
Early Detection of Nucleation Events
From Solution in LC-TEM by Machine
Learning
Hiroyasu Katsuno1*, Yuki Kimura1, Tomoya Yamazaki 1 and Ichigaku Takigawa2,3

1Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan, 2RIKEN, Center for Advanced Intelligence Project,
Tokyo, Japan, 3Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan

To support the detection, recording, and analysis of nucleation events during in situ
observations, we developed an early detection system for nucleation events observed
using a liquid-cell transmission electron microscope. Detectability was achieved using the
machine learning equivalent of detection by humans watching a video numerous times.
The detection system was applied to the nucleation of sodium chloride crystals from a
saturated acetone solution of sodium chlorate. Nanoparticles with a radius of more greater
than 150 nm were detected in a viewing area of 12 μm × 12 μm by the detection system.
The analysis of the change in the size of the growing particles as a function of time
suggested that the crystal phase of the particles with a radius smaller than 400 nm differed
from that of the crystals larger than 400 nm.Moreover, the use of machine learning enabled
the detection of numerous nanometer sized nuclei. The nucleation rate estimated from the
machine-learning-based detection was of the same order as that estimated from the
detection using manual procedures.
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1 INTRODUCTION

The nucleation of crystals is the first stage of crystallization and the origin of all materials. Because
materials have a wide range of applications, including metals, chemical compounds, and biological
materials, numerous studies of the crystallization of materials have been conducted over the past
50 years. The general understanding of crystallization is summarized in the classical nucleation
theory (Markov, 2003). In the classical nucleation theory, only the exchange of single growth units is
considered and there is only one nucleation pathway. The simple classical nucleation theory provides
important basic concepts, such as a critical nucleus, and observable physical quantities, such as the
nucleation rate. The validity of the nucleation theory on an atomic scale has been studied through the
two-dimensional epitaxial growth of metals and semiconductors using a combination of molecular
beam epitaxy and scanning probe microscopy (Michely and Krug, 2004).

Over the past decade, nonclassical nucleation phenomena in liquids have attracted attention of
researchers because the proposed hypotheses are based on both experimental results (Yoreo et al.,
2015; Lee et al., 2016; Ishizuka et al., 2017; Driessche et al., 2018) and computational results (Tanaka
et al., 2017; Takahashi et al., 2021). Liquid cell transmission electron microscopy (LC-TEM) is a
recently developed in situ observationmethod (de Jonge and Ross, 2011) that has been widely used to
observe nanoscale objects in liquids. The spatial and temporal resolution of LC-TEM has been
improved to atomic-scale observations (de Jonge et al., 2019), similar to ordinary transmission
electron microscopy (TEM) observation. Nevertheless, observing a moving object by TEM is difficult
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because the image changes from moment to moment. In general,
one approach to obtaining a clear image is to minimize the
exposure time by increasing the electron dose. The integration of
an electron beam improves the signal-to-noise ratio; however, the
electron beammight damage samples (Egerton et al., 2004). In the
case of LC-TEM, in particular, the solution degrades because of
the radiolysis of the sample solution by the electron beam
(Schneider et al., 2014). The improvement by integration is
not effective when the acquired image changes in response to
beam effects. Observations in which the image changes, such as in
situ observations, require clear images with a short exposure time.
Thus, in situ observation requires a low-dose electron observation
technique. Denoising methods based on sparse coding (Anada
et al., 2019) and a deep neural network (Katsuno et al., 2021;
Vincent et al., 2021) have been developed in addition to ordinary
methods, and these methods are expected to enable observations
with a low dose of electrons in the future. However, there are a few
issues specific to in situ observation. The same image cannot be
acquired twice because the acquired image constantly changes,
which introduces the difficultly in in situ observations of
requiring the operator to decide immediately what to look for
and where to look when acquiring an image. When the image
acquisition fails, the same experiment must be repeated. The
damage to the sample by the electron beam is cumulative. To
avoid accumulating damage to the sample, we propose an early
detection method that uses machine learning to detect changes in
the object at an early stage while it is observed at low
magnification. When more detailed information is necessary,
the magnification can be increased and the observation of the
object can be continued.

Recently, the use of machine learning in TEM has been
integrated into the automation of tasks in biology (Falk et al.,
2019; Wagner et al., 2019). This research has been accelerated by
image analysis without experts, resulting in a useful software
package for acquiring and analyzing static images. As far as we
know, no example of machine learning for in-situ observations
has been reported. In this case, the waiting time for the results
obtained by machine learning is important, as is the accuracy.
One of the useful in situ observation methods is early object
detection. Some methods of object detection in machine learning
have been proposed including region-based convolution neural
networks (R-CNN) (Girshick et al., 2014), the single-shot
multibox detector (SSD) algorithm (Liu et al., 2016), the “you
only look once” (YOLO) algorithm (Redmon et al., 2016), and the
EfficientDet model (Tan et al., 2020). Although these detection
methods differ from each other, they all detect objects in a
rectangular region and classify the region. Semantic
segmentation enabling pixel-wise detection methods such as
fully convolutional networks (FCNs) (Long et al., 2017), the
Mask R-CNN (He et al., 2017) can also detect objects. These
methods might be useful if the time for the analysis is sufficiently
long. Our interest in the present paper is object detection at a
frame rate greater than 10 frames per second during in situ
observation. From the viewpoint of early detection of events, it is
sufficient to specify the region; thus, we carry out detection using
a YOLO algorithm. The YOLOv5 algorithm (Jocher et al., 2021)
has recently been released and has been successfully used in the

detection of tomato diseases (Wang et al., 2021), the detection of
signal lights for railways (Liu et al., 2021), and the detection of
smoking drivers (Shi et al., 2021). All of these applications
prioritize the detection speed over a reduction of the detection
rate and are intended for real-time detection. In the
aforementioned applications, color information also plays an
important role. TEM images are grayscale, and the
information contained in the image is relatively small. It is
necessary to detect only differences in contrast.

In the present study, with in-situ observation in mind, we
develop an early detection system based on machine learning for
nucleation observed by LC-TEM. The achieved detectability is
equivalent to the detection determined by determined by a
human operator a video of recorded TEM images numerous
times. It is suggested that the detection by machine learning
earlier than the human’s detection in in-situ observation where
human see the image at the first time. Our system was used to
calculate the growth rate and the nucleation rate. The detailed
data related to the size of detected particles reveals that two phases
of nanoparticles are present. In addition, we show the results of
experiments in which a large number of nucleation events
occurring can be analyzed in an instant to calculate the
nucleation rate.

2 METHODS

To develop an early detection system by a CNN model, we
prepared some videos acquired by LC-TEM. Our transmission
electron microscope is equipped with a field-emission gun (JEM-
2100F, JEOL, Tokyo) operated at an acceleration voltage of
200 kV and a CMOS camera (Flash, EM-Z15327TCMOS;
JEOL, Tokyo). The sample video captured the radiolysis-
induced nucleation of sodium chloride (NaCl) from a
saturated acetone solution of sodium chlorate (NaClO3)
(Yamazaki and Kimura, 2021). As Cl− ions were produced
from ClO−

3 ions by radiolysis, the abundant Na+ ions and the
produced Cl− ions formed a supersaturate state for NaCl crystals.

In ordinary nucleation, by lowering the temperature, the
solubility is decreased. As a result, there is a difference
between the dissolved amount and the solubility, and the
supersaturation to solid becomes larger. In our case, the
solubility remains unchanged, but the dissolved amount
increase: Cl− ions are produced by radiolysis of ClO−

3 ions in
the solution as suggested in Yamazaki and Kimura (2021). Since
the amount of Cl− ions increases, the supersaturation of NaCl
crystals to acetone solution increases.

When the observation was started, the electron beam was
introduced into the solution, and the solution quickly becomes
supersaturated. We used two sample solutions: one with and one
without molecular sieves to remove residual water from the
solution. Therefore, a very small amount of water (less than
0.3 wt%) was present in the sample solution without molecular
sieves because the acetone solution was a special reagent grade
(FUJIFILM Wako Pure Chemical Corp., Osaka). Those sample
solutions were prepared in a beaker. The solution was injected
into the liquid cell of the TEM holder using a syringe. The typical
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magnification was 2000× or 3,000×, and the dose rate was
approximately (2.0–3.1)× 102 electrons nm−2s−1. The frame
rate of the videos was 10 fps. When we started the
observation, nanoparticles of NaCl emerged immediately
because of the irradiation. The shape of the NaCl particles
depended on the degree of supersaturation (i.e., the
experimental setup) although the crystal structure was NaCl
type cubic and the crystal shape is a cube in equilibrium. In
our video, two types of particles appear. The typical shape in one
case is circular. The other particles are dendritic with three- or
four- fold rotational symmetry because of the crystal orientation.

To prepare the training dataset, the images were extracted
from the videos and annotated using LabelImg, which is an open-
source program of an annotation application. To avoid false
detection, we did not annotate the particles formed around the
edges. We applied the standard YOLOv5 algorithm as the
machine learning model to detect NaCl particles in a liquid.
The images were input to the machine learning model and the
output data was the positions and size of the boxes. The
parameters of the model were adjusted so that the output data
was fitted the annotated data. For training and validation, we used
three videos that included particles with various shapes. These
three videos differ from those analyzed in Section 3.

The numbers of training and validation images was 322 and
34, respectively. Because each image shows several particles, the
number of labels was 1859 for training and 188 for validation.
After training using the model pretrained on the COCO dataset,
we obtained the model parameter for YOLOv5s, which is the
simplest model in YOLOv5. The model parameters were
evaluated by two simple factors. One factor is the precision
score, which is the fraction of correct detections among all
detections shown in Table 1:

Precision � TP
TP + FP

. (1)

The other factor is the recall score, which is the fraction of
correct detections among all labels shown in Table 2:

Recall � TP
TP + FN

. (2)

The precision and recall scores of validation are 0.96 and 0.92,
respectively, as summarized in Table 3.

3 RESULTS AND DISCUSSION

3.1 Detection for Simple Objects
We detected NaCl particles yielded from an acetone solution of
dissolved NaClO3 powder crystals. The solution contained
molecular sieves as a desiccant to eliminate residual water,
which substantially lowered the amount of dissolved NaClO3

because of the large difference in solubility [36 g in 100 g water vs.
4.2 × 10–5 g in 100 g acetone (Burgess, 1978)], thereby increasing
the waiting time for nucleation of NaCl crystals. The
magnification was 2000×, and the dose rate was 310 electrons
nm−2s−1. Examples of the detection of NaCl particles are shown in
Figure 1, where the image size is 12 μm × 12 μm.We conducted a
continuous observation, and the view was fixed at time t � 0 s. In
the dark area at the edge of the image, the electron beam was
blocked by the aperture. The bright circular region was filled with
the saturated acetone solution of NaClO3. Until 19 s, no apparent
change was observed and there was no detection (Figure 1A). The
first particle was detected at t � 19.1 s (Figure 1B) and exhibited a
radius of ∼150 nm. The second, third, and fourth particles were
detected at t � 22.4 s (Figure 1C), t � 24.5 s (Figure 1D), and t �
28.4 s (Figure 1E), respectively. In all cases, the radius of the
particles was ∼200 nm at the beginning of the detection in the
12 μm × 12 μm image.

Figure 2 shows the change in the number of detected particles
as a function of time. The red solid line and the green broken line
show the number of detections and that of labeling by the human
eye. Because the human-eye observations involve repeated
observations and adjustments to the contrast, tiny particles
can be labeled. The machine learning algorithm used in
present study can detect particles with a delay of ∼3 s
compared with the data labeling by the human eye. The delay
in detection by the standard YOLOv5 algorithm is comparable to
the delay when a person observes a particle when watching a
video directly the first time.

TABLE 1 | Precision scores [TP/(TP+FP)] in the confusion matrix.

Detection

Positive Negative

Labels Positive True positive (TP) correct detection False negative (FN) missing labels
Negative False positive (FP) incorrect detection True negative (TN)

TABLE 2 | Recall scores [TP/(TP+FN)] in the confusion matrix.

Detection

Positive Negative

Positive True positive (TP) correct detection False negative (FN) missing labels
Negative False positive (FP) incorrect detection True negative (TN)
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In the video, the view is almost motionless until t � 45 s. At t >
45 s, the view shifts to the upper left. Thus, the particles appear to

have moved to the lower right, as shown in Figure 1F. The
number of particles in the image also decreases. Even though part
of the particle is hidden by the aperture and its shape appears to
not be circular, it is still detected. Immediately before t � 50 s, one
half-moon-shaped particle is detected momentarily in the video.

Although some detection failures occurred, no false positive
were detected. In this video, the total recall score was 0.82
(Table 4). When particles became large (40 s < t< 50 s), the
recall score was 0.93. This recall value is approximately the same
as that of the validation data shown in Table 3.

From the obtained data of corresponding to the detected
boxes, we obtained time changes of the radii of five particles
(Figure 3). Each box is slightly larger than their corresponding
particles. The systematic deviation does not strongly affect the
study of its time change. The shape of particles is assumed to
circular, and the radius of particles is estimated on the basis of the

TABLE 3 | The number of images and labels, and detection quality for validation.

Training Validation

No. of images No. of labels No. of images No. of labels Precision Recall

322 1,859 34 188 0.96 0.92

FIGURE 1 | Examples of the detection of NaCl particles in a desiccant solution at (A) t � 5 s, (B) t � 19.1 s, (C) t � 22.2 s, (D) t � 24.5 s, (E) t � 28.4 s, and (F) t �
45.6 s.

FIGURE 2 | Time change of the number of particles corresponding to
Figure 1 detected by machine learning (red solid line) and by the human eye
(green broken line). The origin of time corresponds to when the viewwas fixed.

TABLE 4 | Numbers of images and labels and the detection quality.

No. of images No. of labels No. of detections Precision Recall

288 1,282 1,053 1 0.82
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geometric average of one-half the height and one-half the width
of the box. The growth rates of each particle were obtained by
fitting the data in the region 35 s < t< 45 s (solid lines in
Figure 3); these values are summarized in Table 5. The radius
of the fifth particle may not be accurate because the window
prevented us from observing the entire particle. The average
growth rate excluding the fifth particle was 9.5 nm s−1.

The growth rate V(r) can be predicted by classical nucleation
theory. When a circular particle with radius r grows in a system,
the growth rate V(r) is obtained as

V r( ) � V∞ 1 − rc
r

( ), (3)

where rc is the critical radius and V∞ is a constant, that depends
on the concentration and the temperature. When the radius of the
particle is larger than the critical radius, the growth rate is close to
a constant asymptotically. The radius increases linearly with time.
From our data, the value of the growth rate V∞ is ∼9.5 nm s−1.

The growth rate V of the stem of the NaCl crystals under the
dose rate F is written as V � K′F1/2, where the effective kinetic
coefficient K′ is ∼8.5 electron−1/2 nm2 s1/2 (Figure 6 in Yamazaki
and Kimura (2021)]. When the dose rate is substituted as 310
electrons nm−2 s−1, the growth rate is obtained as 150 nm s−1,
which is very different from our observed growth rate of 9.5 nm
s−1. The effective dose rate appears to be reduced by the presence
of molecular sieves in the solution. Because the crystal shown in
Figure 6 in Yamazaki and Kimura (2021) is sufficiently large, the
effective dose rate in Figure 1 is estimated as 1.2 electrons
nm−2s−1, using a obtained growth rate of 9.5 nm s−1. Thus, the
effective electron dose rate becomes 1/250 as a result of molecular
sieves.

In classical nucleation theory, small particles grow slower than
large particles because of the surface tension, which is well known
as the Gibbs-Thomson effect. However, our data for particles 1
and 4 suggest the opposite trends: the growth rate of a small

particle is larger than that of a large particle. The growth rates of
particles 1 and 4 with radii less than 400 nm are 24.7 nm s−1 and
21.6 nm s−1, respectively. The magnitude of the growth rate of
particles with a radius smaller than 400 nm is twice larger than
that of the same particle with a radius larger than 400 nm. The
particles do not rotate because they are formed on a membrane.
In addition, our observed particle is approximately circular, and
the orientational dependence of the growth rate is negligible. The
growth rate is almost the same for particles 1 and 4, even though
the timing of their formation is different. The degree of
supersaturation does not change through the volume diffusion
of materials.

There are two possibilities of the change of the growth rate.
One is the occurrence of the phase transition of a particle at the
radius of 400 nm. Another is the heterogeneous nucleation of the
stable phase on the metastable phase. Our observations do not
allow us to distinguish between them. We speculate that the non-
linear function arises from the crossover between the growth of
the metastable phase and the growth by the heterogeneous
nucleation of the stable phase on the surface of the metastable
phase. Thus, the larger growth rate indicates that a metastable
phase appears in the early stages of the nucleation process. This
conclusion suggests that the nucleation of NaCl from a saturated
solution of NaClO3 in acetone is not a single-phase process. We
therefore found an example of the two-step nucleation process of
simple circular precipitates.

3.2 Detection for Objects With Complex
Shape
We investigate the detectability of dendritic crystals that exhibit
rapid growth. The magnification was 3,000× and the dose rate
was 2.0 × 102 electron nm−2s−1. The solution was the same as that
studied in the previous section but without the addition of
molecular sieves. The outline of the video is as follows: The
observation starts at t � 0 s and many nanoparticles emerge
within 1 s. At t � 1 s, the nucleation of nanoparticles is almost
completed and each nanoparticle grows. Moreover, nanoparticles
also coalesce with their neighbors. The production of
nanoparticles stops because the solute is consumed by the
nucleation and growth of the nanoparticles.

Examples of the detection by machine learning of dendritic
crystals are shown in Figure 4. Here, t � 0 s corresponds to when
the shutter was opened. Immediately after the shutter was opened

FIGURE 3 | Five NaCl particles and change in radius with time, which
corresponds to Figure 1. Solid lines are obtained by fitting in the range 35 s
< t<45 s for each particle. Broken lines are obtained by fitting radii less than
400 nm for particles 1 and 4. The inset shows a TEM image acquired
after all five particles had formed (t � 35 s). Numbers represents the order of
appearance.

TABLE 5 | Growth rate of each nanoparticle.

Particle Growth rate (nm s−1) Growth rate in
small size (nm

s−1)

1 9.1 24.7
2 10.1 —

3 12.1 —

4 7.0 21.6
5 5.3 —

Average (1–4) 9.5 —

Average (1, 4) — 23.1
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(Figure 4A), no objects were observed. At t � 0.4 s, numerous tiny
particles emerge although there is no detection by machine
learning (Figure 4B). Our detection by machine learning often
overlooks small nuclei. The first detection is at t � 0.6 s
(Figure 4C). As time passes, the number of detections
increases (Figures 4D–F). To check the detectability, we
counted the number of dendritic crystals by adjusting the
contrast. Figure 5 shows the numbers of particles suggested
by YOLOv5 (red square) and counted by the human eye

(green cross). The numbers increase in the period t < 1 s, and
a difference is observed between the result obtained by YOLOv5
and that by the human eye. Both results show that the number of
particles was steady at t > 3 s, and both results are consistent. In
the steady region (t > 3 s), the dendritic crystals become large and
are clearly observed and the change in the image is relatively
small. In this case, the number of dendritic crystals counted by
YOLOv5 is consistent with that of counted by the human eye.
During steady growth, the standard YOLOv5 algorithm can
detect crystals at the same level as the human eye, as
mentioned in the preceding subsection.

As we characterize the change of the number of particles over
time, we can estimate the nucleation rate. The nucleation rate
indicates howmany nuclei are yielded per unit area and unit time.
The observed nuclei appear on amorphous silicon nitride
membranes on the top and the bottom of a silicon tip
(Yamazaki and Kimura, 2021). The nucleation occurs in two
dimensions and the area is ∼ 88 μm2, when both the top and
bottom surfaces of the membrane are considered. By fitting the
data, we can estimate the nucleation rate as 0.3 μm−2s−1 (solid
line) and 0.8 μm−2s−1 (broken line) on the basis of detection using
the standard YOLOv5 algorithm and detection by the human eye,
respectively. Although the number of particles by YOLOv5 is less
than one-half of that detected by the human eye, the estimated
nucleation rates are of the same order. In most discussions
concerning crystallization, determining the order of the
nucleation rate is sufficient. If we need to estimate physical
quantities such as the nucleation rate more accurately,
improving the detectability by preprocessing the images is
worthwhile.

FIGURE 4 | Detection of NaCl particles with dendritic shape by machine learning at (A) 0.1 s, (B) 0.4 s, (C) 0.6 s, (D) 1.5 s, (E) 2.5 s, and (F) 5.5 s. The time of 0 s
corresponds to the start of electron irradiation.

FIGURE5 | Time change in the number of particles counted by detection
(red squares) and by the human eye (green cross) in Figure 4. The time of 0 s
corresponds to the start of observation.
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In the preceding subsection, we detected circular shaped particles
in a video in which the particles slowly changed. In this subsection,
we detect dendritic particles whose size and shape change rapidly
under a dose rate of 2.0 × 102 electron nm−2s−1. As reported in
(Yamazaki and Kimura, 2021), the growth rate depends on the dose
rate in a solution without molecular sieves. Although the dose rate is
smaller than that in Figure 1, numerous dendrites are formed. The
shape of the nanoparticles depends on the degree of supersaturation.
When the degree of supersaturation is low, the shape is similar to the
equilibrium shape, which is compact. When the degree of
supersaturation is high, the shape becomes dendritic because fast
growth proceeds before sufficient relaxation of the shape can occur.
Because the amount of water is related to the precipitation of NaCl
crystals, the effect of water loss due to molecular sieves strongly
affects the degree of supersaturation. The decrease in the degree of
supersaturation is attributed to a decrease in the amount of dissolved
chlorate ions, which become chloride ions (Yamazaki and Kimura,
2021). In Figure 2, we observe the appearance of five particles in the
126 μm2 solution area in 10 s and the nucleation rate is estimated as
0.004 μm−2 s−1. This rate is 200 times smaller than the value obtained
in Figure 4. It is a conventional result because of the same
aforementioned conclusion deduced from the crystal shape.

When a large number of nuclei are produced in a small
area, the growth rate becomes small because the growth of
each nucleus competes with other nuclei on the supplied
material. Although this effect should be studied in detail
according to the rate-limiting process, the limiting process
of the present system, including the radical reaction, is
unclear. However, the influence of the surrounding nuclei
is relatively weak immediately after the nucleation occurs.
From the classical nucleation theory, the nucleation rate J is
written as J � ω*ΓZ1 exp (−ΔG*/kBT) where ω is the frequency
of the attachment of atoms to the critical nucleus, Γ is the
Zeldovich factor, Z1 is the steady-state concentration of a
monomer, and ΔG* is the free energy of the critical nucleus
(Markov, 2003). The pre-exponential factor A � ω*ΓZ1 is not
sensitive to the supersaturation in comparison with exp
(−ΔG*/kBT) � exp (−B/Δμ2). Therefore, we assume

J � A exp − B

Δμ2( ), (4)

where B � 16πσ3v/(3kBT), σ is the interfacial energy, kB is the
Boltzmann constant, and T is the temperature. The ratio of the
nucleation rate in Figure 1 (J1) to that in Figure 4 (J4) is

J1
J4

� exp − B1

Δμ21
− B4

Δμ24
( )[ ] ≃ exp − B1

Δμ21
( ), (5)

where Δμ1 and Δμ4 are the chemical potential of the solid phase in
Figures 1, 4, respectively. Here, we ignore the term Δμ4 because
the effective dose rate in Figure 1, as discussed in the previous
subsection is sufficiently smaller than that in Figure 4. The lower
limit of the ratio of the interfacial energy and the chemical
potential is obtained as

B1

Δμ21
≃ ln

J4
J1

( ) ≃ 5.3, (6)

where B1 depends on the interfacial energy of an unknown phase
discussed in the previous subsection and J1 is the effective dose
rate (1.2 electrons nm−2 s−1).

In Figure 2A of Yamazaki and Kimura (2021), two NaCl
crystals appears in an area of 22 μm2 in 10 s with an electron dose
rate J2 � 37 electron nm−2 s−1. The crystal shape is dendritic, and
its symmetry is reflected in the crystal symmetry. The precipitate
is assumed to be crystalline, and it is not identical to that in
Figure 1 because the particles are circular. Using the same
approach, we obtain the relation of the interfacial energy B2
and the chemical potential to the solid Δμ2 as

B2

Δμ22
≃ ln

J4
J2

( ) ≃ 4.5. (7)

B2 depends on the interfacial energy of the solid phase of the
NaCl crystal. Because the chemical potentialΔμ depends on the 1/
2 power of the dose rate, we can estimate the difference of the
interfacial energy of the unknown phase σ1 and crystal phase σ2 as
σ1 ≃ 0.33σ2. In general, the interfacial energy of a metastable phase
is smaller than that of a stable phase; therefore, metastable crystals
nucleate before stable crystals. The present system also conforms
to this empirical rule.

We attempted to identify the unknown metastable phase of
NaCl shown in Figure 1. The possible structures for the NaCl
crystals are the NaCl-type structure and CsCl-type structure, and
the NaCl-type is observed in the stable phase. The ratio of the
interfacial energy of the CsCl-type to that of the NaCl-type can be
roughly estimated by a bond counting method. On the (100)
surface of the NaCl-type structure, the number of Na+ ions and
Cl− ions is 2 and 2, respectively, in a unit cell with a lattice
constant 5.6 Å. On the (100) surface of the CsCl-type, the number
of Na+ ions and Cl− ions are 0.5 and 0.5, respectively, in one unit
cell. Its lattice constant is assumed to be 3.3 Å on the basis of the
ratio of the lattice constant of NaCl-type to CsCl-type of other
crystals such as CsCl crystals and CsBr crystals (Kimura et al.,
2002). The ratio of the interfacial energy of CsCl-type to NaCl-
type is ∼0.71. Because the ratio of the interfacial energy of the
unknown phase shown in Figure 1 to that of the NaCl crystal
shown in Figure 4 is 0.33, the interfacial energy of the unknown
phase is inconsistent with that of a CsCl-type NaCl crystal. In
conclusion, we inferred that the unknown phase observed in
Figure 1 is an amorphous phase of NaCl or dense-liquid after
liquid-liquid phase separation because of the large growth rate,
the circular shape, and the small interfacial energy.

Object detection algorithm have difficulty in detecting small
objects, and first detection is inevitably delayed. Here, the
difference is only 0.2 s, which is shorter than the detection
delay in the previous section, where particles nucleated slowly.
However, object detection is adequate for early detection because
some recent TEM cameras can record several seconds before
using the lookback function. By integrating the detection system
into a transmission electron microscope, rare events such as
nucleation phenomena will be captured within the limited
resources for recording. The time necessary for the detection
is within 10 ms without the CPU-GPU data transfer. Because the
time required for real-time detection, which depends on the PC
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configuration, is approximately 15–35 ms including the CPU-
GPU data transfer (Katsuno et al., 2021), object detection of
nucleation phenomenon in in situ observation is possible when
the image data are received directly through the software of a
TEM camera.

4 SUMMARY

We proposed a method for the early detection of nucleation
phenomena using TEM observations in conjunction with the
machine learning. For the detection method to be used in in situ
observations, the standard YOLOv5 algorithm was adopted.

The detection method was applied to the nucleation of NaCl
crystals from a solution of acetone and NaClO3. Although the
detection of emerging particles sometimes failed, the particles
with isolated circular shapes were detected even if
particles moved.

We also obtained detailed information on local stochastic
process such as the time change of the size of individual particles.

The growth rates of each particle were calculated from the
detection data. The results suggested that nanoparticles with a
radius smaller than 400 nm and those with a radius larger than
400 nm were different phases. Nanoparticles with a dendritic
shape were also detected. Although the detection rate was slightly
lower, the estimated nucleation rate was of the same order as that
estimated using manual procedures, where the images are
preprocessed and then nanoparticles are counted. The
preprocessing of the images enables quantitative evaluation
with disadvantages in terms of early detection. Using the
classical nucleation theory, we investigated the effect of an
additive (molecular sieves). The additive lowered the degree of
supersaturation. From the classical nucleation theory, the
interfacial energy of the unknown phase of NaCl was
estimated to be one-third of the interfacial energy of a NaCl
crystal. This value is smaller than the roughly estimated
interfacial energy of a NaCl crystal with a CsCl-type structure.
We inferred from the high growth rate, the circular shape, small
interfacial energy that the observed unknown phase was an
amorphous or dense-liquid phase of NaCl.

The delay in the first detection of nanoparticles was ∼ 3 s and ∼
0.2 s for particles with a large compact circular shape and particles
with a small dendritic shape, respectively. The delay could be
recovered by the TEM function of a recent camera, which enabled
us to record several seconds before. Because the time for detection
was within 20 ms, nucleation phenomena could be observed
during via in situ observations when the detection system is
integrated into the software of a TEM camera.

The problem of the time necessary for detection will be resolved
with the development of computers. We hope that the opportunity
to discover new science will be found by machine learning
techniques just as our finding of the two-step nucleation process.
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