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Tumor cells circulating in the peripheral blood are the prime cause of cancer metastasis
and death, thus the identification and discrimination of these rare cells are crucial in the
diagnostic of cancer. As a label-free detection method without invasion, Raman
spectroscopy has already been indicated as a promising method for cell identification.
This study uses a confocal Raman spectrometer with 532 nm laser excitation to obtain the
Raman spectrum of living cells from the kidney, liver, lung, skin, and breast. Multivariate
statistical methods are applied to classify the Raman spectra of these cells. The results
validate that these cells can be distinguished from each other. Among the models built to
predict unknown cell types, the quadratic discriminant analysis model had the highest
accuracy. The demonstrated analysis model, based on the Raman spectrum of cells, is
propitious and has great potential in the field of biomedical for classifying circulating tumor
cells in the future.
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INTRODUCTION

Over the past few years, there has been a gradual increase in the number of cancer deaths (Jemal et al.,
2010; Ferlay et al., 2015). It be known that human organs can produce cancer cells at any stage. In
fewer cases, cancer cells may develop into tumors when they accumulate to a certain extent.
Circulating tumor cells (CTCs) shed from the primary tumor and spread to the peripheral blood or
lymph. These CTCs are the major cause of cancer metastases and death (Fidler, 1995; Mocellin et al.,
2006). Thus, it is essential to distinguish these tumor cells. Nowadays, immunocytological is still the
golden standard and specific biomarkers remain the main screening method for tumor cell
examination (Oosterwijk-Wakka et al., 2013; Alix-Panabières and Pantel, 2014; Bhana et al.,
2015). However, some cancer cells may exhibit inadequate or vague expression of bio-markers
probably by completing the epithelial-mesenchymal transition (Choueiri et al., 2013; Zerati et al.,
2013; Alix-Panabières and Pantel, 2014). Besides, the use of fluorescent probes often has the
disadvantage of spectral overlap and the binding of fluorescent molecules is based on the specific
binding of antigen and antibody, which may change the structure of the cell molecules. It is not
conducive to the follow-up of other detection experiments (Chan et al., 2008; Jones et al., 2015).
Therefore, a highly sensitive, label-free, cost-efficient CTCs detection method that can accurately
identify cancer cells is a pressing need.

Raman spectroscopy is a rapid and non-destructive technique for studying a biological system
based on detecting molecular vibration and rotation (Krafft, 2012; Krafft et al., 2016; Popp et al.,
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2016;Wang et al., 2020). Numerous biochemical components can
be identified by Raman spectra, for instance, genetic material,
protein, and lipid, all have their unique peaks in the Raman
spectrum (Stone et al., 2004; Brauchle et al., 2014; Fang et al.,
2019). As a well-known fact, mutations in cancer cells are
always accompanied by wireless proliferation, which leads to a
huge increase of genes in the nucleus. Some cancer cells also
suffer protein changes on the cell membrane or accumulate
large amounts of lipids in the cytoplasm (Abramczyk et al.,
2009; Yue et al., 2014; Surmacki et al., 2015). At present, there
have been many studies reporting the use of Raman
microspectroscopy combined with multivariate statistical
analysis methods to distinguish and classify cell types (Kong
et al., 2015). Machine learning-based analysis methods such as
support vector machine (SVM), principal component analysis
(PCA), linear discriminant analysis (LDA), and quadratic
discriminant analysis (QDA) were introduced in
combination with Raman spectroscopy which has
successfully attained the identification of many cells and
tissues in the declining years (Dixon and Brereton, 2009;
Neugebauer et al., 2010; Pudlas et al., 2011; Zhang et al.,
2016; Siqueira et al., 2017). However, these research only
compare tumor cells with normal cells produced by the
same organ, the differences between tumor cells from
different organs are not clear (Crow et al., 2005; Krishna
et al., 2005; Chan et al., 2008; Pijanka et al., 2013). We
expect to get a broader spectrum of cancer cells in order to
recognize CTCs at an early stage, which will help to identify the
diseased organs in advance, allowing cancer patients to avoid
mortality outcomes. The accuracy and classification
characteristics using the statistical analysis methods for cell
samples also need to be verified by comparison.

In this article, we chose the cell samples from kidney, lung,
liver, breast, and skin as the research object, and explore the
process of living cell detection by confocal Raman spectroscopy.
With the combination of multivariate statistical methods, Raman
spectra of various types of cells are classified based on three
models i.e. SVM, LDA, and QDA, the accuracy of classifying the
accurate cell types is above 95%. In order to verify the feasibility of
the model, the results validate that high sensitivity is realized to
predict the unknown cell types. Furthermore, the comparison of
the pros and cons of the three models is also discussed. The
flexible combination of Raman spectroscopy and various
modeling methods can immediately identify a variety of cells
at a high accuracy which will provide potential applications in
CTCs detection.

METHODS AND EXPERIMENTS

Cell Culture and Sample Preparation
Cells in this study are obtained from the American Type
Culture Collection (ATCC), which is listed in Table 1. All
the cells were grown in Dulbecco’s Modified Eagle’s Medium
(DMEM) with 10% fetal bovine serum (FBS) and antibiotics
(penicillin and streptomycin) at 37°C in a humidified
atmosphere of 5% CO2. Cells in the logarithmic phase were
taken to harvest with Trypsin-EDTA and suspended in
phosphate-buffered saline (PBS 1×) before Raman
measurement. All cells were collected under the same
condition. About 2 ml of the cell suspension was added into
a culture dish with a quartz glass bottom. Approximately
three-quarters of the cells were used as training and
validation, while another quarter was for the prediction set.

Raman Spectroscopy Measurement
Raman spectra of living cells were obtained from a laser confocal
Raman spectrometer (RAMANtouch, Japan) with 532 nm laser
excitation. Before the Raman test, a CCD detector must be cooled
to −70°C, and the system was calibrated by using silicon with its
peak at 520.5 cm−1. The laser was focused by a ×60 water
immersion objective lens (NA � 1.0, Nikon, Japan) onto the
sample. To ensure an appropriate signal-to-noise ratio without
damaging the samples, the laser power was controlled at about
10 mW. Single point measurement mode was used and the laser
spot size on the sample was about 0.65 µm. The exposure time for
each cell was kept at 8 s for each time and tested three times.
Subsequently, the spectrometer automatically took the averaged
spectra. The test range was in the Raman low wavenumber region
and a minimum of 35 spectra were obtained from each kind of
cell. Regions of each cell’s nucleus were preferentially sampled.
The measurements of all cells were worked out under the same
conditions.

Data Processing and Analysis
Raman spectral data were pre-processed using WiRE 4.2
(Renishaw, United Kingdom), with baseline corrected and
smoothed, and cosmic rays were removed if existing. Before
analysis, the Raman shift in each spectrum was cut into the
‘fingerprint’ region from 600 to 1800 cm−1, which removed the
Raman peak of the quartz glass substrate. The Raman intensity
was normalized and unified as the relative intensity of arbitrary
unit (a.u.) using OriginPro 9.1. (OriginLab Corp., Northampton,
MA, United States) (Zhao et al., 2007; Zhang et al., 2010a; Zhang

TABLE 1 | Names of cell lines and cell numbers.

Cell lines Cell names Total number Calibration Prediction

786-O Human clear cell renal cancer cells 52 40 12
HKC Human kidney tubular epithelial cells 52 40 12
HepG-2 Human hepatoblastoma cells 38 29 9
A549 Human non-small cell lung cancer cells 57 45 12
A375 Human malignant melanoma cells 56 44 12
4T1 Mouse breast cancer cells 50 38 12
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et al., 2010b). All spectral data were corrected for baseline
translation and shift phenomena using the EMSC (extended
multiplicative signal correction) algorithm, assuming the

average of all spectral data as the ideal spectrum(Popp et al.,
2018). Multivariate statistical analysis methods i.e. SVM, PCA,
LDA, QDA were carried out with MATLAB R2016b

FIGURE 1 | (A) Bright field image of 786-O cells and (B) Raman spectrum of background and cell.

FIGURE 2 | The average Raman spectra of 6 kinds of cells with error bars.
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(MathWorks, Inc., United States) and The Unscramble@10.4
(CAMO, Oslo, Norway).

RESULTS AND DISCUSSION

To determine whether the spectral data obtained from the
measurement were Raman signals of cells, we checked the
signals around the cells, the laser point was slightly above the
bottom to focus on the cells. Figure 1A shows the bright field
image of a typical 786-O cell and the blank background near the
cells, while Figure 1B shows the Raman spectra of the two
corresponding points. Unlike the cell curve, deprived of a
large number of sharp Raman peaks, the background curve is
relatively smoother. The only background peak displayed in the
spectrum was at about 1554 cm−1. It demonstrates that the
Raman signal in quartz glass background exhibited extremely
low interference which is consistent with the description in the
previous report (Palonpon et al., 2013).

Figure 2manifests the average Raman spectrum curves of six
types of cells. The shadow area is the error bars which represent
the standard deviation of the mean value. The main common
Raman peaks at 642, 831, 851, 1171, 1208, 1604, 1620 cm−1

(tyrosine), 1003 cm−1 (phenylalanine), 1246 cm−1 (Amide III),
1337 cm−1 (tryptophan), 1655 cm−1 (Amide I) are assigned to
proteins. Strong and wide peaks are corresponding with lipid at
1124 cm−1 (C–C stretching mode), 1252 cm−1 (�CH in-plane
bending), and 1445 cm−1 (CH2 deformation). Other bands at
around 747 cm−1 (thymine), 1176 cm−1 (cytosine, guanine),
1311 cm−1 (adenine), 1581 cm−1 (pyrimidine ring of nucleic
acids) are assigned to DNA and RNA. Details of Raman
peaks assignment to cell spectrum are presented in Table 2
(Stone et al., 2004; Notingher and Hench, 2006; Wood et al.,
2007; Surmacki et al., 2015). Various cells have quite
comparable Raman spectra due to the similar biochemical

components (as shown in Figure 2). But there are also a few
Raman peaks that are different, such as distinct peaks at 831 and
850 cm−1, which represent tyrosine residue conformations
(Zhuang et al., 2013). These spectral peaks distinguished by
the human eye may not be sufficient to accurately identify
different cells. Herein, we used a multivariate statistical
analysis algorithm (SVM, PCA, LDA) to process the data set
and analyze the subtle differences of the Raman spectrum
among different cells.

SVM is a supervised learning method for the binary
classification of data. It finds the maximum geometric margin
hyperplane between two kinds of learning data sets and using the
optimal hyperplane to distinct the two data sets into two sides to
complete the classification (Dixon and Brereton, 2009; Zhang
et al., 2016). In this paper, we use an SVM with a linear kernel
function to realize the discriminative classification of prediction
samples. To prevent overfitting, while ensuring the classification
accuracy, the penalty factor C selection was set to 1. Each
spectrum was cross-validated with 10 segments. Initially, we
performed a feasibility validation using cancer and normal
cells derived from the same organ which had an apparent
difference of biochemical components. 40 cancer cells (786-O)
and 40 normal cells (HKC) were used to construct the SVM
model. Meanwhile, to verify the accuracy of the SVM model for
predicting unknown cells, a set containing 24 new cells (12 786-O,
12 HKC) was used. The prediction accuracy was 100% so that the
cancer cells and normal cells could be distinguished from each
other. The details of predicting results are shown in Table 3.
Using the same SVM method could additionally construct a
classification model among five different cancer cells. 196
cancer cells are used to form a training set (including 40 786-
O, 29 HepG-2, 45 A549, 44 A375, 38 4T1) to construct the model.
Table 4 shows the details in a confusion matrix of the SVM
classificationmodel and the validation accuracy in the training set
was 100%. However, the predictive performance needs to be
tested. The prediction rate of these SVM models is verified by a
prediction set of 57 new ‘unknown’ cells (actually already known

TABLE 2 | The representative peak assignments in cell Raman spectra (Stone
et al., 2004; Notingher and Hench, 2006; Wood et al., 2007; Surmacki et al.,
2015).

Raman shift
(cm−1)

DNA Protein Lipid

642 Tyrosine (C–C)
747 Thymine
831/851 Tyrosine
1003 Phenylalanine
1124 C–C stretching mode
1176 Cytosine,

guanine
Tyrosine

1208 Tyrosine
1252 Amide III �CH in-plane

bending
1311 Adenine
1337 Adenine, guanine Tryptophan
1445 CH2 deformation
1581 Pyrimidine ring
1604 Tyrosine
1620 Tyrosine
1655 Amide I

TABLE 3 | Prediction result of cancer cells/normal cells with SVM classification.

Actual set

Prediction set 786-O HKC
786-O 12 0
HKC 0 12

TABLE 4 | Confusion matrix of five cancer cell lines using the SVM
classification model.

Actual sets

A549 A375 HepG-2 4T1 786-O

Prediction set A549 45 0 0 0 0
A375 0 44 0 0 0

HepG-2 0 0 29 0 0
4T1 0 0 0 38 0

786-O 0 0 0 0 40
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but not included in the training set, including 12 786-O, 9 HepG-
2, 12 A549, 12 A375, 12 4T1). The result is shown in Figure 3A
and the prediction of accuracy is 98.25%.

Although SVM had successfully established the classification
among different cancer cells, it has the drawbacks of a complex
and time-consuming model. SVM is a binary classifier, seeking
the optimal hyperplane between the two data sets. While dealing
with the problem of multi-sample classification, SVM models
should be constructed between every two samples. As for N
different types of cells, at least N × (N-1)/2 decision values
should be considered. While dealing with two distinct cell types
(cancer cell 786-O and normal cells HKC, theN is not too large),
the training speed is relatively swift. However, to deal with the
classification of multiple cancer cells, the number of binary
classifiers increases as a quadratic function concerning N, which
significantly increases the amount of training operation and
reduces the training speed (Dixon and Brereton, 2009).
Therefore, we employ an LDA method to predict and classify
various cancer cells. LDA is a classical linear supervised learning
method to reduce the dimension and classify, which has been
reported in classification of cancer Raman spectra(Dochow
et al., 2011; Pijanka et al., 2013). Given a labeled set of
training samples, LDA tries to project the samples into low-
dimensional space, so that the projection points of the same
samples are as close as possible and the projection points of the
heterogeneous samples are as far as possible. After projection,
the different types of the sample will be distributed in different
regions of the lower dimensional space, and the prediction sets
will also be projected in the space according to the previously
calculated dimensionality reduction rules. Afterward, the
category of the new sample is determined based on the
location of the projection point (Dixon and Brereton, 2009;
Siqueira et al., 2017).

Before constructing the LDA and QDA classification model
the Raman spectral data needs further process due to a large
number of variables arrays. PCA is introduced to eliminate any
overlapped information in the spectrum through a multivariate
linear transformation which extracts the eigenvalues of the data
matrix and then reconstructs a basic eigenvector to form a new
data set (Dixon and Brereton, 2009). Through the
transformation, PCA could also classify some simple data sets.
However, in this study, PCA is not implemented with the SVM
model. Various studies have directly used the SVM method to

analyze the Raman spectrum. We suppose that this is because the
SVM method can better solve the problem of classification of
high-dimensional data and there is no need of reducing the
dimension of the data in advance. According to the validation
on our spectrum dataset, the accuracy of PCA + SVM trained and
predicted is indeed lower than the method that uses SVM directly.
In this contribution, Raman shift in the spectrum was including
683 variables evenly distributed over the region of
600–1800 cm−1. The 197 cancer cell spectrum, previously used
to build SVM models, is still used as the verification set here.
Figure 4 shows the result of three dimensions of the first principal
component (PC1, PC2, and PC3). The five groups of cells were
spatially clustered but could not be well separated. This shows
that the classification effect of PCA is not ideal when dealing with
high-dimensional data with complex and fuzzy noise
distribution. The comprehensive contribution rate of three
PCs was 55.25%, which represented the main variances. Due
to the more PC numbers retains more original Raman spectrum
information (Tang et al., 2017), to improve the accuracy of
subsequent predictions, we increased the number to the first
20 PCs, which described 85% of variables. Subsequently, the LDA

FIGURE 3 | Prediction result of 5 kinds of cancer cell lines using the (A) SVM, (B) LDA and (C) QDA model.

FIGURE 4 | The top three PCs’ score plot of different cancer cells.
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model was constructed with these PCs. The prior probabilities
were calculated from the training set. Cell spectral data was
classified in fivefold dimensional space. Figure 5 selects the
projection of two dimensions to plot, which represents the
division of A375 (red) and A549 (blue). Under the
combination of any two different dimensions, the
discrimination of the two types of cells can be found. The
prediction result is indicated in Figure 3B with an accuracy of
94.73%, which is a little lower than the SVM model.

We perceived that some cell spectra were misclassified into the
wrong category. It is due to the limitation of LDA which is
linearly partitioned, while the boundary of the cell Raman
spectrum is irregular. QDA is based on LDA which uses
quadratic information and far higher complexity hypersurface
to enhance the accuracy of classification (Dixon and Brereton,
2009; Tang et al., 2017). Figure 6 shows a QDA analysis model
using two of the five dimensions. Utilizing the verification set
previously constructed, the 57 unknown cell spectrum were also

used for QDA. Figure 3C presents the prediction detail. Each cell
spectra had precisely predicted with a 100% prediction accuracy.
Finally, we compared the efficiency of building these models. The
computation time to construct the SVMmodel costs 0.47 s, while
the LDA and QDA method was 0.014 and 0.018 s. SVM costs the
longest time, which is consistent with the previous theory.
Constructing the QDA model is slightly slower than LDA, but
both are in the same order of magnitude. Consequently, the QDA
model had the elite classification and prediction ability with
relatively good efficiency.

In practical applications (such as CTC detection), besides the
tumor cells, another cellular material is contained in the
peripheral blood. Mainly including leukocytes, red blood cells
et al. Since the supervised learning model is used, we need to
know the extent possible about the cell types that may be
contained in the samples. Relative to the multivariate cancer
cells, these haemocytes have a greater difference in size,
morphology, components, and are easier to distinguish. By the

FIGURE 5 | LDA classification model classifying spectrum of cancer cell lines. Two of five dimensions are plotted.

FIGURE 6 | QDA classification model classifying spectrum of cancer cell lines. Two of five dimensions are plotted.
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existing devices, such as magnetic bead sorting or optical
tweezers, the tumor cells can be preliminarily distinguished
from these common haemocytes cells (Dochow et al., 2011;
Rao et al., 2018; Chang et al., 2020). To avoid haemocytes,
that are not completely excluded in the actual detection
affecting the discrimination accuracy, the Raman spectrum of
haemocytes could also be added to the training database. Some of
the previous studies, for example, Zhang et al. successfully
distinguished cancer cells from leukocytes using Raman
spectroscopy(Zhang et al., 2016). For clinical applications, the
analytical throughput of cells is also an important indicator. The
time spent for each cell is 24 s. Considering a little more
consumption of time by the spectrometer to automatically
adjust the laser spot to switch to the other cells, the Raman
test throughput was <150 cells/h. Usually, there are several CTCs
out of 103–107 nucleated cells in a patient’s blood sample
(Pachmann et al., 2005). To meet the need for clinical
application in the future, we can pre-dispose of tumor cells by
magnetic bead enrichment before Raman spectroscopy
measurement, with the number of tumor cells enriched being
much smaller than this test throughput. Therefore, it is acceptable
to measurement within an hour, which holds a great prospect for
rapid detection in the future.

CONCLUSION

In this study, Raman spectra of six different cells were obtained
from confocal Raman spectroscopy. Different cell lines had tiny
different spectra. The Raman peaks of 831 and 850 cm−1 showed
the tyrosine residue conformation, which revealed the difference
of renal and breast cancer cells from the liver, lung, and skin
cancer cells. By using multivariate statistical methods of SVM,
LDA, and QDA, we further studied the spectral differences
between various cancer cells. The identification accuracy and

advantages were compared to discuss. The SVM and LDA model
had identical specific accuracy of classifying and predicting cell
spectrum, but LDA is more beneficial when the type and number
of samples are vast. QDA is a variant of LDA and had a better
sensitivity of 100% prediction accuracy in the analysis of cellular
Raman spectra. In the follow-up study, we will accumulate more
cell spectrum to improve the reliability of the calibration sample
library and implement it to identify the circulating tumor cells in
the peripheral blood of tumor patients. Raman spectroscopy is a
powerful, rapid, and non-destructive means in the identification
of biochemical components. It has the potential to play a
substantial role in the detection of cancer metastasis in an
early stage of cancer or after surgery in the future.
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