- Instituto de Geociências – Universidade de São Paulo, São Paulo, Brazil
The general formula of the pyrochlore-supergroup minerals is A2B2X6Y. The mineral names are composed of two prefixes and one root name (identical to the name of the group). The first prefix refers to the dominant anion (or cation or H2O or vacancy) of the dominant valence at the Y-site. The second prefix refers to the dominant cation of the dominant valence [or H2O or vacancy] at the A-site. Thirty-one pyrochlore-supergroup mineral species are currently distributed into four groups [pyrochlore (B = Nb, X = O), microlite (B = Ta, X = O), roméite (B = Sb5+, X = O), and elsmoreite (B = W, X = O)] and two unassigned members [hydrokenoralstonite (B = Al, X = F) and fluornatrocoulsellite (B = Mg, X = F)]. However, when the new nomenclature system of this supergroup was introduced (2010) only seven mineral species, namely, oxycalciopyrochlore, hydropyrochlore, hydroxykenomicrolite, oxystannomicrolite, oxystibiomicrolite, hydroxycalcioroméite, and hydrokenoelsmoreite, were valid. The seven species belong to the cubic crystal system and space group Fd
Introduction
The nomenclature system currently valid for the pyrochlore supergroup was introduced by Atencio et al. (2010) to replace the one authored by Hogarth (1977). Subsequently, clarifications (Christy and Atencio, 2013), remarks (Hogarth, 2013), a response to the remarks (Atencio, 2013), and a paper on the incorporation of two minerals already known to the supergroup (Atencio et al., 2017) were published. When the new nomenclature system of this supergroup was introduced (Atencio et al., 2010), only seven mineral species, namely, oxycalciopyrochlore, hydropyrochlore, hydroxykenomicrolite, oxystannomicrolite, oxystibiomicrolite, hydroxycalcioroméite, and hydrokenoelsmoreite, were valid. Between 2010 and 2021, 24 new mineral species were described. The following text describes the nomenclature of pyrochlore-supergroup minerals. The nomenclature system has been updated to include the pyrochlore-supergroup minerals discovered in recent years, whose available information might be difficult for an interested reader to find. The representative minerals from each group are discussed in detail. All known minerals of the supergroup are listed in one place, so this text can be regarded as a kind of a digest of all natural species. There are two aims in compiling this data. The first is to enable a reader to identify both the chemical composition and source of a given mineral and the second is to enable the reader to identify the primary data associated with the mineral.
Crystallography, Chemistry, and the Nomenclature Scheme
The general formula of the pyrochlore-supergroup minerals is A2B2X6Y. In this formula, A typically is a large [8]-coordinated cation with a radius of ∼1.0 Å or a vacancy (□) but can also be H2O. For structural reasons, A can be subdivided into constituents without lone-pair electrons (e.g., Na, Ca), which occupy 16 d in Fd
The mineral names are composed of two prefixes and one root name (identical to the name of the group). The first prefix refers to the dominant anion (or cation or H2O or □) of the dominant valence at the Y-site. The second prefix refers to the dominant cation of the dominant valence [or H2O or □] at the A-site. Where the first and second prefixes are equal, then only one prefix is applied (“hydropyrochlore,” not “hydrohydropyrochlore”). The mineral groups are given in Table 1.
As a mineral group consists of two or more minerals (Mills et al., 2009), ralstonite and coulsellite cannot really be considered, for now, as mineral groups. Hydrokenoralstonite and fluornatrocoulsellite should be designated as unassigned members of the pyrochlore supergroup, because there is no other member to allow a group to be established.
Currently, there is no valid betafite-group mineral.
The seven species valid in 2010 belong to the cubic crystal system and space group Fd
FIGURE 1. Pyrochlore crystal structure drawn using VESTA 3 (Momma and Izumi, 2011).
The Groups and Species
Table 2 shows the species of the pyrochlore supergroup, except hydrokenoralstonite and fluornatrocoulsellite.
TABLE 2. Mineral species of the pyrochlore (P), microlite (M), roméite (R), elsmoreite (E), and betafite (B) groups. Blue: already valid in 2010; red: expected in 2010 and described later; brown: expected in 2010 but not yet described; green: not foreseen in 2010 but described later.
Following that, simplified formulae are given for the pyrochlore species. Note that subordinate components at the A, B, X, or Y sites have no nomenclatural significance and any of these could be replaced by “#”, indicating an unspecified heterovalent species required for charge balance.
Pyrochlore Group
Oxycalciopyrochlore (Atencio et al., 2010), Ca2Nb2O6O, Fd
Hydropyrochlore (Atencio et al., 2010), (H2O, #)2Nb2O6(H2O), Fd
Cesiokenopyrochlore (Agakhanov et al., 2021), (□, #)2Nb2O6Cs, Fd
Fluorcalciopyrochlore (Li et al., 2016), (Ca, #)2Nb2O6F, Fd
Fluornatropyrochlore (Jingwu et al., 2015), (Na, #)2Nb2O6F, Fd
Hydrokenopyrochlore (Biagioni et al., 2018), (□, #)2Nb2O6(H2O), Fd
Hydroxycalciopyrochlore (Yang et al., 2014), (Ca, #)2Nb2O6(OH), Fd
Hydroxynatropyrochlore (Ivanyuk et al., 2019), (Na, #)2Nb2O6(OH), Fd
Hydroxykenopyrochlore (Miyawaki et al., 2017, pending publication), (□, #)2Nb2O6 (OH), Fd
Hydroxymanganopyrochlore (Chukanov et al., 2013), (Mn2+, #)2Nb2O6 (OH), Fd
Hydroxyplumbopyrochlore (Li et al., 2020), (Pb, #)2Nb2O6 (OH), Fd
“Fluorstrontiopyrochlore” (Atencio et al., 2010), (Sr, #)2Nb2O6F, a possible new species, analysis published (Franchini et al., 2005). Occurrence: Jasimampa prospect, Ojo de Agua Department, Santiago del Estero Province, Argentina.
“Fluorkenopyrochlore” (Atencio et al., 2010), (□, #)2Nb2O6F, a possible new species, analyses published (Kartashov et al., 1998; Schmitt et al., 2002). Occurrences: Khaldzan Buragtag massif, Myangad District, Khovd Province, Mongolia; Amis Complex, Brandberg Complex, Brandberg Area, Dâures Constituency, Erongo Region, Greenland.
“Oxynatropyrochlore” (Atencio et al., 2010), (Na, #)2Nb2O6O, a possible new species, analyses published (Hogarth and Horne 1989; Knudsen 1989; Chukanov et al., 1999). Occurrences: Locality 2, Ndale Area, Fort Portal, Kabarole, Western Region, Uganda; Qaqqaarsuk, Maniitsoq, Maniitsoq Island, Qeqqata, Greenland; Mika pegmatite, Rangkul' Highlands, Gorno-Badakhshan, Tajikistan.
“Oxyplumbopyrochlore” (Atencio et al., 2010), Pb2Nb2O6O, a possible new species, analysis published (Voloshin and Pakhomovskiy, 1986). Occurrence: Kola Peninsula, Murmansk Oblast, Russia.
“Oxyyttropyrochlore-(Y)” (Atencio et al., 2010), (Y, #)2Nb2O6O, a possible new species, analysis published (Tindle and Breaks, 1998). Occurrence: Separation Rapids Lithium Project (Separation Lake area), Kenora District, Ontario, Canada.
“Kenoplumbopyrochlore” (Atencio et al., 2010), (Pb, #)2 Nb2O6□, a possible new species, analysis published (Voloshin and Pakhomovskiy, 1986). Occurrence: Ploskaya Mt, Western Keivy Massif, Keivy Mountains, Lovozersky District, Murmansk Oblast, Russia.
Microlite Group
Hydroxykenomicrolite (Atencio et al., 2010), (□, #)2Ta2O6 (OH), Fd
Oxystannomicrolite (Atencio et al., 2010), Sn2Ta2O6O, Fd
Oxystibiomicrolite (Atencio et al., 2010), (Sb3+, #)2Ta2O6O, Fd
Fluorcalciomicrolite (Andrade et al., 2013a), (Ca2+, #)2 Ta2O6F, Fd
Fluornatromicrolite (Witzke et al., 2011), (Na, #)2 Ta2O6F, Fd
Hydrokenomicrolite (Andrade et al., 2013b; Atencio, 2016), (□, #)2Ta2O6 (H2O). Hydrokenomicrolite-3C polytype: Cubic, Fd
Hydroxycalciomicrolite (Andrade et al., 2017), (Ca2+, #)2 Ta2O6(OH), P4232, a 10.4205(8) Å V 1131.53 Å3. The first pyrochlore-supergroup mineral with long range ordering of Ca and □ on the A sites, that invokes reduction of symmetry. IMA number: 2013-073. Type locality: Volta Grande mine (Mibra mine), Nazareno, Minas Gerais, Brazil.
Kenoplumbomicrolite (Atencio et al., 2018), (Pb, #)2 Ta2O6□, P4232, a 10.575 (5) Å V 1182.6 Å3. IMA number: 2015-007-a. Type locality: Ploskaya Mt, Western Keivy Massif, Keivy Mountains, Lovozersky District, Murmansk Oblast, Russia.
Oxynatromicrolite (Fan et al., 2016), (Na, #)2 Ta2O6O, Fd
Oxycalciomicrolite (Menezes da Silva et al., 2020), Ca2Ta2O6O, Fd
Oxybismutomicrolite (Kasatkin et al., 2020), (Bi, #)2 Ta2O6O, Fd
“Hydromicrolite” (Atencio et al., 2010), (H2O, #)2 Nb2O6(H2O), a possible new species, analysis published (Andrade, 2007). Occurrence: Volta Grande mine (Mibra mine), Nazareno, Minas Gerais, Brazil.
Roméite Group
Hydroxycalcioroméite (Atencio et al., 2010), (Ca, #)2Sb5+2O6(OH), Fd
Fluorcalcioroméite (Atencio et al., 2013), (Ca, #)2 Sb5+2O6F, Fd
Hydroxyferroroméite (Mills et al., 2017a), (Fe2+, #)2Sb5+2O6(OH), Fd
Oxycalcioroméite (Biagioni et al., 2013), Ca2Sb5+2O6O, Fd
Oxyplumboroméite (Hålenius and Bosi, 2013), Pb2Sb5+2O6O, Fd
“Fluornatroroméite” (Atencio et al., 2010), (Na, #)2 Sb5+2O6F, a possible new species, crystal structure determined (Matsubara et al., 1996). Occurrence: Gozaisho mine, Iwaki, Japan.
Elsmoreite Group
Hydrokenoelsmoreite (Atencio et al., 2010), □2W2O6 (H2O), first described by Williams et al. (2005) as “elsmoreite”. Hydrokenoelsmoreite-3C polytype: Cubic, Fd
Hydroxykenoelsmoreite (Mills et al., 2017b), (□, #)2 W2O6(OH), Trigonal, R
Unassigned Members
Fluornatrocoulsellite (Atencio et al., 2017), (Na, #)2 Mg2F6F, R
Hydrokenoralstonite (Atencio et al., 2017), □2Al2F6(H2O), Fd
Betafite Group
“Oxycalciobetafite” (Atencio et al., 2010), (Ca,#)2Ti2O6O, a possible new species, analysis published (Meyer and Yang, 1988). Occurrence: Fra Mauro Base (Apollo 14 landing site), Fra Mauro Highlands, The Moon.
“Oxyuranobetafite” (Atencio et al., 2010), (U, #)2 Ti2O6O, a possible new species, analysis published (Mokhov et al., 2008). Occurrence: Luna 24 landing site, Mare Crisium, The Moon.
Data Availability Statement
The original contributions presented in the study are included in the article/supplementary material; further inquiries can be directed to the corresponding author.
Author Contributions
The author confirms being the sole contributor of this work and has approved it for publication.
Conflict of Interest
The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s Note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Acknowledgments
The author acknowledges FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for financial support (process 2019/23498-0) and CNPq for research productivity scholarship (process 303431/2019-9).
References
Agakhanov, A. A., Kasatkin, A. V., Britvin, S. N., Siidra, O. I., Pautov, L. A., Pekov, I. V., et al. (2021). Cesiokenopyrochlore, the First Natural Niobate with an Inverse Pyrochlore Structure. Can. Mineral. 59, 149–157. doi:10.3749/canmin.2000056
Andrade, M. B., Atencio, D., Chukanov, N. V., and Ellena, J. (2013b). Hydrokenomicrolite, (☐,H2O)2Ta2(O,OH)6(H2O), a New Microlite-Group mineral from Volta Grande Pegmatite, Nazareno, Minas Gerais, Brazil. Am. Mineral. 98, 292–296. doi:10.2138/am.2013.4186
Andrade, M. B., Atencio, D., Persiano, A. I. C., and Ellena, J. (2013a). Fluorcalciomicrolite, (Ca,Na,☐)2Ta2O6F, a New Microlite-Group mineral from Volta Grande Pegmatite, Nazareno, Minas Gerais, Brazil. Mineral. Mag. 77 (7), 2989–2996. doi:10.1180/minmag.2013.077.7.08
Andrade, M. B. (2007). “Estudo cristaloquímico de minerais do grupo do pirocloro no Brasil,”. Tese de Doutorado (São Paulo: Instituto de Geociências), 207. doi:10.11606/T.44.2007.tde-30072007-165039
Andrade, M. B., Yang, H., Atencio, D., Downs, R. T., Chukanov, N. V., Lemée-Cailleau, M. H., et al. (2017). Hydroxycalciomicrolite, Ca1.5Ta2O6(OH), a New Member of the Microlite Group from Volta Grande Pegmatite, Nazareno, Minas Gerais, Brazil. Mineral. Mag. 81, 555–564. doi:10.1180/minmag.2016.080.116
Atencio, D., Andrade, M. B., Bastos Neto, A. C., and Pereira, V. P. (2017). Ralstonite Renamed Hydrokenoralstonite, Coulsellite Renamed Fluornatrocoulsellite, and Their Incorporation into the Pyrochlore Supergroup. Can. Mineral. 55 (1), 115–120. doi:10.3749/canmin.1600056
Atencio, D., Andrade, M. B., Bindi, L., Bonazzi, P., Zoppi, M., Stanley, C. J., et al. (2018). Kenoplumbomicrolite, (Pb,□)2Ta2O6[□,(OH),O], a New mineral from Ploskaya, Kola Peninsula, Russia. Mineral. Mag. 82, 1049–1055. doi:10.1180/minmag.2017.081.082
Atencio, D., Andrade, M. B., Christy, A. G., Gieré, R., and Kartashov, P. M. (2010). The Pyrochlore Supergroup of Minerals: Nomenclature. Can. Mineral. 48, 673–698. doi:10.3749/canmin.48.3.673
Atencio, D., Ciriotti, M. E., and Andrade, M. B. (2013). Fluorcalcioroméite, (Ca,Na)2Sb25+(O,OH)6F, a New Roméite-Group mineral from Starlera Mine, Ferrera, Grischun, Switzerland: Description and crystal Structure. Mineral. Mag. 77, 467–473. doi:10.1180/minmag.2013.077.4.06
Atencio, D. (2016). Parabariomicrolite Discredited as Identical to hydrokenomicrolite-3R. Mineral. Mag. 80, 923–924. doi:10.1180/minmag.2016.080.129
Atencio, D. (2013). The Pyrochlore Supergroup: Remarks on Nomenclature - Response. Can. Mineral. 51 (5), 803–804. doi:10.3749/canmin.51.5.803
Biagioni, C., Meisser, N., Nestola, F., Pasero, M., Robyr, M., Roth, P., et al. (2018). Hydrokenopyrochlore, (□,#)2Nb2O6·H2O, a New Species of the Pyrochlore Supergroup from the Sahatany Pegmatite Field, Antananarivo Province, Madagascar. ejm 30, 869–876. doi:10.1127/ejm/2018/0030-2761
Biagioni, C., Orlandi, P., Nestola, F., and Bianchin, S. (2013). Oxycalcioroméite, Ca2Sb2O6O, from Buca Della Vena Mine, Apuan Alps, Tuscany, Italy: a New Member of the Pyrochlore Supergroup. Mineral. Mag. 77, 3027–3037. doi:10.1180/minmag.2013.077.7.12
Birch, W. D., Grey, I. E., Mumme, W. G., and Pring, A. (2009). Coulsellite, a New mineral from the Cleveland Mine, Luina, Tasmania. Aust. J. Mineralogy 15, 21–24.
Brush, G. J. (1871). On Ralstonite, a New Fluoride from Arksut Fiord [Greenland]. Am. J. Sci. s3-2, 30–31. doi:10.2475/ajs.s3-2.7.30
Černý, P., Hawthorne, F. C., Laflamme, J. H. G., and Hinthorne, J. R. (1979). Stibiobetafite, a New Member of the Pyrochlore Group from Vežná, Czechoslovakia. Can. Mineral. 17, 583–588.
Christy, A. G., and Atencio, D. (2013). Clarification of Status of Species in the Pyrochlore Supergroup. Mineral. Mag. 77 (1), 13–20. doi:10.1180/minmag.2013.077.1.02
Chukanov, N. V., Blass, G., Zubkova, N. V., Pekov, I. V., Pushcharovskii, D. Y., and Prinz, H. (2013). Hydroxymanganopyrochlore: A New mineral from the Eifel Volcanic Region, Germany. Dokl. Earth Sc. 449 (1), 342–345. doi:10.1134/s1028334x13030100
Chukanov, N. V., Skrigitil, A. M., Kuzmina, O. V., and Zadov, A. E. (1999). Bismutopyrochlore (Bi, U, Ca, Pb)1+x(Nb,Ta)2O6(OH)·nH2O − a New mineral from the Mika Pegmatite Vein (Eastern Pamirs). Zapiski Vsesoyuznoye Mineralogichestogo Obshchestvo 128 (4), 36–41.
Ercit, T. S., Hawthorne, F. C., and Černy, P. (1986). Parabariomicrolite, a New Species and its Structural Relationship to the Pyrochlore Group. Can. Mineral. 24, 655–663.
Fan, G., Ge, X., Li, G., Yu, A., and Shen, G. (2016). Oxynatromicrolite, (Na,Ca,U)2Ta2O6(O,F), a New Member of the Pyrochlore Supergroup from Guanpo, Henan Province, China. Mineralogical Mag. 81 (4), 743–751.
Franchini, M., Lira, R., Meinert, L., Ríos, F. J., Poklepovic, M. F., Impiccini, A., et al. (2005). Na-Fe-Ca Alteration and LREE (Th-Nb) Mineralization in marble and granitoids of Sierra de Sumampa, Santiago del Estero, Argentina. Econ. Geology 100, 733–764. doi:10.2113/100.4.733
Goreaud, M., and Raveau, B. (1980). Alunite and Crandallite: a Structure Derived from that of Pyrochlore. Am. Mineral. 65, 953–956.
Grey, I. E., Birch, W. D., Bougerol, C., and Mills, S. J. (2006). Unit-cell Intergrowth of Pyrochlore and Hexagonal Tungsten Bronze Structures in Secondary Tungsten Minerals. J. Solid State. Chem. 179, 3860–3869. doi:10.1016/j.jssc.2006.08.030
Groat, L. A., ČErný, P., and Ercit, T. S. (1987). Reinstatement of Stibiomicrolite as a Valid Species. Geologiska Föreningen i Stockholm Förhandlingar 109, 105–109. doi:10.1080/11035898709453757
Hålenius, U., and Bosi, F. (2013). Oxyplumboroméite, Pb2Sb2O7, a New mineral Species of the Pyrochlore Supergroup from Harstigen Mine, Värmland, Sweden. Mineral. Mag. 77, 2931–2939. doi:10.1180/minmag.2013.077.7.04
Hogarth, D. D. (1977). Classification and Nomenclature of the Pyrochlore Group. Am. Mineral. 62, 403–410.
Hogarth, D. D., and Horne, J. E. T. (1989). Non-metamict Uranoan Pyrochlore and Uranpyrochlore from Tuff Near Ndale, Fort Portal Area, Uganda. Mineral. Mag. 53, 257–262. doi:10.1180/minmag.1989.053.370.14
Hogarth, D. D. (2013). The Pyrochlore Group: Remarks on Nomenclature. Can. Mineral. 51 (5), 801. doi:10.3749/canmin.51.5.801
Hussak, E., and Prior, G. T. (1895). Lewisite and Zirkelite, Two New Brazilian Minerals. Mineral. Mag. J. Mineral. Soc. 11, 80–88. doi:10.1180/minmag.1895.011.50.05
Ivanyuk, G. Y., Yakovenchuk, V. N., Panikorovskii, T. L., Konoplyova, N., Pakhomovsky, Y. A., Bazai, A. V., et al. (2019). Hydroxynatropyrochlore, (Na,Сa,Ce)2Nb2O6(OH), a New Member of the Pyrochlore Group from the Kovdor Phoscorite-Carbonatite Pipe, Kola Peninsula, Russia. MinMag. 83 (1), 107–113. doi:10.1180/minmag.2017.081.102
Jingwu, Y., Li, G., Guangming, Y., Ge, X., Xu, H., and Wang, J. (2015). Fluornatropyrochlore, a New Pyrochlore Supergroup mineral from the Boziguoer Rare Earth Element deposit, Baicheng County, Akesu, Xinjiang, China. Can. Mineral. 53, 455–460.
Kartashov, P. M., Mokhov, A. V., and Kovalenko, V. I. (1998). Rare Earth Sr-Pyrochlore from Western Mongolia: The First Find in Association with Alkalic Granites. Doklady Earth Sci. 359, 510–513.
Kasatkin, A. V., Britvin, S. N., Peretyazhko, I. S., Chukanov, N. V., Škoda, R., and Agakhanov, A. A. (2020). Oxybismutomicrolite, a New Pyrochlore-Supergroup mineral from the Malkhan Pegmatite Field, Central Transbaikalia, Russia. MinMag. 84, 444–454. doi:10.1180/mgm.2020.25
Knudsen, C. (1989). “Pyrochlore Group Minerals from the Qaqarssuk Carbonatite Complex,” in Lanthanides, Tantalum and Niobium. Editors P. Möller, P. Černý, and F. Saupe (Berlin: Springer-Verlag). doi:10.1007/978-3-642-87262-4_3
Li, G., Yang, G., Lu, F., Xiong, M., Ge, X., Pan, B., et al. (2016). Fluorcalciopyrochlore, a New mineral Species from Bayan Obo, Inner Mongolia, P.R. China. Can. Mineral. 54, 1285–1291.
Li, T., Li, Z., Fan, G., Fan, H., Zhong, J., Jahdali, N. S., et al. (2020). Hydroxyplumbopyrochlore, (Pb1.5,□0.5)Nb2O6(OH), a New Member of the Pyrochlore Group from Jabal Sayid, Saudi Arabia. MinMag. 84 (5), 785–790. doi:10.1180/mgm.2020.69
Matsubara, S., Kato, A., Shimizu, M., Sekiuchi, K., and Suzuki, Y. (1996). Romeite from the Gozaisho Mine, Iwaki, Japan. Mineralogical J. 18 (4), 155–160. doi:10.2465/minerj.18.155
Menezes da Silva, V. H. R., Ávila, C. A., Neumann, R., Faulstich, F. R. L., Alves, F. E. A., Almeida, F. B., Cidade, T. P., and Sousa, S. S. C. G. (2020). Oxycalciomicrolite, (Ca,Na)2(Ta,Nb,Ti)2O6(O,F), a new member of the microlite group (pyrochlore supergroup) from the Paleoproterozoic São João del Rei Pegmatite Province, Minas Gerais state, Brazil. MinMag. 84, 854–858. doi:10.1180/mgm.2020.74
Meyer, C., and Yang, S. V. (1988). Tungsten-bearing Yttrobetafite in Lunar Granophyre. Am. Mineral. 73, 1420–1425.
Mills, S. J., Christy, A. G., Kampf, A. R., Birch, W. D., and Kasatkin, A. (2017b). Hydroxykenoelsmoreite, the First New mineral from the Republic of Burundi. ejm 29, 491–497. doi:10.1127/ejm/2017/0029-2618
Mills, S. J., Christy, A. G., Rumsey, M. S., Spratt, J., Bittarello, E., Favreau, G., et al. (2017a). Hydroxyferroroméite, a New Secondary Weathering mineral from Oms, France. ejm 29, 307–314. doi:10.1127/ejm/2017/0029-2594
Mills, S. J., Christy, A. G., Rumsey, M. S., and Spratt, J. (2016). The crystal Chemistry of Elsmoreite from the Hemerdon (Drakelands) Mine, UK: hydrokenoelsmoreite-3C and hydrokenoelsmoreite-6R. Mineral. Mag. 80, 1195–1203. doi:10.1180/minmag.2016.080.058
Mills, S. J., Hatert, F., Nickel, E. H., and Ferraris, G. (2009). The Standardisation of mineral Group Hierarchies: Application to Recent Nomenclature Proposals. ejm 21, 1073–1080. doi:10.1127/0935-1221/2009/0021-1994
Miyawaki, R., Momma, K., Matsubara, S., Sano, T., Shigeoka, M., and Horiuchi, H. (2017). Hydroxykenopyrochlore, IMA 2017-030a, CNMNC Newsletter No. 39. Mineralogical Mag. 81, 1279–1286. October 2017, page 1285.
Mokhov, A. V., Kartashov, P. M., Bogatikov, O. A., Ashikhmina, N. A., Magazina, L. O., and Koporulina, E. V. (2008). Fluorite, Hatchettolite, Calcium Sulfate, and bastnasite-(Ce) in the Lunar Regolith from Mare Crisium. Dokl. Earth Sc. 422 (1), 1178–1180. doi:10.1134/s1028334x08070416
Momma, K., and Izumi, F. (2011). VESTA 3for Three-Dimensional Visualization of crystal, Volumetric and Morphology Data. J. Appl. Cryst. 44, 1272–1276. doi:10.1107/s0021889811038970
Rouse, R. C., Dunn, P. J., Peacor, D. R., and Wang, L. (1998). Structural Studies of the Natural Antimonian Pyrochlores. J. Solid State. Chem. 141, 562–569. doi:10.1006/jssc.1998.8019
Schmitt, A. K., Trumbull, R. B., Dulski, P., and Emmermann, R. (2002). Zr-Nb-REE Mineralization in Peralkaline Granites from the Amis Complex, Brandberg (Namibia): Evidence for Magmatic Pre-enrichment from Melt Inclusions. Econ. Geology 97, 399–413. doi:10.2113/gsecongeo.97.2.399
Subramanian, M. A., Aravamudan, G., and Subba Rao, G. V. (1983). Oxide Pyrochlores - A Review. Prog. Solid State. Chem. 15, 55–143. doi:10.1016/0079-6786(83)90001-8
Tindle, A. G., and Breaks, F. W. (1998). Oxide Minerals of the Separation Rapids Rare-Element Granitic Pegmatite Group, Northwestern Ontario. Can. Mineral. 36, 609–635. doi:10.1119/1.879923
van Wambeke, L. (1978). Kalipyrochlore, a New mineral of the Pyrochlore Group. Am. Mineral. 63, 528–530.
Voloshin, A. V., Men'shikov, Yu. P., Pakhomovskiy, Ya. A., and Polezhaeva, L. I. (1981). Cesstibtantite, (Cs,Na)SbTa4O12 − a New mineral from Granitic Pegmatites. Zapiski Vsesoyuznoye Mineralogichestogo Obshchestvo 116, 345–351.
Voloshin, A. V., and Pakhomovskiy, Ya. A. (1986). Minerals and mineral Formation Evolution in Amazonite Pegmatites of Kola peninsula. Leningrad: Nauka, 168.
Vorma, A., and Siivola, J. (1967). Sukulaite − Ta2Sn2O7 − and Wodginite as Inclusions in Cassiterite in the Granite Pegmatite in Sukula, Tammela, in SW Finland. Bull. de la Comm. géologique de Finlande 229, 173–187.
Williams, P. A., Leverett, P., Sharpe, J. L., Colchester, D. M., and Rankin, J. (2005). Elsmoreite, Cubic WO3·0.5H2O, a New mineral Species from Elsmore, New South Wales, Australia. Can. Mineral. 43, 1061–1064. doi:10.2113/gscanmin.43.3.1061
Witzke, T., Steins, M., Doering, T., Schuckmann, W., Wegner, R., and Pöllmann, H. (2011). Fluornatromicrolite, (Na, Ca, Bi)2Ta2O6F, A New Mineral Species from Quixaba, Paraiba, Brazil. Can. Mineral. 49, 1105–1110. doi:10.3749/canmin.49.4.1105
Keywords: pyrochlore supergroup, nomenclature, pyrochlore group, microlite group, elsmoreite group, roméite group
Citation: Atencio D (2021) Pyrochlore-Supergroup Minerals Nomenclature: An Update. Front. Chem. 9:713368. doi: 10.3389/fchem.2021.713368
Received: 22 May 2021; Accepted: 06 August 2021;
Published: 06 September 2021.
Edited by:
Sarah C. Finkeldei, University of California, Irvine, United StatesCopyright © 2021 Atencio. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Daniel Atencio, ZGF0ZW5jaW9AdXNwLmJy