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A metal- and aldehyde-free visible-light-driven photoredox-neutral alkene

acylarylation with readily available cyanoarenes is described. A variety of 3-

(arylmethyl)chroman-4-ones (i.e., homoisoflavonoids) and analogs are

efficiently synthesized with good functional group tolerance. This mild

protocol relies on a phosphoranyl radical-mediated acyl radical-initiated

cyclization and selective radical-radical coupling sequence, and is also

further highlighted by subsequent derivatization to chromone and

2H-chromene as well as its application in the three-component alkene

acylarylation.
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Introduction

Chroman-4-one scaffolds, a class of important oxygen-containing structural motifs,

are ubiquitous in a plethora of natural products, drug candidates, and biologically active

molecules (Albrecht et al., 2005; Nibbs and Scheidt, 2011; Friden-Saxin et al., 2012; Lee

et al., 2014; Seifert et al., 2014; Emami and Ghanbarimasir, 2015; Kumar et al., 2017;

Mayuri et al., 2017). In the past years, the radical-initiated cascade cyclization strategy has

attracted great attention for the construction of chroman-4-one scaffold and other

(hetero)cyclic frameworks (Zhao et al., 2016; Yang et al., 2017; Hu et al., 2018a; Hu

et al., 2018b; Liu et al., 2019; Sheng et al., 2019; Xiao et al., 2019; Zhou et al., 2019a; Das

et al., 2020; Han et al., 2020; Huang et al., 2020; Liu et al., 2020; Mei et al., 2020; Xiong

et al., 2020; Diana et al., 2021). Particularly, the photocatalytic radical-initiated cascade

cyclization, including two mechanistically distinctive pathways, has emerged as an

elegant, green, and powerful strategy for the synthesis of such scaffold and its
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derivatives. The first photocatalytic approach to diversely

functionalized chroman-4-ones via various external radical-

initiated cascade cyclization of o-(allyloxy) arylaldehydes is

well-developed by the groups of Zhu (Lu et al., 2017; Zhou

et al., 2019b), Yu (Zhu et al., 2021), Xuan (He et al., 2019), and

others (Zhou et al., 2019a; Huang et al., 2020; Mei et al., 2020; Liu

et al., 2022) (Figure 1A). In contrast, there are only a few

examples of photocatalytic internal acyl radical-initiated

cascade cyclization (Jung et al., 2017; Norman et al., 2018;

Stache et al., 2018; Zhou et al., 2021) (Figures 1B–D), which

limits their application for the rapid assembly of structurally

diverse chroman-4-ones. Recently, Hong group (Jung et al.,

2017) and Wan group (Zhou et al., 2021) independently

developed a visible-light-driven radical cyclization/epoxidation

of o-(allyloxy)arylaldehydes toward spiroepoxy chroman4-one

scaffolds using Ru (bpy)3Cl2 or organoselenium as photocatalyst

and tert-butyl hydroperoxide (TBHP) as oxidant (Figure 1B). In

2018, McErlean group (Norman et al., 2018) disclosed a

photoredox-catalyzed indirect acyl radical generation from

relatively stable Crich-type thioesters generated in a single

step with carboxylic acid starting materials, followed by

intramolecular alkene addition/cyclization to give various

cyclic ketones including chroman-4-one scaffold (Figure 1C).

However, these existing strategies are solely based on the

elaboration of uneasily available o-(allyloxy)arylaldehydes

(almost all) or carboxylic acid thioesters (only one) and also

suffer from one or more drawbacks such as excess amounts of

oxidants, limited structural diversity, and lack of functionality

tolerance. Therefore, the development of alternative and efficient

approaches to access diversely functionalized chroman-4-one

and related cyclic ketone analogs via photocatalytic internal

acyl radical-initiated cascade cyclization using accessible

starting materials should be highly desirable.

Carboxylic acids as starting materials are not only abundant,

generally stable, and readily accessible in great structural diversity,

and have also drawnmuch attention for their application as versatile

radical precursors such as alkyl, aryl, carboxylic, and particularly acyl

radicals (Mandal et al., 2018; Wang et al., 2019; Hu et al., 2020b;

Chan et al., 2022; Kitcatt et al., 2022; Yan et al., 2022). Recently, an

elegant strategy that combines photoredox catalysis and

phosphoranyl radical-mediated deoxygenation makes it possible

to form acyl radicals from carboxylic acids, providing

streamlined access to structurally diverse ketones (Zhang et al.,

2017; Stache et al., 2018). However, to the best of our knowledge,

there are not only a few reports on the application of this powerful

strategy to intermolecular and intramolecular alkene acylations

including ipso-acylation (Li et al., 2022b), defluorinative acylation

(Guo et al., 2020), and hydro-acylation (one example of hydro-

acylation: one compound chroman-4-one using expensive iridium-

based photocatalyst, Figure 1D) (Stache et al., 2018; Zhang et al.,

2018; Martinez Alvarado et al., 2019; Merkens et al., 2021), but also

no report on alkene difuntionalizations (especially carbon-acylation)

with this strategy to date. Inspired by these work and seminal

pioneering reports on the photoredox-catalyzed radical-type ipso-

functionalizations of electron-deficient cyanoarene derivatives

(Betori and Scheidt, 2019; Vorob’ev, 2019; Zhong et al., 2020;

Zhou et al., 2020; Shen et al., 2021; Tong et al., 2021; Georgiou

et al., 2022), we envisaged whether the radical relay strategy of the

phosphoranyl radical-mediated acyl radical-initiated cascade

cyclization from alkene-tethered carboxylic acids and subsequent

FIGURE 1
Photocatalytic radical-initiated cascade cyclization toward functionalized chroman-4-ones.
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radical-radical coupling process could enable the rapid construction

of 3-(arylmethyl)chroman-4-ones, which are one of the core

frameworks in a variety of homoisoflavonoids with various

biological activities (Eggler et al., 1991; Desideri et al., 1997;

Eggler et al., 1997; Tait et al., 2006; Basavarajappa et al., 2015).

Herein, we report an efficient and practical approach for the metal-,

oxidant-, and aldehyde-free synthesis of 3-(arylmethyl)chroman-4-

ones and other cyclic ketone analogs via visible light-driven

photoredox-neutral alkene acylarylation (being a class of alkene

carbon-acylation, Figure 1E).

Results and discussion

To corroborate this hypothesis, we initially selected a model

reaction of alkenoic acid 1a and 4-cyanopyridine 2a to explore

TABLE 1 Optimization of the reaction conditionsa,b.

Entry Variation from the
Standard Conditions

Yield

1 none 75%, 67%c, 53%d

2 3DPA2FBN instead of 3DPAFIPN 66%

3 4CzIPN instead of 3DPAFIPN n.d

4 PPh3 instead of P(p-tol)3 65%

5 PMePh2 instead of P(p-tol)3 53%

6 P(p-tol)Ph2 instead of P(p-tol)3 63%

7 P(p-MeO-C6H4)3 instead of P(p-tol)3 63%

8 P(o-MeO-C6H4)3 instead of P(p-tol)3 62%

9 P(C6F5)3 instead of P(p-tol)3 Trace

10 P(OEt)Ph2 instead of P(p-tol)3 17%

11 P(OEt)3 instead of P(p-tol)3 Trace

12 CH2Cl2 instead of MeCN 42%

13 DCE instead of MeCN 47%

14 DMF, DMSO, or THF instead of MeCN n.d

15 no light or photocatalyst or P(p-tol)3 n.d

aReaction conditions: 1a (0.1 mmol), 2a (0.15 mmol), 3DPAFIPN (2 mol%), phosphine (0.2 mmol), solvent (2 ml), 30 W blue LEDs, argon atmosphere, r.t., 24 h; n.d. = not detected.
bYields were determined by 1H NMR, using 1,3,5-trimethoxybenzene as an internal standard.
c1 mol% 3DPAFIPN.
d0.5 mol% 3DPAFIPN.
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the reaction conditions under 30 W blue LED irradiation at room

temperature (Table 1). To our delight, the desired 3-

(pyridylmethyl)chroman-4-one 3aa could be obtained in 75%

yield by using 3DPAFIPN as a metal-free photocatalyst (entry 1).

In light of the fact that the excited state *3DPAFIPN [E1/2 (PC*/

PC•−) = +1.09 V vs. SCE] is a strong oxidant (Speckmeier et al.,

2018), single electron transfer (SET) could occur from P (p-tol)3
(E1/2

ox = +1.03 V vs. SCE, Supplementary Figure S3) to

*3DPAFIPN. Additionally, the presence of alkenoic acid 1a

shifted the reductive potential of 2a from −1.81 V vs. SCE

to −1.33 V vs. SCE (Supplementary Figure S4), thus enabling

SET between the reduced 3DPAFIPN•− [E1/2 (PC/

PCred) = −1.59 V vs. SCE] and 2a to complete the

photocatalytic cycle without any aid of external reductant and

oxidant. Next, decreasing the loading of the photosensitizer from

2 mol% to 1 mol% or 0.5 mol% obtained a slightly decreasing

yield (entry 1). Other organic photosensitizers such as

3DPA2FBN with suitable oxidative-reductive potential

(Speckmeier et al., 2018) could also afford the desired

chroman-4-one in good yields, while using 4CzIPN

(Speckmeier et al., 2018) led to no desired product (entries

2–3). Furthermore, other electron-rich trivalent phosphorus

compounds could also be used as the phosphorus source in

this deoxygenative transformation (entries 4–8), whereas using

relatively electron-deficient ones instead of P (p-tol)3 led to poor

efficiency (entries 9–11). Then, the screening of solvents

demonstrated that these photocatalytic reactions performed in

CH2Cl2 or DCE also resulted in synthetically useful yields, while

other solvents such as DMF, DMSO, and THF gave no desired

product (entries 12–14). Further control experiments performed

in the absence of light, photocatalyst, or phosphine failed to give

the desired chroman-4-one, thus emphasizing their crucial role

in this photocatalytic acylarylation (entry 15).

With the optimized reaction conditions in hand, we

investigated the scope and limitations of this reaction using a

variety of alkenoic acids (Figure 2). It was worth mentioning that

FIGURE 2
Scope of alkenoic acids. Reaction conditions: 1 (0.3 mmol), 2a (0.45 mmol), 3DPAFIPN (2 mol%), P (p-tol)3 (0.6 mmol), MeCN (6 ml), 30 W blue
LEDs, argon atmosphere, r.t., 24 h. The isolated yield is based on 1. Isolated yield in parentheses is obtained on a 1.0 mmol scale.
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FIGURE 3
Scope of cyano (hetero)arenes. Reaction conditions: 1 (0.3 mmol), 2 (0.45 mmol), 3DPAFIPN (2 mol%), P (p-tol)3 (0.6 mmol), MeCN (6 ml),
30 W blue LEDs, argon atmosphere, r.t., 24 h. The isolated yield is based on 1.

FIGURE 4
Product derivatization (A) and three-component alkene acylarylation (B). Reaction conditions: (a) I2, DMSO, reflux 2 h (b) I2, DMSO, reflux 2 h (c)
30% H2O2, K2CO3, DMSO, 0°C to r.t., 24 h (d) 2,6-di-tert-butylpyridine, Tf2O, CH2Cl2, 0°C to r.t., 5 h; Pd(PPh3)4, p-tolylboronic acid, DIPEA, NMP,
170°C, 10 min.
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this photocatalytic reaction could be run on a 1.0 mmol scale to

provide the target product 3aa in 67% yield. Firstly, we examined

the effect of the aromatic moiety of the substrate alkenoic acid. It

was found that the electron-donating group (Me, OMe) and

electron-withdrawing groups (F, Cl, Br, CF3) at the para- and

mata-position with respect to the carboxylic acid were well

compatible with this transformation and the corresponding

chroman-4-ones were obtained with satisfactory yields

(3ba–3ia). The structure of 3ga was confirmed by X-ray

diffraction analysis (CCDC 2192065). Moreover, the ortho-F

substituted alkenoic acid was also employed in this

transformation, providing the desired chroman-4-one 3ja

albeit in a relatively low yield. Then, we investigated the scope

of the alkene moiety of the substrate alkenoic acid. 1,2-

Disubstituted nonterminal alkenoic acid with a phenyl group

at the terminal carbon participated well in such acylarylation to

give the expected product 3ka, while one with an alkyl group was

transformed into the compound 3la with a low yield. And 1,1-

disubstituted or mono-substituted terminal alkenoic acid could

also be subjected to this transformation, affording the

corresponding chroman-4-ones (3ma–3oa) albeit with

diminished yields. Interestingly, replacing the oxygen atom at

the ortho-position with respect to the carboxylic acid by an atom

of sulphur, nitrogen, or carbon favored the photocatalytic

acylarylation, leading to the corresponding chroman-4-one

analogs such as thiochroman-4-one 3pa, dihydroquinolin-

4(1H)-one 3qa, and dihydronaphthalen-1(2H)-one 3ra.

Additionally, N-(homo)allylindole-2-carboxylic acids were

proved to be suitable heteroaromatic substrates for this

photocatalytic process and gave the architecturally intriguing

and valuable tricyclic ketone framework including 1H-pyrrolo

[1,2-a]indol-1-one (3sa) and pyrido [1,2-a]indol-9(6H)-one

(3ta) in comparable yields. These experimental outcomes fully

highlighted the synthetic potential to construct structurally

complex ketone-containing (hetero)cycles. However, pyridyl-

substituted alkenoic acid 1u and acyclic aliphatic alkenoic acid

1v could be not suitable for this alkene acylarylation.

To further explore the synthetic potential of our

methodology, we then investigated differently substituted

cyanoarene partners in this photocatalytic acylarylation

FIGURE 5
Mechanistic studies (A) and mechanistic proposal (B).
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(Figure 3). Firstly, the substituted phenyl and alkyl group at the 2-

position of cyanopyridine were well tolerated, providing the

corresponding 3-(pyridylmethyl)chroman-4-ones (3ab–3af) in

moderate to good yields. Cyanopyridines bearing halogen

substituents at 2- or 3-position afforded the desired products

albeit in decreased yields (3ag–3ai), offering opportunities for

further derivatization. The structure of 3ah was confirmed by

X-ray diffraction analysis (CCDC 2192094). Notably, using 2, 4-

dicyanopyridine as a coupling partner underwent selective

coupling at the most electron-poor 4-position to produce the

corresponding chroman-4-one 3aj in a synthetically useful yield

along with C2-coupled chroman-4-one 3aj9. Additionally,

non-pyridine cyanoarenes including quinoline and

isoquinoline scaffolds were also successful with the standard

conditions, leading to the formation of the corresponding

chroman-4-ones 3ak and 3al with 49% and 48% yields,

respectively. To our delight, other electron-withdrawing

cyanoarene 1, 4-dicyanobenzene was also compatible with our

protocol to give a satisfactory yield of 3-benzylchroman-4-one

3cm (belonging to classical homoisoflavonoid skeleton), while

1,2-dicyanobenzene 2n and ethyl 4-cyanobenzoate 2o were not

suitable.

To investigate the practical utility of this photocatalytic

acylarylation process, several illustrative examples of simple

derivatization of 3-(arylmethyl)chroman-4-ones were provided

(Figure 4). For example, I2-mediated dehydrogenation of the

resulting 3-(arylmethyl)chroman-4-ones (3aa and 3cm)

proceeded well to provide the extensively studied and

medicinally important chromones [4 (Zheng et al., 2015;

Gobbi et al., 2016) and 5 (Kirkiacharian et al., 1989; Cavalli

et al., 2005; Kirkiacharian and Gomis, 2005; Rao et al., 2008;

Kupcewicz et al., 2013; Noshita et al., 2021)] with 86% and 75%

yields, respectively. 3-Benzylchroman-4-one 3cm was treated

with H2O2 in the presence of K2CO3 to obtain the

corresponding amide 6 in 92% yield. Moreover, elaborated

alkenyl triflate derived from 3cm could undergo Pd-mediated

Suzuki coupling to afford biologically intriguing 3-benzyl

2H-chromene (Srikanth et al., 1997; Conti and Desideri, 2009)

7 in 80% yield. To our delight, the first example for the more

challenging three-component alkene acylarylation using simple

and easily accessible feedstocks could be realized to afford β-

pyridylated ketone 8 albeit in a relatively low yield (Figure 4B),

which is complementary to the previously reported two-

component synthesis of pyridyl-containing ketones (Zhu et al.,

2020; Yang et al., 2021; Li et al., 2022a).

To elucidate the mechanism of this photocatalytic acylarylation,

several control experiments using substrates 1a and 2a were carried

out as shown in Figure 5A. When three equivalents of the radical

scavenger TEMPO or the electron-transfer scavenger

p-dinitrobenzene (DNB) were added under standard conditions,

no product 3aa was observed and the corresponding TEMPO-

adduct (TEMPO-1a) was detected by ESI-HRMS analysis.

Additionally, when the model reaction was performed with an

external radical-trapping reagent 1,1-diphenylethylene (DPE), the

formation of the desired chroman-4-one 3aa was significantly

inhibited and the corresponding radical-trapping product 3aa9

was also detected by ESI-HRMS analysis. Taken together, these

results indicate that a radical/SET-based pathway might be involved

in our photocatalytic acylarylation.

Based on the above experimental results and previous reports

(Jiang et al., 2019; Hu et al., 2020a; Clarke et al., 2020; Nicastri

et al., 2020; Pan et al., 2020; Rossi-Ashton et al., 2020; Shao et al.,

2020; Zhou et al., 2020; Tong et al., 2021), a plausible mechanistic

pathway for this photocatalytic acylarylation is proposed as

described in Figure 5B. Under the blue LED irradiation, the

photocatalyst 3DPAFIPN was initially raised to the excited state

*3DPAFIPN, which was reductively quenched by P (p-tol)3 to

form the strongly reducing 3DPAFIPN•− and phosphine radical

cation. Subsequently, the phosphine radical cation recombined

with the carboxylate anion of 1a to produce the phosphoranyl

radical intermediate A, which underwent a facile β-scission to

form acyl radical B and tri-p-tolylphosphine oxide. Then, the

resulting radical B proceeded via intramolecular 6-exo-trig

cyclization with the alkene moiety to provide alkyl radical C.

Meanwhile, SET between the reduced 3DPAFIPN•− and 2a·H+

gave a persistent arene radical D and regenerated 3DPAFIPN.

Finally, the alkyl radical C underwent intermolecular radical-

radical coupling with radical D and sequential rearomatization

via the elimination of both cyano anion and proton to achieve the

corresponding chroman-4-one 3aa.

Conclusion

In summary, we have developed a novel visible-light-driven

photoredox-neutral alkene acylarylation with cyanoarenes,

enabling metal-, oxidant-, and aldehyde-free access to

structurally diverse 3-(arylmethyl)chroman-4-ones

(i.e., homoisoflavonoids) as well as other cyclic ketone analogs

such as thiochroman-4-one, dihydroquinolin-4(1H)-one,

dihydronaphthalen-1(2H)-one, pyrrolo [1,2-a]indol-1-one, and

pyrido [1,2-a]indol-9(6H)-one. Furthermore, the resulting

chroman-4-ones can be scale-up synthesized and also readily

parlayed into skeletally diverse and valuable compounds such as

chromone and 2H-chromene. In addition, the developed

powerful protocol involves phosphoranyl radical-mediated

acyl radical-initiated cascade cyclization followed by radical-

radical coupling with the persistent aryl radical, enabling the

concomitant introduction of ketone and aromatic fragments to

organic molecules.
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