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All-polymer solar cells (all-PSCs) composed of polymer donors and acceptors have

attracted widespread attention in recent years. However, the broad and efficient photon

utilization of polymer:polymer blend films remains challenging. In our previous work, we

developed NOE10, a linear oligoethylene oxide (OE) side-chain modified naphthalene

diimide (NDI)-based polymer acceptor which exhibited a power conversion efficiency

(PCE) of 8.1% when blended with a wide-bandgap polymer donor PBDT-TAZ. Herein,

we report a ternary all-PSC strategy of incorporating a state-of-the-art narrow bandgap

polymer (PTB7-Th) into the PBDT-TAZ:NOE10 binary system, which enables 8.5% PCEs

within a broad ternary polymer ratio. We further demonstrate that, compared to the binary

system, the improved photovoltaic performance of ternary all-PSCs benefits from the

combined effect of enhanced photon absorption, more efficient charge generation, and

balanced charge transport. Meanwhile, similar to the binary system, the ternary all-PSC

also shows excellent thermal stability, maintaining 98% initial PCE after aging for 300 h at

65◦C. This work demonstrates that the introduction of a narrow-bandgap polymer as a

third photoactive component into ternary all-PSCs is an effective strategy to realize highly

efficient and stable all-PSCs.

Keywords: all-polymer solar cells, ternary solar cells, power conversion efficiency, thermal stability, Förster

resonant energy transfer

INTRODUCTION

Bulk-heterojunction (BHJ) polymer solar cells (PSCs) are a promising solar-energy technology
due to their low cost, easy fabrication, light weight, and mechanical flexibility (Yu et al., 1995;
Thompson and Fréchet, 2008; Brabec et al., 2010; Andersen et al., 2014; Lu et al., 2015b; Huang
et al., 2019). In recent years, PSCs have achieved power conversion efficiencies (PCEs) of over
16% via the development of novel photoactive materials, optimized morphological control, and
improved interface and device engineering (Meng et al., 2018; An Q. et al., 2019; Chang et al., 2019;
Fan et al., 2019a; Li K. et al., 2019; Yan et al., 2019; Yuan et al., 2019; Yu et al., 2019). Specifically,
one important effort has been the creation of novel photoactive acceptors beyond fullerene-based
acceptors, aiming to mitigate the drawbacks of fullerene-based materials such as their expensive
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synthetic cost, weak optical absorption, finited bandgap, and
morphological instability (Hummelen et al., 1995; Wienk et al.,
2003; Cheng and Zhan, 2016). Therefore, there is increasing
interest in developing and comprehending non-fullerene
acceptors (Brabec et al., 2010; Nielsen et al., 2015; Kang et al.,
2016; Cheng et al., 2018; Hou et al., 2018; Liu et al., 2018a; Yan
et al., 2018; Yang et al., 2019b). Among these non-fullerene
acceptors, polymeric electron acceptors were reported to have
tunable absorption, modulable energy levels, and stable BHJ
morphology (Li et al., 2014; Jung et al., 2015, 2016; Dou et al.,
2016; Kang et al., 2016; Wang et al., 2017; Liu et al., 2018b; An
N. et al., 2019; Yang et al., 2019a). Thus, all-polymer solar cells
(all-PSCs) consisting of a polymeric donor and acceptor have
attracted more and more attention and are promising for use
in realizing highly efficient and stable solar cells (Kim et al.,
2015; Kang et al., 2016; Liu et al., 2016, 2018b; Long et al., 2016;
Wang et al., 2017; Zhang et al., 2017). Encouragingly, all-PSCs
have recently achieved over 10% PCEs (Fan et al., 2017a,b, 2018,
2019b; Li et al., 2017a; Zhang et al., 2017; Chen et al., 2018;
Kolhe et al., 2019; Li Z. et al., 2019; Meng et al., 2019; Yao et al.,
2019; Zhu et al., 2019; Zhao et al., 2020). To date, highly efficient
all-PSCs are mostly based on naphthalene diimide (NDI)
polymer acceptors, because of their high electron mobility,
suitable energy levels, and tunable BHJ morphology (Gao et al.,
2016; Li et al., 2016; Fan et al., 2017a,b; Liu et al., 2018b). For
example, poly[[N, N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-
bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)], is a
state-of-the-art polymer acceptor with the commercial name
N2200 (Yan et al., 2009; Fan et al., 2017b). However, the relatively
weak absorption coefficient in near-infrared wavelengths of
N2200 or its analogs prevents devices from attaining higher
photocurrent responses and short-circuit current densities (Jsc)
(Fan et al., 2017a,b; Liu et al., 2018b). State-of-the-art all-PSCs
usually exhibit lower than 40% external quantum efficiencies
(EQEs) in the 700–800 nm wavelength range, which offered by
N2200, seriously limiting further improvement of their Jsc and
PCE values (Fan et al., 2017a,b; Liu et al., 2018b).

Ternary all-PSCs are based on the incorporation of a third
polymer component into a binary polymer: polymer blend,
thereby effectively improving device efficiencies via extending
and/or enhancing light absorption, manipulating energy levels,
and regulating active layer morphology (Huang et al., 2017; Fu
et al., 2018; Xu and Gao, 2018; Yu et al., 2018; Gasparini et al.,
2019; Lee et al., 2019). Jenekhe et al. developed a ternary all-
PSC with a PCE of 3.2% composed of a polymer donor and
two polymer acceptors (Hwang et al., 2015). Using the same
ternary approach, Ito et al. (Benten et al., 2016), Li et al. (Su
et al., 2016), and Wang et al. (Li et al., 2017a) constructed
efficient ternary all-PSCs by combining wide-bandgap polymers
(PCDTBT, PBDD-ff4T, and PBDTTS-FTAZ, respectively), with
the narrow-bandgap PTB7-Th:N2200 blend, where the wide-
bandgap polymers contributed to complementary absorption
and improved photocurrent, resulting in steadily increased
PCEs of 6.7, 7.2, and 9.0%, respectively. Recently, Ying
et al. realized several ternary all-PSCs, which achieved PCEs
over 10%; the high efficiencies of these ternary all-PSCs
were attributed to the complementary absorption, enhanced

photo-harvesting, improved charge-carrier transportation, and
inhibited recombination (Fan et al., 2018, 2019b; Li Z. et al.,
2019).

Considering the future practical applications of PSCs, device
stability is a significant issue beyond its contribution to high
photovoltaic efficiency. Specifically, device stability issues include
the oxidation of electrodes, degradation of interface layers, and
intrinsic instability of photoactive layer morphology under light
and thermal aging (Jørgensen et al., 2012; Cheng and Zhan,
2016; Holliday et al., 2016; Baran et al., 2017; Kim et al., 2017;
Mateker and McGehee, 2017; Zhang et al., 2018b; Hu et al., 2019;
Speller et al., 2019). The ternary strategy has displayed potential
as a useful approach for achieving stable solar cells (Kim et al.,
2017; Zhang et al., 2019b). For example, the research groups of
McCulloch (Baran et al., 2017), Kim (Kim et al., 2017), and Ade
(Hu et al., 2019) all demonstrated small molecule acceptor-based
ternary systems with excellent thermal stabilities, mainly due to
controlled crystallization and miscibility achieved through the
incorporation of a third component. Moreover, we and others
have demonstrated the excellent long-term and thermal stabilities
of binary or tandem all-PSCs through effective material design
and device engineering (Li et al., 2017b; Liu et al., 2018b; Zhang
et al., 2018a,c). However, ternary all-PSCs with high efficiencies
and excellent thermal stabilities have not been widely investigated
(Li et al., 2017a).

Previously, we have reported a linear oligoethylene oxide
(OE) side-chain modified NDI-based polymer acceptor (NOE10)
which offered a high efficiency (PCE of 8.1%) and excellent long-
term stability when blended with a wide-bandgap polymer donor
(PBDT-TAZ) to form binary all-PSCs (Liu et al., 2018b). In this
work, we further improved the efficiency of all-PSCs through
the ternary strategy while maintaining excellent thermal stability
beyond that of binary all-PSCs. Specifically, the ternary all-
PSCs were constructed by combining a state-of-the-art narrow-
bandgap polymer (PTB7-Th) into the PBDT-TAZ:NOE10 binary
blend. The ternary all-PSCs enable a PCE of 8.5% within a
broad ternary polymer ratio, representing an 18% improvement
over the corresponding binary all-PSCs. The enhanced device
performance of the ternary all-PSCs stem from the combined
effects of improved photon absorption, the generation of more
free charges through simultaneous charge and energy transfer,
and balanced charge transport. More importantly, the ternary all-
PSCs exhibit excellent thermal stability, maintaining 98% of their
initial PCE after aging for 300 h at 65◦C. This work demonstrates
that the introduction of the state-of-the-art narrow-bandgap
polymer PTB7-Th as a third photoactive component positions
ternary PBDT-TAZ:PTB7-Th:NOE10 all-PSCs as highly efficient
and stable all-PSCs. Further, the high performances of ternary all-
PSCs within broad ternary polymer ratios offer benefits for future
large-scale technological applications.

RESULTS AND DISCUSSION

Polymer Selection and Characterization
The acceptor polymer NOE10 is a linear oligoethylene oxide
(OE) side-chain modified naphthalene diimide (NDI)-based
polymer reported by our group previously and presented in
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FIGURE 1 | Chemical structures of photoactive layer polymers (PBDT-TAZ, PTB7-Th, and NOE10) and the device architecture schematic diagram.

Figure 1. It can achieve a high PCE of ≈8% when used
in a PBDT-TAZ:NOE10-based all-PSC due to its optimal
photoactive layer morphology (Liu et al., 2018b). The donor
polymer PBDT-TAZ is a wide-bandgap conjugated polymer
derived from a benzodithiophene (BDT) building block and
a difluorobenzotriazole (TAZ) unit with a bandgap >1.9 eV;
PBDT-TAZ and its analogs have been widely applied in efficient
all-PSCs demonstrated by our group and others (Li et al., 2016,
2017a; Duan et al., 2018; Liu et al., 2018b; Pang et al., 2019).
Though the PBDT-TAZ:NOE10-based binary all-PSC showed
a high PCE of 8.1% in our previous work, the binary blend
shows weak absorption in the range of 600–800 nm, which
restricts the further improvement of its quantum efficiency,
Jsc, and PCE. The state-of-the-art narrow-bandgap polymer
PTB7-Th offers high absorption coefficient in the 600–800 nm
range, and is a reasonable candidate for application as the third
component in a binary PBDT-TAZ:NOE10 blend to improve
long-wavelength absorption. Thus, PBDT-TAZ:PTB7-Th:NOE10
blends with different ratios were applied as the photoactive layer
in a ternary all-PSCs system. The ratio of PBDT-TAZ:NOE10 was
fixed at 1.5:1, while the PTB7-Th content was varied to optimize
the polymer ratios.

The optical absorption spectra of the photoactive layer
polymers (PBDT-TAZ, PTB7-Th, and NOE10) and the
corresponding blended films were shown in Figure 2A. The
wide-bandgap donor polymer PBDT-TAZ exhibits absorption
coefficients over 8 × 104 cm−1 in the 500–600 nm range,
whereas acceptor polymer NOE10 shows relatively weak
absorption coefficients in the 600–850 nm range, which limits
the light-harvesting efficiency of the PBDT-TAZ:NOE10 binary
blend. The narrow-bandgap polymer PTB7-Th shows high
absorption coefficient in the range of 600–760 nm with a
maximal absorption coefficient of 1.05 × 105 cm−1 at 705 nm,
which complements the absorption of the binary system. The
absorption spectra of the ternary blends representing different
polymer ratios are shown in Figure 2B. As PTB7-Th content

increases, the corresponding ternary blends clearly exhibit
significantly enhanced absorption coefficient in the range of
650–760 nm. These results demonstrate that the introduction of
PTB7-Th could improve the absorption of the ternary blend.

The electrochemical characteristic curves of the photoactive
layer polymers were recorded using cyclic voltammetry (CV).
Relevant CV curves are depicted in Figure 2C, and the calculated
energy diagrams are shown in Figure 2D. The lowest unoccupied
molecular orbital (LUMO) levels of PBDT-TAZ, PTB7-Th, and
NOE10 are −2.99, −3.26, and −3.91 eV, respectively, which
provide a cascading alignment for electron transfer. Meanwhile,
the highest occupied molecular orbital (HOMO) levels of PBDT-
TAZ, PTB7-Th, and NOE10 are −5.38, −5.29, and −5.81 eV,
respectively, which indicates that the HOMO and LUMO levels
of PTB7-Th fall between the HOMO and LUMO levels of PBDT-
TAZ. The slightly increased HOMO level of PTB7-Th suggests
that the partial holes generated from PBDT-TAZ may ultimately
be transferred to the HOMO of PTB7-Th before extraction.

Photovoltaic Properties
BHJ all-PSCs based on the photoactive layer polymers PBDT-
TAZ, PTB7-Th, and NOE10 were fabricated with a device
structure of ITO/PEDOT:PSS/photoactive layer/PFN-Br/Ag. As
shown in Table 1, Figure S1 and Table S1, the ternary blend was
optimized in terms of its detailed ternary ratio to maximize the
PCE. The optimal ternary blended film was fabricated with a
PBDT-TAZ:PTB7-Th:NOE10 weight ratio of 1.5:x:1 (x was set
to be 0.1–1). Current density–voltage (J–V) characteristic curves
and EQE curves of the champion devices using each ternary
blend are exhibited in Figures 3A,B, and the corresponding
photovoltaic parameters are listed in Table 1. There are a few
notable results. First, the open-circuit voltage (Voc) gradually
decreased as the PTB7-Th content increased from 0 to 100%. The
linear dependence of Voc on the loading of PTB7-Th indicates
that the partial holes generated from PBDT-TAZ may ultimately
be transferred to the HOMO of PTB7-Th before extraction.
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FIGURE 2 | (A) The absorption spectra of the neat polymers films (PBDT-TAZ, PTB7-Th, and NOE10); (B) absorption spectra of the corresponding blend films; (C)

cyclic voltammetry curves of PBDT-TAZ, PTB7-Th, and NOE10; (D) calculated energy level diagram of the polymers.

Wang et al. presented a similar ternary system but reported
a nearly constant Voc, which may be attributable to the high
weight ratio of PTB7-Th in the corresponding ternary blends
(Li et al., 2017a). Second, there was a steady increase in Jsc as
the PTB7-Th content increased from 0 to 80%, and forming a
Jsc platform at 60–80% of PTB7-Th containing. These trends are
consistent with absorption and EQE curves of the corresponding
blends. The decreased Jsc of the 1.5:1:1 ternary ratio-based device
should be due to the blend’s unbalanced charge transport, which
is discussed in the following sections. Third, the fill factor (FF)
of the corresponding device decreased slightly with an increase
of PTB7-Th, meanwhile, FF remains at a high level above 0.70 in
1.5:0:1–1.5:0.5:1 ternary ratio-based device. Our results indicate
that the overall PCE can exceed 8% under a wide range of
ternary ratios from 1.5:0.3:1 to 1.5:0.8:1; moreover, ternary all-
PSCs with efficiency of 8.5% can be achieved with ternary ratios
ranging from 1.5:0.5:1 to 1.5:0.7:1. Thus, these results suggest that
the PBDT-TAZ:PTB7-Th:NOE10 ternary blend is a promising
photoactive layer for use in high efficiency all-PSCs; furthermore,
such ternary polymer-blend systems do not require precisely
controlled ternary ratios, which increases the potential of ternary
all-PSCs for use in large-scale commercial applications.

The EQE curves of the ternary all-PSCs are exhibited in
Figure 3B. EQE responses of the corresponding ternary all-PSCs
combined with absorption of the blends reflect the impact of the
photoactive layer polymers on Jsc. Compared to all-PSCs with
a ternary ratio of 1.5:0:1, the EQE response of ternary all-PSCs
including PTB7-Th is significantly improved within the range

TABLE 1 | The detail photovoltaic properties of the devices.

D1:D2:Aa Voc [V] Jsc [mA cm−2] FF PCE [%]b

1.5:0:1 0.843 11.9 0.72 7.2 (7.0 ± 0.2)

1.5:0.2:1 0.821 13.1 0.73 7.8 (7.6 ± 0.2)

1.5:0.3:1 0.814 14.1 0.71 8.2 (8.1 ± 0.1)

1.5:0.4:1 0.810 14.2 0.70 8.1 (8.0 ± 0.2)

1.5:0.5:1 0.805 15.1 0.70 8.5 (8.5 ± 0.1)

1.5:0.6:1 0.803 15.5 0.68 8.4 (8.3 ± 0.2)

1.5:0.7:1 0.801 15.7 0.68 8.5 (8.5 ± 0.1)

1.5:0.8:1 0.796 15.6 0.66 8.2 (8.0 ± 0.2)

1.5:1:1 0.792 14.8 0.62 7.3 (7.2 ± 0.1)

aD1 (PBDT-TAZ), D2 (PTB7-Th), A (NOE10); bthe average values and standard deviations

of statistics from the eight devices are given in parentheses.

of 450 to 780 nm. In particular, the all-PSCs with ternary ratios
of 1.5:0.5:1, 1.5:0.7:1, and 1.5:1:1 exhibit ≈60% EQE values at
450–750 nm. The specific EQE response indicates that the PBDT-
TAZ:PTB7-Th:NOE10 ternary blend offers efficient electron and
hole transfer.

Charge Generation, Transport, and
Recombination
Photoluminescence (PL) tests were conducted to analyze exciton
dissociation efficiency and the energy transfer mechanism in
blended films. As shown in Figure 4A, the PBDT-TAZ:NOE10
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FIGURE 3 | (A) J–V curves of the all-PSC devices; (B) EQE curves of the corresponding devices.

FIGURE 4 | (A) The films PL curves excited at 500 nm; (B) absorption spectra of pure PTB7-Th and NOE10 films, and PL curve of pure PBDT-TAZ film excited at

500 nm; (C) PL spectra of pure PBDT-TAZ, pure PTB7-Th, and PBDT-TAZ:PTB7-Th blended film excited at 500 nm.

binary blend (1.5:0:1) shows a PL peak at 625 nm; however
the PL is completely quenched in the 600–700 nm range of
the 1.5:0.5:1 ternary blend, and the slight PL signals at 700–

850 nm contributed from the incomplete quenching of PTB7-Th
(Figure S2A). This suggests that the incorporation of PTB7-Th
improves exciton dissociation in the 1.5:0.5:1 ternary blend as

compared to that in the 1.5:0:1 binary blend. Furthermore, to
explain the more efficient exciton dissociation process in the

ternary blends, we investigated the energy transfer mechanisms
in the blended films with their corresponding PL spectra. As

exhibited in Figure 4B, the PL spectrum of PBDT-TAZ strongly
overlaps with the absorption range of PTB7-Th and NOE10,

providing sufficient spectral overlap between the emission of
the energy donor (PBDT-TAZ) and the absorption of the

energy acceptor (PTB7-Th and NOE10) according to the
Förster resonant energy transfer (FRET) theory, suggesting that
FRET was realized from PBDT-TAZ to PTB7-Th and NOE10
(Huang et al., 2013). We further confirmed the existence of
FRET of PBDT-TAZ and PTB7-Th through a PL experiment

comparing pure PBDT-TAZ and PTB7-Th film with PBDT-
TAZ:PTB7-Th blended film. When excited at 500 nm, the PBDT-

TAZ:PTB7-Th blend exhibits a clearly higher PL peak intensity
at 755 nm compared to the pure PTB7-Th film, while PBDT-

TAZ’s PL peak at 675 nm completely disappears in the blend

(Figure 4C). In contrast, when excited at 700 nm, the PTB7-
Th and PBDT-TAZ:PTB7-Th blended films exhibit similar PL
spectra (Figure S2B). The PL responses evident at two different
excitation wavelengths demonstrate that a FRET process occurs
from PBDT-TAZ to PTB7-Th. It should be noted that there is
competition between the energy transfer from PBDT-TAZ to
PTB7-Th and the charge transfer from PBDT-TAZ to NOE10
in the BHJ ternary blends. As reported for several ternary
solar cells, the energy and charge transfer processes often
exhibit concurrency and intertwining (Lu et al., 2015a; Li et al.,
2017a).

We further studied the exciton dissociation probability P(E,
T) of the all-PSCs (Koster et al., 2005). Figure 5A exhibits the
photocurrent density (Jph) vs. the effective voltage (Veff) of the
all-PSCs. The P(E, T) is defined by normalizing Jph with the
saturation photocurrent density (Jsat) (Koster et al., 2005). Under
the short-circuit conditions, the all-PSCs with ternary ratios of
1.5:0:1, 1.5:0.5:1, and 1.5:1:1 show P(E, T) values of 93.6, 95.3, and
94.5%, respectively. The all-PSC with a ternary ratio of 1.5:0.5:1
exhibits the highest P(E, T) value, further signifying that the
inclusion of PTB7-Th as the third component promotes exciton
dissociation in ternary devices, which is in agreement with the
corresponding Jsc and EQE spectra.

Device photovoltaic properties, especially Jsc and FF values,
can also be greatly impacted on charge transport properties. The
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FIGURE 5 | (A) Jph-Veff curves of the devices; (B) Jsc-ln(Plight ) properties of the devices; (C) Voc-ln(Plight ) properties of the devices.

FIGURE 6 | TEM images of the blend films with PBDT-TAZ:PTB7-Th:NOE10 ternary ratios of 1.5:0:1 (A), 1.5:0.5:1 (B), and 1.5:1:1 (C).

mobilities of the three different ternary-blended film ratios was
tested and shown in Figure S3. The results are listed in Table S2.
The devices with ternary ratios of 1.5:0:1, 1.5:0.5:1, and 1.5:1:1
show electron mobilities (µe) of 3.6 × 10−4, 3.3 × 10−4, and 2.4
× 10−4 cm2 V−1 s−1, respectively. The hole mobilities (µh) of
these blended films are 1.9 × 10−4, 3.2 × 10−4, and 4.3 × 10−4

cm2 V−1 s−1, respectively. Correspondingly, the µe/µh ratios
for blended films with ternary ratios of 1.5:0:1, 1.5:0.5:1, and
1.5:1:1 are 1.9, 1.0, and 0.6, respectively. The PBDT-TAZ:PTB7-
Th:NOE10 blend with a ternary ratio of 1.5:0.5:1 offers optimally
balanced electron/hole transport along with high FF (0.70) and
Jsc (15.1mA cm−2) in all-PSCs.

Charge recombination mechanisms of the devices were

investigated through measurements of the light intensity
dependence of the Jsc and Voc values. The correlation of Jsc
and light intensity (Plight) obeys the power-law Jsc ∝ Plight

α,

where α is an exponential factor that should equal 1 when all
charge carriers are extracted before recombination (Cowan et al.,

2010). As exhibited in Figure 5B, the α values of the fitted
line for all-PSCs with ternary ratios of 1.5:0:1, 1.5:0.5:1, and
1.5:1:1 are 0.979, 0.978, and 0.988, respectively, indicating the
negligible bimolecular recombination in these devices. The slope

of the Voc vs. ln(Plight) curve reveals the charge recombination
at open circuit conditions. Trap-assisted recombination or
monomolecular recombination is dominant when the slope is
2.0 kT/q, while the slope value would be equal to 1.0 kT/q

when only bimolecular recombination occurs (Cowan et al.,
2010). As shown in Figure 5C, the all-PSCs with ternary ratios
of 1.5:0:1, 1.5:0.5:1, and 1.5:1:1 show a slope of 1.53 kT/q, 1.41
kT/q, and 1.60 kT/q, respectively. The all-PSC with a ternary
ratio of 1.5:0.5:1 exhibits the lowest slope, suggesting the low
trap-assisted recombination or monomolecular recombination
of that ternary ratio device. These results are consistent with
the exciton dissociationmeasurements, charge transport analysis,
and devices photovoltaic properties.

Morphology
The morphology of the BHJ blend films was tested using
transmission electron microscopy (TEM). The TEM images of
the blended films with three different PTB7-Th polymer-content
ratios are shown in Figure 6. The blended films with ternary
ratios of 1.5:0:1 and 1.5:0.5:1 exhibit similarly aligned fibrillar
structures which improve charge separation and transport.
Meanwhile, the near-uniform film of the 1.5:1:1 blend reveals
an intimately mixed nanostructure without noteworthy phase
aggregation and separation. With such morphology, charge
separation and transport in the 1.5:1:1 blend are impeded,
resulting relatively lower Jsc and FF in solar cells. These
morphologies may be associated with the weak crystallinity of
PTB7-Th; thus, the excessive loading of PTB7-Th may obstruct
BHJ morphology. Overall, the microstructural morphologies of
the blended films are consistent with the Jsc and FF variations of
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FIGURE 7 | Normalized device PCE based on PBDT-TAZ:PTB7-Th:NOE10,

PBDT-TAZ:NOE10, PBDB-T:ITIC, and PCE11:PCBM over the 65◦C thermal

aging time.

the corresponding all-PSCs, and the Jsc values can be improved
and the FF values maintained when the PBDT-TAZ:PTB7-
Th:NOE10 ternary ratio is approximately 1.5:0.5:1.

Device Stability
In our previous work, we demonstrated the excellent long-term
storage capacity and thermal stability of the PBDT-TAZ:NOE10-
based binary all-PSC system (Liu et al., 2018b). Herein, we
further investigated the device stability of a PBDT-TAZ:PTB7-
Th:NOE10 (1.5:0.5:1)-based ternary all-PSC under continuous
thermal aging and compared it with the stability of a binary all-
PSC (PBDT-TAZ:NOE10) and other two highly efficient solar
cells [PCE11:PCBM (Liu et al., 2014) and PBDB-T:ITIC (Zhao
et al., 2016)]. The normalized performances of the devices under
65◦C thermal aging are exhibited in Figure 7, while detailed
device photovoltaic properties (Voc, Jsc, and FF) are depicted
in Figure S4. After 300 h of continuous thermal aging at 65◦C,
the ternary all-PSC (PBDT-TAZ:PTB7-Th:NOE10) device holds
98% initial PCE without burn-in efficiency loss. However, the
PCE11:PCBM and PBDB-T:ITIC devices exhibit obvious burn-
in efficiency losses within 10–20 h of thermal aging, and these
devices exhibit markedly lower long-term stabilities, including
<80% initial PCE retention for PBDB-T:ITIC devices after 300 h
of aging and ≈70% initial PCE retention for PCE11:PCBM
devices after 25 h of aging, which could be attributed to the
instability of their BHJ microstructure morphology (Li N. et al.,
2017; Du et al., 2019; Zhang et al., 2019a). As in the PBDT-
TAZ:NOE10 binary devices, the burn-in-free feature of the
ternary devices can be attributed to the stable blend morphology
(Li N. et al., 2017). All-PSCs based on NOE10 polymer acceptors,
including both binary and ternary systems, show excellent
long-term thermal stability. This demonstrates that NOE10
shows significant promise as an electron acceptor for practical
applications in the field of PSCs.

CONCLUSION

In conclusion, we have demonstrated an efficient approach to
ternary all-PSCs construction by incorporating a state-of-the-art

narrow-bandgap polymer, PTB7-Th, as the third component
within a PBDT-TAZ:NOE10 binary system. The ternary all-
PSCs achieve 8.5% PCEs within broad PTB7-Th-content
ratios, representing an 18% improvement over binary all-PSCs.
Compared to the binary system, the improved photovoltaic
performance of ternary all-PSCs reflect the combined strengths
of enhanced photon absorption, increased free charges generated
through simultaneous charge and energy transfer, and balanced
charge transport. Moreover, like the binary system, the ternary
all-PSCs also show excellent thermal stability, maintaining 98%
of their initial PCE after aging for 300 h at 65◦C. This work
demonstrates that the introduction of PTB7-Th as the third
photoactive component in ternary PBDT-TAZ:PTB7-Th:NOE10
all-PSC construction is an effective strategy for realizing highly
efficient and stable all-PSCs. It also suggests the strong potential
of NOE10 as an acceptor polymer for future large-scale
technological applications in both binary and ternary all-PSCs.
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