is

known as a suitable substrate in electrochemical applications

with unique properties such as broad potential range and low

background current (Antherjanam and Saraswathyamma, 2022).

The electron transfer is slow on the surface of this green platform.

This bottleneck can be bypassed by modifying the electrode

surface with different strategies. Chemically modified

electrodes (CMEs) have been recently introduced for different

electroanalysis and (bio)sensors (Salajegheh et al., 2019; Al-Enizi

et al., 2020a; Ubaidullah et al., 2020a; Vakili Fathabadi et al., 2020;

Foroughi et al., 2021b; Vignesh et al., 2022).

Due to their high electrical conductivity, chemically

modifiable surface area, large surface area, chemical stability,

high mechanical strength, and high surface-to-volume ratio,

carbon nanotubes (CNTs) are also attractive for

electroanalysis. They are able to enable the oxidation of the

analyte (You et al., 2021; Zhou et al., 2021). Carbon nanotubes

containing metal oxides are expected to form a hybrid

nanostructure for electrochemical sensors.

Metal oxide nanocrystals have distinct geometric shapes

and sizes due to attractive size/shape/surface structure-

dependent attributes and high potential as basic building

blocks for nanoscale electronic and photonic equipment.

Nickel oxide (NiO) is a p-type semiconductor and has a

bandgap as broad as 3.6–4.0 eV (Yang et al., 2008; Ahmad

et al., 2019; Fathi et al., 2020; Khand et al., 2021; Haunsbhavi

et al., 2022). It has various applications such as catalysts,

electrode materials for lithium ion batteries, electrochromic

films, electrochemical supercapacitors, sensors,

photovoltaic tools, and magnetic materials. Promising

NiO applications and physicochemical properties of

nanoscale materials have led to extensive studies to

fabricate NiO nanomaterials with different morphologies

(Ichiyanagia et al., 2003; Li et al., 2007; Al-Enizi et al.,

2020b; Ubaidullah et al., 2020b).

The current work introduces a sensitive electrochemical

sensor (MWCNT/HG-NiO-ND/PGE) with high

reproducibility for the determination of fentanyl, based on the

fabrication of a new nanostructure of hexagonal NiO nanodisks

(HG-NiO-NDs), and then the surface modification of a pencil

graphite electrode with the as-fabricated nanostructure. The

characteristics of fentanyl were determined using cyclic

voltammetry (CV), differential pulse voltammetry (DPV), and

chronoamperometry (CHA) techniques.

2 Experimental

2.1 Chemicals and reagents

The multiwalled carbon nanotubes (MWCNTs) with a

diameter of nanotubes (NTs) of OD = 6–13 nm, purity

of >98%, and length of 2.5–20 μm were bought from Aldrich.

Some local pharmacies were selected to purchase fentanyl tablets.

Other required chemicals (belonging to Merck) with a practical

grade were included. All solutions were freshly prepared with

double distilled water (DDW). To prepare the fentanyl standard

solution, an aliquot amount of fentanyl was dissolved in

methanol (10 ml), followed by diluting to 50 ml at pH 7 (the

final concentration of 1 mM). The lower concentrations were

daily obtained by stepwise dilution.

2.2. Equipment

A potentiostat (Metrohm 757 VA Computrace, Herisau,

Switzerland) with a conical vessel was utilized to perform all

voltammetric determinations, and a three-electrode system

consisted of one working electrode (pencil graphite electrode

(PGE)), one axillary electrode, (Pt) and one reference electrode

(SCE). All pH measurements were carried out using a digital

Metrohm 710 pH/mV meter. The Rigaku D/MAX-3B powder

diffractometer with Cu/Kα radiation at λ = 1.54056�A was

employed to record X-ray diffraction (XRD) with intensities

as a function of 2θ. The specimen was scanned at 10–80° (2θ)
in 0.02 steps. Surface analysis was performed using images from

su35000 field emission scanning electron microscopy (FESEM;

(Hitachi; Japan)) and Ametek energy-dispersive X-ray

spectroscopy (EDS; Octane Prime; United States).

2.3 Construction of hexagonal NiO
nanodisks

Porous hexagonal NiO nanodisks were prepared by

dissolving nickel nitrate hexahydrate (Ni(NO3)2.6H2O, 1.45 g)

and hexamethylenetetramine (1.0 g) in DDW (50 ml) while

stirring rigorously for 15 min. The solution pH was adjusted
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to 13 using some drops of NaOH, followed by stirring vigorously

for 60 min. The solution was then sealed and heated up to 150°C

for 10 h in a Teflon-lined stainless steel autoclave, followed by

cooling down to room temperature. The resultant precipitate was

washed with DDW/ethanol and dried at ambient temperature

overnight, followed by calcination at 650°C for 3 h. Diverse

techniques were applied to characterize the final product.

2.4 Construction of the modified
electrode

Due to the importance of electrode construction in the

electrochemical analysis, the PGE surface was first washed

thoroughly with water to remove possible impurities. Then,

the MWCNT (1 mg) was dispersed in DDW (1 ml) to prepare

the modifier under 15-min sonication. The PGE surface was

coated with suspension (6 µL) via drop-casting, followed by

drying at 50°C in an air oven. Identical methods were adopted

to fabricate MWCNT/HG-NiO-ND/PGE with the addition of

6 µL of HG-NiO-ND suspension (1.0 mg HG-NiO-ND + 1.0 ml

DDW) on the MWCNT/PGE surface.

2.5 Analysis of tablet and serum specimens

Some of the fentanyl powders required to prepare the stock

solution (1.0 × 10−3 M) were dissolved in DDWunder sonication.

Aliquots of the clear supernatant of the tablet solution were

diluted with phosphate-buffered solution (pH 7) for analysis.

Certain amounts of pure drugs were added to the tablet solution

under analysis to evaluate the effect of the tablet excipients, the

accuracy of the technique.

The serum samples were obtained from a reputable medical

laboratory (Pasteur Bam Hospital). The serum sample

concentration was adjusted in phosphate-buffered solution

before fentanyl analysis.

3 Results and discussion

3.1 Determination of hexagonal NiO
nanodisk characteristics

As-fabricated HG-NiO-NDs were examined for crystallinity,

phase, and morphology as follows: the XRD patterns (Figure 1)

regarding the crystal structure verified an acceptable

crystallinity. The peaks at 35.76°, 43.46°, 63.89°, 74.95°, and

78.68° were related to the planes of (111), (200), (220), (311),

and (222), respectively. The XRD data are evidence of a cubic

form of NiO (JCPDS No: 78-0643) (Zhou et al., 2018).

According to XRD findings, the diffraction peaks

corresponded to NiO only. Based on the XRD results, the

Scherer equation of D = Kλ/ßcosθ was used to calculate the

HG-NiO-ND crystallite size, where λ stands for the used X-ray
wavelength (1.541�A), β for the peak width at half maximum

(FWHM), and θ for the Bragg diffraction angle, which was

106.43 nm.

The morphological analysis of HG-NiO-NDs was performed

by FE-SEM, the results of which are presented in Figure 2.

Interestingly, the prepared HG-NiO-ND possesses hexagonal

shape morphologies with high-porous surfaces and irregular

pore sizes as shown in Figure 2B. Due to high-porous

morphologies, some broken nanodisks are also observed in

Figure 2A. It is fascinating to see that most of the nanodisks

possess perfect hexagonal shapes with an internal angle of ~120°;

however, there are also some deformed randomly distributed

nanodisks. The mean diagonal of nanodisks ranged from 0.4 to

1.5 μm although the micrograph shows some larger nanodisks.

The mean typical nanodisk thickness was 10–20 nm, as shown in

Figure 2C.

Figure 3 illustrates HG-NiO-ND EDS analysis. According to

the EDS analysis, the compositions contained only Ni and O,

with no impurity. The elemental mapping also confirms the

distribution of Ni and O.

XPS studies (Figure 4) were performed to establish the

binding energy and oxidation states of the elements present at

the surface of HG-NiO-NDs. The wide XPS survey spectra

(Figure 4A) reveal the presence of Ni and O. High-resolution

spectra, as shown in Figures 4B–D, typically exhibit 2P3/2 which

consists of the main peak at ~853 eV. Similarly, 2P1/2 displays

two peaks at ~871 eV and ~878 eV, corresponding to the main

peak and the satellite peak, respectively. The Ni 2P3/2 peak at

~853 eV and O 1s peak at ~529 eV are from Ni2+ and lattice

oxygen, respectively, and are incorporated with the Ni–O

octahedral bonding of cubic rock salt (Al-Enizi et al., 2021).

The carbon peak is originated from surface contamination in the

process of handling and storage of the sample (Figure 4D).

FIGURE 1
XRD pattern of HG-NiO-NDs.
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FIGURE 2
(A) and (B) FESEM image. (C) High-resolution FESEM image of HG-NiO-NDs.

FIGURE 3
EDX spectra and elemental mapping of HG-NiO-NDs.
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3.2 Electrochemical behaviors ofMWCNT/
HG-NiO-ND/PGE

The CV curves were recorded for bare PGE, MWCNT/PGE,

and MWCNT/HG-NiO-ND/PGE in the redox probe. Figure 5A

shows the redox peaks forMWCNT/HG-NiO-ND/PGE, possessing

the peak-to-peak differences (ΔEp = Eanodicpeak − Ecathodicpeak) of

0.19 V. Figure 5B shows the performances of the MWCNT/HG-

NiO-ND/PGE according to the Randles–Sevcik equation expressed

in Eq. 1 (Bard and Faulkner, 2001):

Ip � ± (2.69 × 105)n3/2 AD1/2Cv1/2. (1)

In this equation, the A values are 0.14, 0.19, and 0.32 cm2 for

the surfaces of bare PGE (BPGE), MWCNT/PGE, andMWCNT/

HG-NiO-ND/PGE, respectively.

The EIS method was used to electrochemically determine the

characteristics of HG-NiO-NDs in which the charge-transfer

resistance (Rct) shows the electron-transfer kinetics of the redox

probe at the electrode interface, confirming the substrate bond on

the surface of the modified electrode. Nyquist plots were drawn

for the BPGE, MWCNT/PGE, and MWCNT/HG-NiO-ND/PGE

in the redox probe (Figure 6). As seen, a large semicircular

structure exists for the BPGE at high frequencies, as a high

charge-transfer resistance (Rct = 1,194Ω) related to a low charge

FIGURE 4
XPS spectra of HG-NiO-NDs: (A) survey; high-resolution spectra of (B) Ni 2p, (C) O 1s, and (D) C 1s.

Frontiers in Chemistry frontiersin.org05

Li et al. 10.3389/fchem.2022.997662

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.997662


and mass transfer rate. MWCNT/PGE and MWCNT/HG-NiO-

ND/PGE showed a significant decrease in the Rct values (794Ω
and 483 Ω, respectively), which can be because of capacity of NiO
ND and HG-NiO-ND to boost the electron transfer as well as the

electrode surface area. The results showed that the resistance is

lower after modification with MWCNTs and HG-NiO-NDs,

demonstrating that modifiers increase the oxidation peak

current of the fentanyl; consequently, it increases the sensitivity.

Based on the EIS, the standard heterogeneous rate constant

for electron standard transfer (k0, cm/s) was calculated to explore

the modification of the electrode surface according to Eq. 2 (Bard

and Faulkner, 2001):

k0 � RT

F2RctAC
. (2)

In this equation, R stands for the global gas constant (squared

with 8.314 J/K/mol), T for thermodynamic temperature

(298.15 K), F for Faraday constant values (96.485 C/mol), A

for the electrode surface area (cm2), and C for the

concentration of 0.1 mM [Fe(CN)6]
3-/4-.

The k0 values were computed to be 1.59 × 10−2, 1.67 ×

10−2, and 1.72 × 10−2 cm/s for the BPGE, MWCNT/PGE,

and MWCNT/HG-NiO-ND/PGE, respectively. The values of

K0 approach the kinetic potential of the redox couple. Thus,

a system with a higher k0 value has a longer balance in less

time than a system with a lower k0 value. Therefore, a greater

k0 value is obtained for the MWCNT/HG-NiO-ND/PGE

FIGURE 5
(A) CVs of MWCNT/HG-NiO-ND/PGE in the presence of
0.2 mM [Fe(CN)6]

3- solution in aqueous 0.1 M KCl at various scan
rates (from inner to outer curves): 10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 200, 300, 400, and 500 mV/s. (B) Plot of peak currents
vs. υ1/2.

FIGURE 6
EIS diagrams and the equivalent circuit for 0.1 mM [Fe(CN)6]

3-

solution at (A) BPGE, (B)MWCNT/PGE, and (C)MWCNT/HG-NiO-
ND/PGE in aqueous 0.1 M KCl. Frequency ranges from 100 KHz to
0.1 Hz.

FIGURE 7
CVs of (A) BPGE, (B)MWCNT/PEG and (C)MWCNT/HG-NiO-
ND/PEG in 0.1 M PBS (pH 7.0) containing 160.0 μM fentanyl.
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sensor than MWCNT/HG-NiO-ND/PGE > MWCNT/PGE >
BPGE, indicating faster electron transfer than other

electrodes.

3.3 The voltammetric activity of fentanyl

The cyclic voltammetry (CV) method was followed to

explore the electrochemical activity of fentanyl (160.0 μM) in

0.1 M PBS at pH 7.0 on the surfaces of MWCNT/HG-NiO-ND/

PGE, MWCNT/PGE, and BPGE. The results showed that

MWCNT/HG-NiO-ND/PGE does not undergo any oxidation

reaction in the absence of fentanyl in 0.1 M PBS at a pH of 7.0

(Figure 7 (curve a)). Figure 7 (curve b) shows the fentanyl

oxidation peak of 924 mV with an ultra-low peak current on

the BPGE. Figure 7 (curve c) shows a distinct peak for fentanyl on

the MWCNT/PGE at 821 mV. Figure 7 (curve c) also illustrates

six times higher peak current for fentanyl onMWCNT/PGE than

on BPGE (curve b) because of the catalytic ability of MWCNTs.

Figure 7 (curve d) shows increased peak current due to the

augmentation of MWCNTs and HG-NiO-NDs. The electro-

catalytic synergism of MWCNTs with HG-NiO-NDs caused

the MWCNT/HG-NiO-ND/PGE to improve its catalytic

FIGURE 8
(A) Effect of pH on the peak currents for the oxidation of
fentanyl (125.0 µM), pH = 4–8. (B) Plots of peak potential vs. pH.
Scan rate: 50 mV/s.

SCHEME 1
Probable oxidation mechanism for fentanyl.

FIGURE 9
(A) CVs of MWCNT/HG-NiO-ND/PGE at pH 7.0 in the
presence of fentanyl (20.0 µM) at various scan rates (from inner to
outer curves): 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400,
and 500 mV/s. (B) Plots of peak currents vs. υ1/2.
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behavior toward fentanyl and was useful for detecting this

compound.

3.4 The effect of solution pH on fentanyl
oxidation

The solution pH is a pivotal parameter influencing the

fentanyl electro-oxidation because of the presence of protons

in the electrode reaction. The measurements (Figure 8) were

carried out by the CV method regarding the signal of MWCNT/

HG-NiO-ND/PGE in 0.1 M buffer solutions at variable

pH values from 4 to 8. There was a minor increase in the

fentanyl peak currents with increasing solution pH until

7.0 and then decreased. The highest peak current was

found at pH 7.0 for fentanyl. Gradually, elevated pH of the

solution switched the peak oxidation potential of fentanyl

toward less positive values, which shows the presence of

protons during the electrode reactions. Since the PBS with

pH 7.0 created an optimized reaction for peak current and

peak shape and negative shift, the value was selected to be

the best (working pH) for next testing. The plot of Ep versus

pH was drawn for fentanyl at pH 7 (Figure 8B). The Ep values of

fentanyl had a linear relationship with buffer solution pH as

follows:

Fentanyl: Ep(V) � −0.0493pH + 1.1656 (R2 � 0.9999). (3)

Concerning the slope of 0.0493 V/pH for fentanyl, they were

close to the Nernstian value predicted for an equal number of

proton and electron electrochemical process (Scheme 1) (Bard

and Faulkner, 2001).

3.5 The effect of the scan rate on
electrochemical behaviors of fentanyl

The effect of the scan rate on the peak current of fentanyl

oxidation was explored by the CV method on the MWCNT/

HG-NiO-ND/PGE. The peak current intensity was elevated

with the increasing scan rate, as shown in Figure 9A. Figure 9B

highlights the current fit with the scan rate square root

(10–500 mV/s), which means the redox reactions are

controlled by fentanyl diffusion. Data suggested that the

scan rate of 50 mV/s was the best for peak currents and

peak separation.

FIGURE 10
(A) Chronoamperograms of fentanyl on MWCNT/HG-NiO-ND/PGE in 0.1 M PBS (pH 7.0) for different concentrations of fentanyl. The numbers
1–4 correspond to 0.1, 0.15, 0.2, and 0.25 mM of fentanyl, respectively. (B) Plots of I vs. t−1/2 obtained from chronoamperograms 1–4. (C) Plot of the
slope of the straight lines against fentanyl concentration.

TABLE 1 Determination of fentanyl in fentanyl tablets and human
blood serum samples. All concentrations are given in μM (n = 5).

Sample Spiked Found Recovery (%)

Fentanyl tablets 0 5.3 ± 3.4 —

10.0 15.1 ± 2.6 98.69

Human blood serum 0 — —

20.0 20.3 ± 2.4 101.5
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3.6. The chronoamperometric analysis

Figure 10A shows the chronoamperometric determinations

of fentanyl on the MWCNT/HG-NiO-ND/PGE at a potential of

871 mV for variable fentanyl contents in PBS at pH 7. For the

fentanyl with a determined diffusion coefficient (D), the Cottrell

equation refers to the electrochemical reaction current with a

mass transport-limited rate (Bard and Faulkner, 2001).

I � nFAD1/2Cbπ
−1/2t−1/2. (4)

Figure 10B illustrates a linear plot of I versus t−1/2 under the

diffusion-controlled process; the D value can be obtained for

fentanyl based on the linear part of the slope of the Cottrell plot,

as shown in Figure 10C, which was 4.1 × 10–6 cm2/s.

3.7 The determination of fentanyl

The DPV method was utilized to clarify the relationship

between the peak current and fentanyl content (Figure 11).

The DPV curves show the oxidation peaks. The peak

currents of fentanyl oxidation on the surface of MWCNT/

HG-NiO-ND/PGE were linearly related to variable fentanyl

contents (0.01–800.0 μM), and the LOD value was as low as

6.7 nM.

The fentanyl content was determined by seven

consecutive measurements (150.0 μM), and the relative

standard deviation (RSD%) was obtained to be 1.8, which

means high efficiency of the proposed protocol for the

fentanyl determination.

3.8 The interference analysis

The possible interferences of other analytes were explored

by DPV in the fentanyl determination. According to the

results, there was no significant interference from both

diverse anions and cations (Na+, Ca2+, K+, Zn2+, Ni2+, NO2-,

Cl−, and SO4
2-) and L-phenylalanine, leucine, alanine, uric

acid, L-glutamic acid, L-tryptophan, ascorbic acid, L-tyrosine,

and epinephrine at 150.0 M concentration with the signal

deviations of less than 5%.

3.9 The analysis of real specimens

The practical potential of the proposed fentanyl sensor was

explored in the drug tablets and blood serum specimens. The

reliability of the method was tested by sensing the fentanyl in the

specimens spiked with certain content of the analyte (Table 1).

The as-fabricated fentanyl sensor applicability was confirmed on

FIGURE 11
(A) DPVs of fentanyl on MWCNT/HG-NiO-ND/PGE in PBS
(pH 7.0) at the scan rate of 50 mV s−1. Concentrations of fentanyl
from inner to outer curves: 0.01, 1.0, 10.0, 20.0, 30.0, 40.0, 50.0,
60.0, 70.0, 80.0, 90.0, 100.0, 200.0, 300.0, 400.0, 500.0,
600.0, 700.0, and 800.0 (μM). (B) Plots of I vs. concentrations.

TABLE 2 Performance comparison of MWCNT/HG-NiO-ND/PGE for the determination of fentanyl with other electroanalytical methods.

Modifier Linear range Detection limit Reference

Single-walled carbon nanotube 0.01–1.0 μM 11.0 nM Wester et al. (2020)

Zinc-based metal–organic framework 1.0–100.0 μM 0.3 μM Naghian et al. (2020)

Carbon nano-onions 1.0–60.0 μM 300.0 nM Sohouli et al. (2020)

Multiwall carbon nanotubes and Fe2O3 nanoparticles 0.08–100.0 nM 45.0 nM Najafi and Sohuli (2018)

MWCNT and HG-NiO-ND 0.01–800.0 μM 6.7 nM This work
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the basis of impressive recovery rates obtained between 98.62 and

101.5%.

3.10 Reproducibility and stability

Repeatability and stability of the electrochemically as-

fabricated fentanyl sensor were tested by the DPV method

under the optimized circumstances. Six successive

applications of MWCNT/HG-NiO-ND/PGE to quantify

150.0 μM of fentanyl showed no clear alteration in the

DPV response. The RSD value of 0.94% validated the

commendable repeatability of our sensor. To determine the

sensor stability, it was incubated at room temperature for

three consecutive weeks, the results of which revealed no

distinct change in the peak current (2.82%), which means

long-lasting stability of our electrode under the optimized

circumstances.

3.11 Comparison of our method with
others in the literature

The comparison of analytical efficacy between the as-

fabricated electrode and other electrochemical methods

was performed for fentanyl (Tables). Based on Table 2,

the performance of our proposed electrochemical

electrode for sensing fentanyl displayed a comparable

linear range and better detection limit and sensitivity

when compared with the other methods (Najafi and

Sohuli, 2018; Naghian et al., 2020; Sohouli et al., 2020;

Wester et al., 2020). Accordingly, the as-fabricated sensor

is potentially able to determine the trace amounts of

studied drugs in various media. Moreover, the electrode

used for the sensor fabrication is a PGE that has various

advantages, like cost-effectiveness, facile modification,

admirable accessibility, and lower background current,

when compared with other electrodes.

4 Conclusion

This study introduces a new fentanyl electrochemical

sensor based on carbon nanotubes combined with HG-

NiO-NDs. The production of HG-NiO-NDs added merits

and was considered a green approach in the construction of

non-toxic sensing systems. The electrochemical behavior of

the modified electrode was evaluated for the electrocatalytic

oxidation of fentanyl under optimal conditions of electrolytes

(0.1 M PBS, pH = 7; a scan rate of 50 mV/s). It was found that

the modified electrode could sense fentanyl in the linear range

of 0.01 × 10–6 to 800.0 × 10–6 M. These research findings

demonstrated the synergetic impact of MWCNTs and HG-

NiO-NDs on the oxidation of fentanyl via declining oxidation

over-potential and enhancing the oxidation peak current.

Reproducible responses together with a lower limit of

detection (6.7 nM), in comparison with other literature

works, can be attained through the utility of this electrode.

The modified electrode was able to provide a very sensitive

and stable behavior to fentanyl determination without

interference under optimal conditions. In addition,

sensitiveness and functionality of the suggested

electrochemical sensor toward fentanyl were explored by

analyzing pharmaceutical samples, which was accompanied

by acceptable outcomes.
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