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During a screening for antifungal secondary metabolites, six new mono-/bis-alkenoic acid
derivatives (2–7) and one known alkenoic acid derivative (1) were isolated from an endophytic
fungi Scopulariopsis candelabrum. Their chemical structures were identified by 1H-NMR,
13C-NMR, 2D NMR, and high-resolution mass spectrometry, as well as comparisons with
previously reported literatures. Among them, fusariumesters C‒F (2–5) are bis-alkenoic acid
derivatives dimerized by an ester bond, while acetylfusaridioic acid A (6) and fusaridioic acid D
(7) are alkenoic acid monomers. All the isolates were submitted to an antifungal assay against
Candida albicans and the corn pathogen Exserohilum turcicum using the filter paper agar
diffusionmethod. As a result, only compound 1 decoratingwith β-lactone ring turned out to be
active against these two tested fungi. The broth microdilution assay against Candida albicans
showed the minimum inhibitory concentration (MIC) value of 1 to be 20 μg/ml, while the
minimum inhibitory concentration value of the positive control (naystatin) was 10 μg/ml. And
the half maximal inhibitory concentration (IC50) value (21.23 μg/ml) of 1 against Exserohilum
turcicum was determined by analyzing its inhibition effect on the mycelial growth, using
cycloheximide (IC50 � 46.70 μg/ml) as the positive control.
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INTRODUCTION

Candida albicans, as an opportunistic pathogenic fungus, normally maintain symbiosis with the
human body in the skin, oral cavity, and gastrointestinal tract (Mishra and Koh, 2021). When the
body’s homeostasis is destroyed, C. albicans transforms into pathogenic fungi, causing various fungal
diseases from superficial skin infections to life-threatening systemic infections (Pappas et al., 2009;
Hall and Noverr, 2017). According to statistics, four hundred thousand people are infected with C,
albicans every year, and 75% of women suffer from vulvovaginal candidiasis at least once in their lives
(Fidel et al., 2004; Yang et al., 2014; Rajendran et al., 2016). Even with drug treatment, the fatality rate
of invasive C. albicans infection is still close to 40% (Lohse et al., 2018; Whitesell et al., 2019). Among
immunocompromised people such as chemotherapy and organ transplantation, the mortality rate of
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fungal diseases caused byC. albicans is 33–50% (Krcmery et al., 2000;
Winston, 1999; Levesque et al., 2015). Therefore, infections caused by
C. albicans are still nonnegligible threats to human health.

As an antifungal agent, fluconazole is widely used in the treatment
of fungal diseases caused by C. albicans because of its low price, low
toxicity, and high efficiency (Lu et al., 2017). However, the drug
resistance ofC. albicans caused by thewidespread use offluconazole is
becoming an increasingly serious problem, and the discovery for new
antifungal drugs has become more and more urgent (Whaley et al.,
2016; Lu et al., 2017; Lu et al., 2021). Fungal secondary metabolites, as
an important source of antifungal drugs (Baker et al., 2007; Di Santo,
2010; Cantrell et al., 2012; Schueffler and Anke, 2014), have attracted
much more attention from the researchers. In the past 10 years, 25%
of antifungal active compounds are derived from fungi (Aldholmi
et al., 2019). Among all the fungal microbial resources, plant
endophytic fungi were thought as the valuable resources for the
discovery of antifungal agents (Uzma et al., 2018;Newman andCragg,
2020). Recently, a program to discover antifungal constituents from
endophytic fungi associated with characteristic food resources of
Yunnan Province, China, was conducted in our lab. Accordingly,
an antifungal screening of the strain fermentation extracts against C.
albicans targeted an endophytic fungus from stems of tea trees,
Scopulariopsis candelabrum KIB-int20. Secondary metabolites
reported from the genus Scopulariopsis were mainly
cyclodepsipeptides (such as scopularides A and B) and some
dihydroquinolin-2-one-containing alkaloids (Yu et al., 2008; Shao
et al., 2015; Elbanna et al., 2019). In this study, seven mono-/bis-
alkenoic acid derivatives (1–7, Figure 1) were isolated from S.
candelabrum KIB-int20 during a screening for antifungal
secondary metabolites. We herein report the isolation, structure
elucidation and antifungal activity of these polyketides.

MATERIALS AND METHODS

General Experimental Procedures
Optical rotations were measured on an Autopol VI manufactured
by Rudolph Research Analytical, Hackettstown, NJ, United States

IR spectra were measured on a Nicolet iS10 FT-IR spectrometer
(Thermo Fisher Scientific, United States) with KBr disks. NMR
spectra were recorded in CDCl3 (δH 7.26 ppm, δC 77.16 ppm) or
DMSO-d6 (δH 2.50 ppm, δC 39.52 ppm) using Bruker Avance III
600 or 800 MHz spectrometers (Bruker Corp, Switzerland). HR-
ESI-MS analysis were carried out on a Shimadzu UPLC-IT-TOF
mass spectrometer (Shimadzu Corp, Japan). Silica gel (100–200
mesh and 200–300 mesh, Qingdao Marine Chemical Inc, China)
and Sephadex LH-20 (18–111 μm, Pharmacia Biotech Ltd,
Sweden) were used for the chromatography column (CC).
Precoated silica gel GF254 plates (0.20–0.25 mm in thickness,
Qingdao Marine Chemical Inc, China) were used for thin-
layer chromatography (TLC) analyses. Semipreparative HPLC
was conducted on a Hitachi Chromaster system (Hitachi Ltd,
Japan), equipped with a DAD detector and a YMC-Triart C18

column (250 × 10.0 mm i. d, 5 μm), using a flow rate of 3.0 ml/
min at a column temperature at 28°C, and 0.1% (v/v) acetic acid
was added to each HPLC mobile phase.

Strain Isolation and Cultivation
Strain S. candelabrum KIB-int20 was isolated from the stems of
tea trees (Camellia sinensis (L.) O. Ktze) from Dali, Yunnan
Province, China. It was identified as S. candelabrum by a
combination of ITS sequence and fungal morphological
identification. The internal transcribed spaces (ITS) region was
amplified and sequenced using the general primers ITS1 (5′-TCC
GTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTAT
TGATATGC-3′). The ITS region of the fungus was a 605 bp
DNA sequence (GenBank No. OK445701), which showed 99%
identity to the ITS sequence of strain S. candelabrum (GenBank
No. LM652483.1).

S. candelabrum KIB-int20 was first inoculated on a PDA
(filtrate of boiled fresh potatoes 200 g/L, dextrose 20 g/L, agar
20 g/L) plate for 5 days, and then transferred to several PDA
plates for another 7 days culture. About one-sixth of agar blocks
with fungi mycelium was inoculated into a tissue culture vessel
(370 ml) containing the fermentation medium. For each tissue
culture vessel, 20 g cargo rice, 10 g peptone and 12 ml water were

FIGURE 1 | Chemical structures of compounds 1‒7.
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added and sterilized at 121°C for 30 min immediately. The
inoculated medium was statically cultivated for 1 month in a
dark environment at room temperature. Strain S. candelabrum
KIB-int20 was finally fermented with 5 kg of cargo rice in total.

Extraction and Isolation
The fermentation solid of S. candelabrum KIB-int20 was
extracted with acetone (10 L×2, d×2) at room temperature.
The extracts were concentrated to remove organic solvent. The
aqueous residue was then partitioned with EtOAc (2.5 L×4) to
obtain an oily crude extract (50 g). The extract was then subjected
to silica gel CC eluting with petroleum ether−EtOAc (1:0, 10:1, 5:
1, 2:1, 1:1, 1:2, 1:5, 1:10 and 0:1, v/v) to give nine fractions (A−I).
An antifungal screening of each fraction against C. albicans was

conducted, and fraction D turned out to be active. The main
metabolites in each fraction were further analyzed by DAD-
HPLC. Main metabolites in fractions D and E shared the same
UV absorptions. In this way, fractions D and E were selected for
further study. Selected fraction E (petroleum ether−EtOAc 1:1)
was first separated by Sephadex LH-20 CC (CH2Cl2−CH3OH, 1:
1), and divide it into six subfractions according to the detection
results of thin layer chromatography (10% ethanol sulfate in
EtOH was served as chromogenic agent). Further purification of
these subfractions by semipreparative DAD-HPLC gave
compounds 2 (78% methanol in H2O, tR � 19.8 min, 3.5 mg),
3 (78% methanol in H2O, tR � 33.0 min, 3.5 mg), 4 (78%
methanol in H2O, tR � 38.0 min, 6.4 mg), and 5 (78%
methanol in H2O, tR � 50.0 min, 5.4 mg). Another selected

TABLE 1 | 1H NMR Data of Compounds 2–7 (δ in ppm, J in Hz).

No 2b 3b 4c 5b 6b 7d

2 5.63 s 5.60 s 5.66 s 5.60 s 5.59 s 5.69 s
4 5.71 s 5.71 s 5.69 s 5.69 s 5.71 s 5.73 s
6a 2.02a 2.03a 2.06 dd (13.1, 6.0) 2.01a 2.02 dd (13.0, 6.5) 2.05 dd (13.2, 6.6)
6b 1.80a 1.82a 1.83a 1.80a 1.82 dd (13.0, 8.0) 1.88 dd (13.2, 7.7)
7 1.61a 1.61a 1.60a 1.59a 1.62 m 1.66 m
8a 1.23a 1.24a 1.25a 1.05a 1.25a 1.31a

8b 1.03a 1.05a 1.07a 0.98a 1.03a 1.10a

9a 1.33a 1.33a 1.30a 1.21a 1.25a 1.34a

9b 1.23a 1.23a 1.19a 1.32a 1.34a 1.42a

10a 1.32a 1.32a 1.28a 1.22a 1.36a 1.48a

10b 1.24a 1.24a 1.17a 1.19a 1.26a 1.37a

11a 1.34a 1.29a 1.54a 1.53a 1.35a 1.51a

11b 1.25a 1.24a 1.50a 1.25a 1.47a

12 3.57a 3.57a 4.99 m 5.03 td (8.3, 3.7) 3.63 m 3.69 m
13 2.45a 2.47 a 2.55a 2.58 m 2.57 m 2.56 m
3-CH3 2.14 s 2.14 s 2.13 s 2.12 s 2.14 s 2.24 s
5-CH3 1.73 s 1.73 s 1.74 s 1.72 s 1.74 s 1.81 s
7-CH3 0.78a 0.78 d (6.5) 0.79 d (6.5) 0.77 d (7.0) 0.79 d (6.6) 0.84 d (6.6)
13-CH2OR or 13-CH3 4.13a 4.14 m 3.53a 3.54a 4.11a 1.26 d (7.2)

4.18 dd (10.6, 5.8) 4.29 dd (10.8, 4.7) 3.48a 4.15 dd (10.7, 5.3)
2′ 5.56 s 5.56 s 5.57 s 5.58 s
4′ 5.69 s 5.69 s 5.73 s 5.75 s
6′a 2.02a 2.03a 2.06 dd (13.1, 6.0) 2.01a

6′b 1.80a 1.82a 1.83a 1.80a

7′ 1.61a 1.61a 1.62a 1.59a

8′a 1.23a 1.24a 1.25a 1.22a

8′b 1.03a 1.05a 1.07a 1.05a

9′a 1.33a 1.33a 1.25a 1.21a

9′b 1.23a 1.23a 1.19a 1.32a

10′a 1.32a 1.32a 1.39a 1.22a

10′b 1.24a 1.24a 1.26a 1.19a

11′a 1.34a 1.38a 1.31a 1.31a

11′b 1.25a 1.30a 1.26a 1.23a

12′ 3.57a 3.56a 3.59a 3.55a

13′ 2.44a 2.39 m 2.44 m 2.32 m
3′-CH3 2.12 s 2.12 s 2.16 s 2.17 s
5′-CH3 1.75 s 1.75 s 1.76 s 1.76 s
7′-CH3 0.79a 0.79 d (6.5) 0.80 d (6.5) 0.78 d (7.0)
13′-CH2OH or 13′-CH3 3.54a 0.95 d (7.0) 0.99 d (7.0) 0.95 d (7.0)

3.49a

Ac-CH3 1.96 s

aOverlapped signals.
bRecorded at 600 MHz, in DMSO-d6.
cRecorded at 800 MHz, in DMSO-d6.
dRecorded at 600 MHz, in CDCl3.
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fraction D (petroleum ether−EtOAc, 2:1) was sequentially
subjected to Sephadex LH-20 CC (CH2Cl2−CH3OH, 1:1) and
semipreparative DAD-HPLC to afford 1 (65% methanol in H2O,
tR � 32.5 min, 8.2 mg), 6 (65% methanol in H2O, tR � 34 min,
6.9 mg), and 7 (65% methanol in H2O, tR � 42.0 min, 4.4 mg).

Fusariumester C (2): colorless oil [α]19.9D 4.5 (c 0.2, MeOH) UV
(MeOH); λmax (log ε) 196 (3.99), 232 (3.59), 269 (3.93) nm; IR
(KBr) νmax 3,419, 2,927, 2,856, 1712, 1,620, 1,382, 1,250,
1,176 cm₋1. HR-ESI-MS: m/z 665.3909 [M ‒ H]‒ (calcd for
C36H57O11, 665.3906). 1H NMR (600 MHz, DMSO-d6) data
see Table 1, and 13C NMR (150 MHz, DMSO-d6) data see
Table 2.

Fusariumester D (3): colorless oil [α]19.9D 3.2 (c 0.2, MeOH) UV
(MeOH); λmax (log ε) 196 (4.07), 232 (3.69), 270 (4.07) nm; IR
(KBr) νmax 3,659, 3,433, 2,927, 2,857, 2,011, 1,711, 1,621, 1,530,
1,378, 1,343, 1,324, 1,251, 1,176 cm₋1. HR-ESI-MS: m/z 649.3952

[M‒H]‒ (calcd for C36H57O10, 649.3957).
1H NMR (600 MHz,

DMSO-d6) data seeTable 1, and
13CNMR (150 MHz, DMSO-d6)

data see Table 2.
Fusariumester E (4): colorless oil [α]19.9D 1.0 (c 0.2, MeOH) UV

(MeOH); λmax (log ε) 196 (4.22), 229 (3.86), 269 (4.32) nm; IR
(KBr) νmax 2,925, 2,854, 2,644, 2,566, 1,687, 1,604, 1,381, 1,325,
1,253, 1,178 cm₋1. HR-ESI-MS: m/z 649.3959 [M‒H]‒ (calcd for
C36H57O10, 649.3957).

1H NMR (800 MHz, DMSO-d6) data see
Table 1, and 13C NMR (200 MHz, DMSO-d6) data see Table 2.

Fusariumester F (5): colorless oil [α]19.9D ‒ 6.0 (c 0.2, MeOH)
UV (MeOH); λmax (log ε) 196 (4.35), 232 (3.96), 271 (4.38) nm; IR
(KBr) νmax 3,420, 2,927, 2,857, 2,644, 1,712, 1,619, 1,381, 1,234,
1,150 cm₋1. HR-ESI-MS: m/z 649.3956 [M‒H]‒ (cald for
C36H57O10, 649.3957). 1H NMR (600 MHz, DMSO-d6) data
see Table 1, and 13C NMR (150 MHz, DMSO-d6) data see
Table 2.

Acetylfusaridioic acid A (6): colorless oil [α]19.9D 5.7 (c 0.15,
MeOH) UV (MeOH); λmax (log ε) 196 (3.85), 230 (3.48), 270
(3.95) nm; IR (KBr) νmax 3,412, 2,928, 2,859, 2,645, 1,740, 1,716,
1,618, 1,382, 1,250, 1,184 cm₋1. HR-ESI-MS: m/z 383.2074 [M‒
H]‒ (calcd for C20H31O7, 383.2075).

1H NMR (600 MHz, DMSO-
d6) data see Table 1, and 13C NMR (150 MHz, DMSO-d6) data
see Table 2.

Fusaridioic acid D (7): colorless oil [α]19.9D 7.2 (c 0.2, MeOH)
UV (MeOH); λmax (log ε) 196 (3.66), 230 (3.66), 269 (4.09) nm; IR
(KBr) νmax 3,400, 2,929, 2,858, 2,640, 2,229, 2,195, 2,179, 2,164,
2,153, 2,113, 2,056, 2,023, 2.011, 1,970, 1,959, 1,692, 1,622, 1,377,
1,324, 1,251, 1,175 cm₋1. HR-ESI-MS: m/z 325.2023 [M‒H]‒

(calcd for C18H29O5, 325.2020).
1H NMR (600 MHz, CDCl3)

data see Table 1, and 13C NMR (150 MHz, CDCl3) data see
Table 2.

Antifungal Activity Assay
Rough Antifungal Activity Test: The rough antifungal activity of
compounds 1−7 was measured by the filter paper agar diffusion
method (Xu et al., 2015). 1 ml suspension (1 × 105 CFU cell or
spore concentration) of C. albicans, or Exserohilum turcicum,
Curvularia lunata, or Fusarium oxysporum in 20% glycerin was
inoculated in a Petri dish containing PDA medium; autoclaved
paper disks (6 mm diameter) were placed around the fungal
inoculant on the same Petri dish, and each of the paper disks
impregnated with 10 μg testing samples, nystatin (positive
control) or an equivalent volume of methanol (blank control).
Fungal inoculants were cultivated in dark at 30°C for 2 days, and
then the size of the inhibition zones was analyzed. Each
compound was retested three times.

Measurement of minimum inhibitory concentration (MIC)
Values (Yu et al., 2016): A single colony of C. albicans on the SDA
plate (1% peptone, 4% dextrose and 2% agar) was picked and
inoculated into 5 ml YPD (1% yeast extract, 2% peptone and 2%
dextrose) liquid medium and cultivated at 37°C, 200 r/min for
16 h to reach the logarithmic growth phase. According to the
measured growth curve of C. albicans, the fungal inoculum was
diluted with YPD liquid medium, ensuring the abundance of the
strains was 3 × 107 CFU/ml. Compound 1, nystatin (positive
control) and equivalent methanol (blank control) were dispensed
in single wells and mixed with diluted fungal inoculum to make

TABLE 2 | 13C NMR Data of Compounds 2–7 (δ in ppm).

No 2a 3a 4b 5a 6a 7c

1 167.8 167.9 168.4 167.8 167.7 171.9
2 118.6 118.6 119.4 118.6 118.3 116.4
3 152.6 152.6 153.0 151.9 152.4 157.5
4 129.3 129.3 129.8 129.2 129.2 129.4
5 140.8 140.5 140.6 140.5 140.7 142.5
6 48.6 48.5 48.9 48.3 48.5 49.1
7 30.3 30.2 30.6 30.0 30.1 30.8
8 36.4 36.3 36.8 35.6 35.9 36.4
9 26.4 26.4 26.3 26.4 26.1 26.8
10 25.3 25.2 25.0 24.8 25.4 25.6
11 34.5 32.9 32.0 31.7 34.2 34.6
12 68.8 69.0 71.7 70.6 68.8 73.2
13 50.9 51.7 53.3 52.7 50.9 45.1
14 173.8d 173.9 174.3 173.7 173.2 180.7
3-CH3 19.1 19.1 19.5 19.1 19.1 20.0
5-CH3 18.1 18.1 18.5 18.1 18.1 18.6
7-CH3 19.2 19.3 19.7 19.3 19.3 19.6
13-CH2OR or 13-CH3 62.6 62.9 60.4 59.8 62.5 14.2
1′ 167.7 167.7 168.2 165.7
2′ 118.2 118.2 118.7 116.9
3′ 152.6 152.6 153.0 154.1
4′ 129.2 129.2 129.6 129.0
5′ 140.8 140.9 141.2 141.9
6′ 48.4 48.4 48.9 48.6
7′ 30.3 30.3 30.8 30.3
8′ 36.4 36.3 36.8 36.3
9′ 26.4 26.2 26.9 25.7
10′ 25.5 25.4 26.0 25.4
11′ 34.7 34.8 33.4 33.1
12′ 68.9 71.3 71.7 71.4
13′ 55.2 45.9 46.8 45.9
14′ 172.4 174.2 174.3 176.3
3′-CH3 19.1 19.1 19.5 19.3
5′-CH3 18.1 18.1 18.6 18.2
7′-CH3 19.2 19.4 19.9 19.4
13′-CH2OR or 13′-CH3 59.4 12.2 12.8 12.6
Ac-CO 170.3
Ac-CH3 20.7

aRecorded at 150 MHz, in DMSO-d6.
bRecorded at 200 MHz, in DMSO-d6.
cRecorded at 150 MHz, in CDCl3.
dSignals were not detected in 13C NMR, but were found in an HMBC spectrum.
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the final concentrations of tested compounds were 10, 20, 40, 80,
160 and 320 μg/ml in a single well, respectively. After 48 h of
shaking culture at 37°C and 200 r/min, the results were
determined visually. The MIC was defined as the lowest
concentration where there was no visible growth of C.
albicans. All the experiments were carried out in triplicate.

Measurement of half maximal inhibitory concentration (IC50)
Values (Weidenborner et al., 1990): The IC50 of compound 1
against E. turcicum was evaluated using 48-well culture plates.
The conidia used in these experiments were collected from the 7-
day-old culture of fungi grown on PDA. The conidia were
collected and the suspension was diluted with sterile water and
mix 1:1 with PDB (filtrate of boiled fresh potatoes 200 g/L,
dextrose 20 g/L) solution for activity test. 1 ml 1/2 PDB spore
suspension was added to single wells, and 1, 2, 4, 8, 16 or 32 μL
compound 1 or cycloheximide (10 mg/ml) was added to make the
final concentration is 9.99–310.07 μg/ml in a single well. After the
48-well plate was cultured at 200 r/min and 30°C for 7 days, the
mycelium at each concentration were collected, dried and
weighed. The inhibition rates were treated by nonlinear
regression analysis of logistic dose–respond curves (Graph Pad
Prism eight statistic software) to get the IC50 value.

RESULTS AND DISCUSSION

Structural Elucidation
A series of chromatographic methods were used for the isolation
of monomeric compounds from the strain fermentation extracts,
and diverse spectroscopic analyses were used for their structure
elucidation. As a result, seven polyketides were isolated and
identified, including one known compound, hymeglusin (1)
(Kumagai et al., 1992; Tomoda et al., 1988), four new bis-
alkenoic acid derivatives named fusariumesters C−F (2–5), and
two new alkenoic acid monomers named acetylfusaridioic acid A
(6) and fusaridioic acid D (7). The absolute configuration of
hymeglusin (1) was previously determined by chemical
degradation method and Mosher method (Chiang et al., 1988).
The optical rotation of hymeglusin (1) was {[α]19.4D 24.56 (c 0.2,
CHCl3)} in our project, which reported in the literature was [α]22D
10.6 (c 0.1, CHCl3) (Kanaida et al., 2021).

Compound 2 (fusariumester C) was isolated as colorless oil. Its
molecular formula was determined to be C36H58O11 by HR-ESI-
MS analysis (m/z 665.3909 [M ‒ H]‒, calcd for C36H57O11,
665.3906, Supplementary Figure S9), suggesting eight degrees
of unsaturation. The IR spectrum of 2 displayed characteristic
adsorptions for carbonyl groups and carbon-carbon double
bonds at 1,712 and 1,620 cm−1, respectively. The 13C NMR
data (Table 2) of 2 showed 36 carbon resonances, and all
signals appeared in pairs. Moreover, each pair of the signals
closely resembled those of fusaridioic acid A (Liu et al., 2018).
Additionally, comparing the molecular weight (666 Da) of 2 with
twice that of fusaridioic acid A (342 Da) yielded a difference of 18
Da. Accordingly, 2 was speculated to be an esterified dimer of
fusaridioic acid A (Liu et al., 2018). Further detailed analysis of its
NMR data (Supplementary Figures S3–8) supported this
hypothesis. Based on the literature report (Liu et al., 2018),

two 13C NMR signals at δC 167.7 and δC 167.8 were obviously
assigned as carboxylic acid carbonyls connecting to quaternary
olefinic carbons, while signals at δC 173.8 and δC 172.4 were
assigned as aliphatic carboxylic acid carbonyl groups or ester
carbonyl groups. The methines at δC 68.8 and δC 68.9 were
attributed to hydroxy-substituted ones. The two methylenes at δC
62.6 and δC 59.4 were assigned to be oxygen-bearing ones, and the
small difference between their chemical shifts may due to the
formation of an ester bond for one of these two carbons. The 1H
NMR data (Table 1 and Supplementary Figure S3) of 2 revealed
four olefinic proton signals at δH 5.56, 5.63, 5.71, 5.69. Detailed
HMBC correlations associated with these four above-mentioned
protons established the presence of two pairs of diene moieties
conjugating with terminal carboxyls (the fragments from C-1 to
C-6, and from C-1′ to C-6′, Figure 2). The 1H NMR data of 2 also
showed two overlapped doublets (δH 0.78 and 0.79) of methyls in
the high field region (Supplementary Figure S3). Starting with
these two above-mentioned methyl signals, two similar aliphatic
carbon chains [7-Me(C-6)/C-7/C-8/C-9/C-10/C-11/C-12/C-13/
13-CH2O and 7′-Me(C-6′)/C-7′/C-8′/C-9′/C-10′/C-11′/C-12′/
C-13′/13′-CH2O, Figure 2] were deduced based on a
combined analyses of its HSQC and 1H–1H COSY spectra.
Lastly, the key HMBC correlations from the proton at δH 4.13
(one proton of 13-CH2OR) to the carbons of C-12, C-13, C-14
and C-14′ demonstrated that two molecules of fusaridioic acid A
were dimerized via the ester bond built by 13-CH2OH and the
carboxylic acid group at C-14′ (Figure 2). Thus, the planar
structure of 2 was elucidated.

The configurations of the four double bonds in 2were revealed
by the analysis of its ROESY spectrum (Figure 2 and
Supplementary Figure S8). However, the 1H NMR data of 2
were helpless for the determination of its stereochemistry because
of signal overlapping. For the stereochemistry of reported mono-/
bis-alkenoic acid derivatives, the configurations of C-7 (7′) and
C-13 (13′) were conserved to be 7R (7′R) and 13S (13′S) (Liu
et al., 2018; Niu et al., 2019; Tang et al., 2019), while the
configuration of C-12 (12′) turned out to be 12 (12′) R or 12
(12′) S (Liu et al., 2018). Recently, it was reported that the
configurations of fungal polyketides were conserved in general
with few exceptions (Takino et al., 2021). Therefore, in view of the
shared biosynthetic pathway of mono-/bis-alkenoic acid
derivatives, as well as previous literature reports (Liu et al.,
2018; Niu et al., 2019; Tang et al., 2019), the configurations of
C-7 (7′) and C-13 (13′) in 2were supposed to be 7R (7′R) and 13S
(13′S), respectively. Compared with the 13C NMR and 1H NMR
chemical shifts of C-12 (12′) in the dimers reported in the
literature (Liu et al., 2018, Supplementary Table S1), the
absolute configurations of C-12 (12′) in compound 2 were
determined to be 12R (12′R). In this way, the chemical
structure of 2 was identified as shown in Figure 1. Since three
similar alkenoic acid dimers were given the trivial names of
fusariumesters A1, A2, and B (Liu et al., 2018) previously,
compound 2 was named as fusariumester C.

Compound 3 (fusariumester D) was isolated as colorless oil.
Its molecular formula was confirmed to be C36H58O10 by HR-
ESI-MS data (m/z 649.3952 [M ‒ H]‒, calcd for C36H57O10,
649.3957, Supplementary Figure S16), indicating eight degrees
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of unsaturation. The molecular weight of compound 3 (650 Da)
was lower than that of compound 2 (666 Da) with a difference of
16 Da. The 1H and 13C NMR spectra of 3 closely resembled those
of 2 (Table 1 and Table 2), and the comparison of their 1H and

13C NMR data (Supplementary Figures S10,11) indicated a
methyl (13′-Me) in 3 instead of a hydroxymethyl (13′-
CH2OH) in 2. This hypothesis was confirmed by HMBC
(Supplementary Figure S13) correlations from protons of 13′-

FIGURE 2 | Key HMBC, 1H–1H COSY and ROESY correlations of compounds 2‒7.
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CH2OH to C-12′, C-13′, and C-14’ (Figure 2). Analogously, a
group of HMBC correlations from the proton at δH 4.14 (one
proton of 13-CH2OR) to C-12, C-13, C-14, and C-14′ proved that
3 shared the same esterified dimerization way as 2.

Compound 4 (fusariumester E) is a colorless viscous oil. Its
molecular formula was determined to be same with that of 3
based on the HR-ESI-MS analysis (m/z 649.3959 [M ‒ H]‒, calcd
for C36H57O10, 649.3957, Supplementary Figure S23). The 1H
and 13C NMR data of 4 and 3 were highly similar (Table 1 and
Table 2). The most striking differences between their 13C NMR
data were that chemical shift of 13-CH2OR was upfield shifted
from 62.9 ppm in 3 to 60.4 ppm in 4, and the chemical shift of C-
12 was downfield shifted from 69.0 ppm in 3 to 71.7 ppm in 4.
In view of the same molecular formula shared by 3 and 4,
this phenomenon implied that 4 might possess a different
dimerization site. Key HMBC correlations from H-12 to C-
10, C-11, C-13, C-14 and C-14′ certified that an ester
bond was built in 4 with the carboxylic acid group in one
monomer at C-14′ and the hydroxyl at C-12 in another
monomer (Figure 2).

Compound 5 (fusariumester F) was also isolated as colorless
oil. Its molecular formula was speculated to be C36H58O10 by HR-
ESI-MS analysis (m/z 649.3956 [M ‒ H]‒, cald for C36H57O10,
649.3957, Supplementary Figure S30). Comparing the 1H and
13C NMR data of 5 with those of 2–4 (Table 1 and Table 2)
predicted 5 also to be a bis-alkenoic acid derivative but decorating
with another new esterified dimerization way. A vital HMBC
(Supplementary Figure S27) cross peak of H-12/C-1′ defined
that the hydroxyl at C-12 in one monomer and the terminal
carboxylic acid at C-1′ contributed to the dimerized ester
bond in 5.

Compound 6 (acetylfusaridioic acid A) was isolated as
colorless oil. Its elemental composition was determined to
be C20H32O7 by HR-ESI-MS analysis (m/z 383.2074 [M ‒ H]‒,
calcd for 383.2075 C20H31O7, Supplementary Figure S37),
indicating five degrees of unsaturation. Its 1H NMR and
HSQC data distinctly showed two olefinic protons (δH 5.59
and 5.71), two oxygenated gem-protons (δH 4.11 and 4.15),
and four methyl groups (three singlets at δH 2.14, 1.96, 1.74,
and one doublet at δH 0.79). Three down-field shifted
carbonyls (δC 173.2, 170.3, 167.7), four olefinic carbons (δC
152.4, 140.7, 129.2, 118.3), one oxygen-bearing methylene (δC
62.5), and four methyl groups (δC 20.7, 19.3, 18.1, 19.1) were
observed in the 13C NMR spectrum of 6. Examination of its
detailed 13C NMR data with those of fusaridioic acid A (Liu
et al., 2018) suggested that 6 was the product of acetylation at
13-CH2OH in fusaridioic acid A. Key HMBC (Supplementary
Figure S34) correlations from protons (δH 4.11 and 4.15) of
13-CH2Omoiety to the carbonyl (δC 170.3) of the acetyl group
supported this deduction (Figure 2). Like compound 2, the
configurations of C-7 and C-13 in 6 were supposed to be 7R
and 13S based on a thought of conserved biosynthetic logic.
And the C-12 (12′) absolute configurations in compounds 3,
4, 5, and 6 were determined to be 12R (12′R), 12S (12′R), 12S
(12′R), and 12R, respectively, by comparisons of their proton
NMR data of H-12 (12′) with literature reports
(Supplementary Table S1).

Fusaridioic acid D (7) was found to possess the molecular
formula C18H30O5 from the HR-ESI-MS data (m/z 325.2023 [M‒
H]‒, calcd for 325.2020 C18H29O5, Supplementary Figure S44),
corresponding to an unsaturation index of four. Detailed analyses
of its 1H and 13C NMR data (Table 1 and Table 2) revealed that 7
is one of the monomers involved in compound 3. That’s to say the
chemical structure of 7 is a dehydroxylation product of
fusaridioic acid A (Liu et al., 2018). This hypothesis was
further proved by key HMBC (Supplementary Figure S41)
correlations from a methyl (δH 1.26) to C-14, C-13, and C-12
in 7 (Figure 2). By referring to the 13C NMR and 1H NMR
chemical shifts of known compounds with similar structural
units, the absolute configuration of C-12 in compound 7 was
determined to be 12S (Supplementary Tables S1) (Ying and
Hong, 2007; Bisek et al., 2008).

Evaluation of Antifungal Activity
The rough antifungal activity of compounds 1–7 were measured
by the filter paper agar diffusion method (Xu et al., 2015).
Compounds 2–7 showed no significant inhibitory activity
against C. albicans, and only compound 1 could inhibit C.
albicans (Supplementary Figure S49). The MIC value (20 μg/
ml) of 1 against C. albicans was then determined by broth
microdilution techniques (Yu et al., 2016), using nystatin
(MIC � 10 μg/ml) as the positive control (Supplementary
Figure S46). As the previous references reported the
antifungal activity of alkenoic acids against plant pathogens
(Liu et al., 2018; Niu et al., 2019; Tang et al., 2019), all the
isolates were also submitted to an antifungal assay against three
agricultural pathogenic fungi, Exserohilum turcicum, Curvularia
lunata, and Fusarium oxysporum. As a result, only compound 1
showed a good inhibitory activity against E. turcicum, with an
IC50 value (21.23 μg/ml) significantly lower than the positive
control, cycloheximide (IC50 � 46.70 μg/ml) (Supplementary
Figures S47,48). Except for hymeglusin (1), none of the
isolated alkenoic acid derivatives could suppress the growth of
tested pathogenic fungi. Therefore, it could be concluded that the
β-lactone ring was a key moiety for the antifungal activity. Just as
the previous reports, the antifungal activity of alkenoic acid
derivatives is always accompanied by the appearance of the
β-lactone ring (Liu et al., 2018; Niu et al., 2019; Tang et al.,
2019). It was reported that the β-lactone ring played a key role in
inhibiting fungal HMG-CoA (3-hydroxy-3-methylglutaryl-CoA)
synthase activity (Greenspan et al., 1993; Tomoda et al., 2004;
Skaff et al., 2012).

CONCLUSIONS

In recent years, 23 alkenoic acid derivatives were reported in total
(Supplementary Figure S51) (Liu et al., 2018; Niu et al., 2019;
Tang et al., 2019). Among them, most of the alkenoic acid
derivatives are acyclic, and seven of them are decorating with
terminal lactone rings, including β-lactone (such as fusarilactone
A, fusarilactone B, hymeglusin, fusarisolin A, and fusariumester
B), c-lactone (such as fusarisolin B), and δ-lactone (such as
fusarilactone C). For these reported alkenoic acids, oxidative
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modifications (carboxylic acids or hydroxyls) often occur at C-1, C-
12, Me-13, and C-14. The stereochemistry of acyclic alkenoic acids
is usually conserved with 7R and 13S, while the stereochemistry of
C-12 with a hydroxy modification is hybrid with R (eg, fusarisolin
D, fusaridioic acid A, and fusariumester A2) or S (eg, fusariumester
A1 and L-660282) configuration. Preliminary biosynthetic study of
1233A (equal to F-244, L-659, 699, or hymeglusin) revealed that
alkenoic acids are built via a type I polyketide synthase (PKS) logic
(Kumagai et al., 1992; Kato et al., 2020). A plausible biosynthetic
pathway of compounds 1–7 was also proposed in our project
(Supplementary Figure S50).

To date, only three examples of dimerized alkenoic acid
compounds (fusariumesters A1, A2, and B) have been reported
(Liu et al., 2018), of which fusariumesters A1 and A2 are
dimerized by an ester bond formed by the hydroxyl group at
C-12 and the carboxyl group at C-14′, and fusariumester B is
dimerized by an ester bond involving the hydroxyl group at C-
12 and the carboxyl group at C-1′. In this paper, we reported
six new mono-/bis-alkenoic acid derivatives (2–7) and one
known alkenoic acid derivative (1) from an endophytic fungi
S. candelabrum. Consistent with previous reports (Greenspan
et al., 1987; Omura et al., 1987; Tomoda et al., 1988), the
antifungal screening found that hymeglusin (1) with a
β-lactone ring exhibited obvious activity against C. albicans
(Tomoda et al., 1988) and E. turcicum. In addition, our
discovery of these four new dimerized alkenoic acids
(fusariumesters C−F, 2–5) expanded the structure diversity
of this family of natural products. These alkenoic acid dimers
may be formed via the esterification of the same or different
monomers with the aid of one or more esterases (Xu et al.,
2020). It is also possible that the dimerization is initiated by
thioesterase catalysis (Du and Lou, 2010).
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